Properties

Label 8112.2.ds
Level $8112$
Weight $2$
Character orbit 8112.ds
Rep. character $\chi_{8112}(289,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $4368$
Sturm bound $2912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.ds (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{39})\)
Sturm bound: \(2912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8112, [\chi])\).

Total New Old
Modular forms 35232 4368 30864
Cusp forms 34656 4368 30288
Eisenstein series 576 0 576

Decomposition of \(S_{2}^{\mathrm{new}}(8112, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(8112, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1014, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1352, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2028, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2704, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4056, [\chi])\)\(^{\oplus 2}\)