Properties

Label 8112.2.fp
Level $8112$
Weight $2$
Character orbit 8112.fp
Rep. character $\chi_{8112}(175,\cdot)$
Character field $\Q(\zeta_{156})$
Dimension $8736$
Sturm bound $2912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.fp (of order \(156\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 676 \)
Character field: \(\Q(\zeta_{156})\)
Sturm bound: \(2912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8112, [\chi])\).

Total New Old
Modular forms 70464 8736 61728
Cusp forms 69312 8736 60576
Eisenstein series 1152 0 1152

Decomposition of \(S_{2}^{\mathrm{new}}(8112, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(8112, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2028, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2704, [\chi])\)\(^{\oplus 2}\)