Properties

Label 812.1.l.a.307.1
Level 812812
Weight 11
Character 812.307
Analytic conductor 0.4050.405
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [812,1,Mod(307,812)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(812, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("812.307");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 812=22729 812 = 2^{2} \cdot 7 \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 812.l (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4052407902580.405240790258
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.2731568.1

Embedding invariants

Embedding label 307.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 812.307
Dual form 812.1.l.a.447.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000q4+1.00000iq7+1.00000iq8+1.00000iq9+(1.00000+1.00000i)q11+1.00000q14+1.00000q16+1.00000q18+(1.000001.00000i)q222.00000iq231.00000q251.00000iq28+1.00000iq291.00000iq321.00000iq36+(1.000001.00000i)q37+(1.00000+1.00000i)q43+(1.000001.00000i)q442.00000q461.00000q49+1.00000iq50+2.00000q531.00000q56+1.00000q581.00000q631.00000q64+2.00000q711.00000q72+(1.00000+1.00000i)q74+(1.00000+1.00000i)q77+(1.000001.00000i)q791.00000q81+(1.000001.00000i)q86+(1.00000+1.00000i)q88+2.00000iq92+1.00000iq98+(1.00000+1.00000i)q99+O(q100)q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{7} +1.00000i q^{8} +1.00000i q^{9} +(1.00000 + 1.00000i) q^{11} +1.00000 q^{14} +1.00000 q^{16} +1.00000 q^{18} +(1.00000 - 1.00000i) q^{22} -2.00000i q^{23} -1.00000 q^{25} -1.00000i q^{28} +1.00000i q^{29} -1.00000i q^{32} -1.00000i q^{36} +(-1.00000 - 1.00000i) q^{37} +(1.00000 + 1.00000i) q^{43} +(-1.00000 - 1.00000i) q^{44} -2.00000 q^{46} -1.00000 q^{49} +1.00000i q^{50} +2.00000 q^{53} -1.00000 q^{56} +1.00000 q^{58} -1.00000 q^{63} -1.00000 q^{64} +2.00000 q^{71} -1.00000 q^{72} +(-1.00000 + 1.00000i) q^{74} +(-1.00000 + 1.00000i) q^{77} +(-1.00000 - 1.00000i) q^{79} -1.00000 q^{81} +(1.00000 - 1.00000i) q^{86} +(-1.00000 + 1.00000i) q^{88} +2.00000i q^{92} +1.00000i q^{98} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q4+2q11+2q14+2q16+2q18+2q222q252q37+2q432q444q462q49+4q532q56+2q582q632q64+4q712q72+2q99+O(q100) 2 q - 2 q^{4} + 2 q^{11} + 2 q^{14} + 2 q^{16} + 2 q^{18} + 2 q^{22} - 2 q^{25} - 2 q^{37} + 2 q^{43} - 2 q^{44} - 4 q^{46} - 2 q^{49} + 4 q^{53} - 2 q^{56} + 2 q^{58} - 2 q^{63} - 2 q^{64} + 4 q^{71} - 2 q^{72}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/812Z)×\left(\mathbb{Z}/812\mathbb{Z}\right)^\times.

nn 407407 465465 785785
χ(n)\chi(n) 1-1 1-1 e(34)e\left(\frac{3}{4}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
44 −1.00000 −1.00000
55 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
66 0 0
77 1.00000i 1.00000i
88 1.00000i 1.00000i
99 1.00000i 1.00000i
1010 0 0
1111 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 1.00000 1.00000
1515 0 0
1616 1.00000 1.00000
1717 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1818 1.00000 1.00000
1919 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
2020 0 0
2121 0 0
2222 1.00000 1.00000i 1.00000 1.00000i
2323 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
2424 0 0
2525 −1.00000 −1.00000
2626 0 0
2727 0 0
2828 1.00000i 1.00000i
2929 1.00000i 1.00000i
3030 0 0
3131 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3232 1.00000i 1.00000i
3333 0 0
3434 0 0
3535 0 0
3636 1.00000i 1.00000i
3737 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4242 0 0
4343 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
4444 −1.00000 1.00000i −1.00000 1.00000i
4545 0 0
4646 −2.00000 −2.00000
4747 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4848 0 0
4949 −1.00000 −1.00000
5050 1.00000i 1.00000i
5151 0 0
5252 0 0
5353 2.00000 2.00000 1.00000 00
1.00000 00
5454 0 0
5555 0 0
5656 −1.00000 −1.00000
5757 0 0
5858 1.00000 1.00000
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
6262 0 0
6363 −1.00000 −1.00000
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 0 0
7070 0 0
7171 2.00000 2.00000 1.00000 00
1.00000 00
7272 −1.00000 −1.00000
7373 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
7474 −1.00000 + 1.00000i −1.00000 + 1.00000i
7575 0 0
7676 0 0
7777 −1.00000 + 1.00000i −1.00000 + 1.00000i
7878 0 0
7979 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
8080 0 0
8181 −1.00000 −1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 1.00000 1.00000i 1.00000 1.00000i
8787 0 0
8888 −1.00000 + 1.00000i −1.00000 + 1.00000i
8989 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
9090 0 0
9191 0 0
9292 2.00000i 2.00000i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
9898 1.00000i 1.00000i
9999 −1.00000 + 1.00000i −1.00000 + 1.00000i
100100 1.00000 1.00000
101101 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 2.00000i 2.00000i
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
110110 0 0
111111 0 0
112112 1.00000i 1.00000i
113113 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
114114 0 0
115115 0 0
116116 1.00000i 1.00000i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1.00000i 1.00000i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 1.00000i 1.00000i
127127 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
128128 1.00000i 1.00000i
129129 0 0
130130 0 0
131131 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 2.00000i 2.00000i
143143 0 0
144144 1.00000i 1.00000i
145145 0 0
146146 0 0
147147 0 0
148148 1.00000 + 1.00000i 1.00000 + 1.00000i
149149 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 1.00000 + 1.00000i 1.00000 + 1.00000i
155155 0 0
156156 0 0
157157 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
158158 −1.00000 + 1.00000i −1.00000 + 1.00000i
159159 0 0
160160 0 0
161161 2.00000 2.00000
162162 1.00000i 1.00000i
163163 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 −1.00000 −1.00000
170170 0 0
171171 0 0
172172 −1.00000 1.00000i −1.00000 1.00000i
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 1.00000i 1.00000i
176176 1.00000 + 1.00000i 1.00000 + 1.00000i
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 2.00000 2.00000
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
192192 0 0
193193 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
194194 0 0
195195 0 0
196196 1.00000 1.00000
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 1.00000 + 1.00000i 1.00000 + 1.00000i
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 1.00000i 1.00000i
201201 0 0
202202 0 0
203203 −1.00000 −1.00000
204204 0 0
205205 0 0
206206 0 0
207207 2.00000 2.00000
208208 0 0
209209 0 0
210210 0 0
211211 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
212212 −2.00000 −2.00000
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −2.00000 −2.00000
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 1.00000 1.00000
225225 1.00000i 1.00000i
226226 −1.00000 + 1.00000i −1.00000 + 1.00000i
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
230230 0 0
231231 0 0
232232 −1.00000 −1.00000
233233 2.00000 2.00000 1.00000 00
1.00000 00
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 1.00000 1.00000
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
252252 1.00000 1.00000
253253 2.00000 2.00000i 2.00000 2.00000i
254254 −1.00000 + 1.00000i −1.00000 + 1.00000i
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 1.00000 1.00000i 1.00000 1.00000i
260260 0 0
261261 −1.00000 −1.00000
262262 0 0
263263 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
270270 0 0
271271 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
272272 0 0
273273 0 0
274274 −1.00000 1.00000i −1.00000 1.00000i
275275 −1.00000 1.00000i −1.00000 1.00000i
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 −2.00000 −2.00000
285285 0 0
286286 0 0
287287 0 0
288288 1.00000 1.00000
289289 1.00000i 1.00000i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
294294 0 0
295295 0 0
296296 1.00000 1.00000i 1.00000 1.00000i
297297 0 0
298298 2.00000 2.00000
299299 0 0
300300 0 0
301301 −1.00000 + 1.00000i −1.00000 + 1.00000i
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
308308 1.00000 1.00000i 1.00000 1.00000i
309309 0 0
310310 0 0
311311 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 1.00000 + 1.00000i 1.00000 + 1.00000i
317317 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
318318 0 0
319319 −1.00000 + 1.00000i −1.00000 + 1.00000i
320320 0 0
321321 0 0
322322 2.00000i 2.00000i
323323 0 0
324324 1.00000 1.00000
325325 0 0
326326 1.00000 + 1.00000i 1.00000 + 1.00000i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
332332 0 0
333333 1.00000 1.00000i 1.00000 1.00000i
334334 0 0
335335 0 0
336336 0 0
337337 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
338338 1.00000i 1.00000i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000i 1.00000i
344344 −1.00000 + 1.00000i −1.00000 + 1.00000i
345345 0 0
346346 0 0
347347 2.00000 2.00000 1.00000 00
1.00000 00
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 −1.00000 −1.00000
351351 0 0
352352 1.00000 1.00000i 1.00000 1.00000i
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
360360 0 0
361361 1.00000i 1.00000i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
368368 2.00000i 2.00000i
369369 0 0
370370 0 0
371371 2.00000i 2.00000i
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 −1.00000 + 1.00000i −1.00000 + 1.00000i
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 −1.00000 1.00000i −1.00000 1.00000i
387387 −1.00000 + 1.00000i −1.00000 + 1.00000i
388388 0 0
389389 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 1.00000i 1.00000i
393393 0 0
394394 0 0
395395 0 0
396396 1.00000 1.00000i 1.00000 1.00000i
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 1.00000i 1.00000i
407407 2.00000i 2.00000i
408408 0 0
409409 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 2.00000i 2.00000i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
422422 1.00000 + 1.00000i 1.00000 + 1.00000i
423423 0 0
424424 2.00000i 2.00000i
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
434434 0 0
435435 0 0
436436 2.00000i 2.00000i
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 1.00000i 1.00000i
442442 0 0
443443 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 1.00000i 1.00000i
449449 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
450450 −1.00000 −1.00000
451451 0 0
452452 1.00000 + 1.00000i 1.00000 + 1.00000i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
462462 0 0
463463 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
464464 1.00000i 1.00000i
465465 0 0
466466 2.00000i 2.00000i
467467 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 2.00000i 2.00000i
474474 0 0
475475 0 0
476476 0 0
477477 2.00000i 2.00000i
478478 0 0
479479 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 1.00000i 1.00000i
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 2.00000i 2.00000i
498498 0 0
499499 2.00000 2.00000 1.00000 00
1.00000 00
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
504504 1.00000i 1.00000i
505505 0 0
506506 −2.00000 2.00000i −2.00000 2.00000i
507507 0 0
508508 1.00000 + 1.00000i 1.00000 + 1.00000i
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 −1.00000 1.00000i −1.00000 1.00000i
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 1.00000i 1.00000i
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 −1.00000 + 1.00000i −1.00000 + 1.00000i
527527 0 0
528528 0 0
529529 −3.00000 −3.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −1.00000 1.00000i −1.00000 1.00000i
540540 0 0
541541 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 −1.00000 + 1.00000i −1.00000 + 1.00000i
549549 0 0
550550 −1.00000 + 1.00000i −1.00000 + 1.00000i
551551 0 0
552552 0 0
553553 1.00000 1.00000i 1.00000 1.00000i
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 0 0
566566 0 0
567567 1.00000i 1.00000i
568568 2.00000i 2.00000i
569569 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
570570 0 0
571571 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 2.00000i 2.00000i
576576 1.00000i 1.00000i
577577 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
578578 −1.00000 −1.00000
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 2.00000 + 2.00000i 2.00000 + 2.00000i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 −1.00000 1.00000i −1.00000 1.00000i
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 2.00000i 2.00000i
597597 0 0
598598 0 0
599599 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
600600 0 0
601601 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
602602 1.00000 + 1.00000i 1.00000 + 1.00000i
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 −1.00000 1.00000i −1.00000 1.00000i
617617 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
618618 0 0
619619 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 1.00000 1.00000i 1.00000 1.00000i
633633 0 0
634634 −1.00000 + 1.00000i −1.00000 + 1.00000i
635635 0 0
636636 0 0
637637 0 0
638638 1.00000 + 1.00000i 1.00000 + 1.00000i
639639 2.00000i 2.00000i
640640 0 0
641641 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 −2.00000 −2.00000
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 1.00000i 1.00000i
649649 0 0
650650 0 0
651651 0 0
652652 1.00000 1.00000i 1.00000 1.00000i
653653 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 −1.00000 1.00000i −1.00000 1.00000i
663663 0 0
664664 0 0
665665 0 0
666666 −1.00000 1.00000i −1.00000 1.00000i
667667 2.00000 2.00000
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
674674 1.00000 1.00000i 1.00000 1.00000i
675675 0 0
676676 1.00000 1.00000
677677 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
684684 0 0
685685 0 0
686686 −1.00000 −1.00000
687687 0 0
688688 1.00000 + 1.00000i 1.00000 + 1.00000i
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 −1.00000 1.00000i −1.00000 1.00000i
694694 2.00000i 2.00000i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 1.00000i 1.00000i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 −1.00000 1.00000i −1.00000 1.00000i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 1.00000 1.00000i 1.00000 1.00000i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 1.00000 1.00000i 1.00000 1.00000i
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 1.00000 1.00000
723723 0 0
724724 0 0
725725 1.00000i 1.00000i
726726 0 0
727727 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
728728 0 0
729729 1.00000i 1.00000i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
734734 0 0
735735 0 0
736736 −2.00000 −2.00000
737737 0 0
738738 0 0
739739 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
740740 0 0
741741 0 0
742742 2.00000 2.00000
743743 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
758758 1.00000 1.00000i 1.00000 1.00000i
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 2.00000 2.00000
764764 1.00000 + 1.00000i 1.00000 + 1.00000i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
770770 0 0
771771 0 0
772772 −1.00000 + 1.00000i −1.00000 + 1.00000i
773773 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
774774 1.00000 + 1.00000i 1.00000 + 1.00000i
775775 0 0
776776 0 0
777777 0 0
778778 1.00000 1.00000i 1.00000 1.00000i
779779 0 0
780780 0 0
781781 2.00000 + 2.00000i 2.00000 + 2.00000i
782782 0 0
783783 0 0
784784 −1.00000 −1.00000
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 1.00000 1.00000i 1.00000 1.00000i
792792 −1.00000 1.00000i −1.00000 1.00000i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
798798 0 0
799799 0 0
800800 1.00000i 1.00000i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 1.00000 1.00000
813813 0 0
814814 −2.00000 −2.00000
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
828828 −2.00000 −2.00000
829829 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
840840 0 0
841841 −1.00000 −1.00000
842842 −1.00000 + 1.00000i −1.00000 + 1.00000i
843843 0 0
844844 1.00000 1.00000i 1.00000 1.00000i
845845 0 0
846846 0 0
847847 −1.00000 −1.00000
848848 2.00000 2.00000
849849 0 0
850850 0 0
851851 −2.00000 + 2.00000i −2.00000 + 2.00000i
852852 0 0
853853 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
860860 0 0
861861 0 0
862862 0 0
863863 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 2.00000i 2.00000i
870870 0 0
871871 0 0
872872 2.00000 2.00000
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 2.00000 2.00000 1.00000 00
1.00000 00
878878 0 0
879879 0 0
880880 0 0
881881 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
882882 −1.00000 −1.00000
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 1.00000 + 1.00000i 1.00000 + 1.00000i
887887 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
888888 0 0
889889 1.00000 1.00000i 1.00000 1.00000i
890890 0 0
891891 −1.00000 1.00000i −1.00000 1.00000i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −1.00000 −1.00000
897897 0 0
898898 1.00000 + 1.00000i 1.00000 + 1.00000i
899899 0 0
900900 1.00000i 1.00000i
901901 0 0
902902 0 0
903903 0 0
904904 1.00000 1.00000i 1.00000 1.00000i
905905 0 0
906906 0 0
907907 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 1.00000 + 1.00000i 1.00000 + 1.00000i
926926 2.00000i 2.00000i
927927 0 0
928928 1.00000 1.00000
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 −2.00000 −2.00000
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 2.00000 2.00000
947947 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 2.00000 2.00000
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 1.00000 + 1.00000i 1.00000 + 1.00000i
960960 0 0
961961 1.00000i 1.00000i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
968968 −1.00000 −1.00000
969969 0 0
970970 0 0
971971 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 2.00000 2.00000
982982 −1.00000 1.00000i −1.00000 1.00000i
983983 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 2.00000 2.00000i 2.00000 2.00000i
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 2.00000 2.00000
995995 0 0
996996 0 0
997997 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
998998 2.00000i 2.00000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 812.1.l.a.307.1 2
4.3 odd 2 812.1.l.b.307.1 yes 2
7.6 odd 2 CM 812.1.l.a.307.1 2
28.27 even 2 812.1.l.b.307.1 yes 2
29.12 odd 4 812.1.l.b.447.1 yes 2
116.99 even 4 inner 812.1.l.a.447.1 yes 2
203.41 even 4 812.1.l.b.447.1 yes 2
812.447 odd 4 inner 812.1.l.a.447.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
812.1.l.a.307.1 2 1.1 even 1 trivial
812.1.l.a.307.1 2 7.6 odd 2 CM
812.1.l.a.447.1 yes 2 116.99 even 4 inner
812.1.l.a.447.1 yes 2 812.447 odd 4 inner
812.1.l.b.307.1 yes 2 4.3 odd 2
812.1.l.b.307.1 yes 2 28.27 even 2
812.1.l.b.447.1 yes 2 29.12 odd 4
812.1.l.b.447.1 yes 2 203.41 even 4