Properties

Label 812.1.x.a
Level $812$
Weight $1$
Character orbit 812.x
Analytic conductor $0.405$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [812,1,Mod(249,812)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(812, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 8, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("812.249");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 812 = 2^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 812.x (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.405240790258\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.4780244.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{4} + \zeta_{12}) q^{3} + \zeta_{12}^{5} q^{5} - \zeta_{12}^{4} q^{7} + \zeta_{12}^{5} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{12}^{4} + \zeta_{12}) q^{3} + \zeta_{12}^{5} q^{5} - \zeta_{12}^{4} q^{7} + \zeta_{12}^{5} q^{9} + (\zeta_{12}^{4} + \zeta_{12}) q^{11} + \zeta_{12}^{3} q^{13} + ( - \zeta_{12}^{3} - 1) q^{15} + (\zeta_{12}^{5} - \zeta_{12}^{2}) q^{19} + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{21} + q^{29} + ( - \zeta_{12}^{4} - \zeta_{12}) q^{31} + 2 \zeta_{12}^{5} q^{33} + \zeta_{12}^{3} q^{35} + ( - \zeta_{12}^{5} - \zeta_{12}^{2}) q^{37} + (\zeta_{12}^{4} - \zeta_{12}) q^{39} - \zeta_{12}^{4} q^{45} + (\zeta_{12}^{5} + \zeta_{12}^{2}) q^{47} - \zeta_{12}^{2} q^{49} - \zeta_{12}^{4} q^{53} + ( - \zeta_{12}^{3} - 1) q^{55} - 2 \zeta_{12}^{3} q^{57} + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{61} + \zeta_{12}^{3} q^{63} - \zeta_{12}^{2} q^{65} - \zeta_{12}^{3} q^{71} + ( - \zeta_{12}^{4} + \zeta_{12}) q^{73} + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{77} + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{79} + \zeta_{12}^{4} q^{81} - q^{83} + (\zeta_{12}^{4} + \zeta_{12}) q^{87} + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{89} + \zeta_{12} q^{91} - 2 \zeta_{12}^{5} q^{93} + ( - \zeta_{12}^{4} + \zeta_{12}) q^{95} + ( - \zeta_{12}^{3} - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} + 2 q^{7} - 2 q^{11} - 4 q^{15} - 2 q^{19} + 2 q^{21} + 4 q^{29} + 2 q^{31} - 2 q^{37} - 2 q^{39} + 2 q^{45} + 2 q^{47} - 2 q^{49} + 2 q^{53} - 4 q^{55} + 2 q^{61} - 2 q^{65} + 2 q^{73} + 2 q^{77} + 2 q^{79} - 2 q^{81} - 4 q^{83} - 2 q^{87} + 2 q^{89} + 2 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/812\mathbb{Z}\right)^\times\).

\(n\) \(407\) \(465\) \(785\)
\(\chi(n)\) \(1\) \(-\zeta_{12}^{2}\) \(-\zeta_{12}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
249.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 0.366025 + 1.36603i 0 −0.866025 + 0.500000i 0 0.500000 0.866025i 0 −0.866025 + 0.500000i 0
389.1 0 −1.36603 + 0.366025i 0 0.866025 0.500000i 0 0.500000 0.866025i 0 0.866025 0.500000i 0
597.1 0 −1.36603 0.366025i 0 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0.866025 + 0.500000i 0
737.1 0 0.366025 1.36603i 0 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 −0.866025 0.500000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
29.c odd 4 1 inner
203.m odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 812.1.x.a 4
4.b odd 2 1 3248.1.cw.b 4
7.c even 3 1 inner 812.1.x.a 4
28.g odd 6 1 3248.1.cw.b 4
29.c odd 4 1 inner 812.1.x.a 4
116.e even 4 1 3248.1.cw.b 4
203.m odd 12 1 inner 812.1.x.a 4
812.y even 12 1 3248.1.cw.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
812.1.x.a 4 1.a even 1 1 trivial
812.1.x.a 4 7.c even 3 1 inner
812.1.x.a 4 29.c odd 4 1 inner
812.1.x.a 4 203.m odd 12 1 inner
3248.1.cw.b 4 4.b odd 2 1
3248.1.cw.b 4 28.g odd 6 1
3248.1.cw.b 4 116.e even 4 1
3248.1.cw.b 4 812.y even 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(812, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T - 1)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$79$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$83$ \( (T + 1)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less