Defining parameters
Level: | \( N \) | \(=\) | \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8112.fp (of order \(156\) and degree \(48\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 676 \) |
Character field: | \(\Q(\zeta_{156})\) | ||
Sturm bound: | \(2912\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 70464 | 8736 | 61728 |
Cusp forms | 69312 | 8736 | 60576 |
Eisenstein series | 1152 | 0 | 1152 |
Decomposition of \(S_{2}^{\mathrm{new}}(8112, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8112, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2028, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2704, [\chi])\)\(^{\oplus 2}\)