Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [816,2,Mod(47,816)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(816, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("816.47");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 816 = 2^{4} \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 816.bf (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.51579280494\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | 0 | −1.71292 | + | 0.256691i | 0 | −1.13275 | + | 1.13275i | 0 | −2.41609 | − | 2.41609i | 0 | 2.86822 | − | 0.879385i | 0 | ||||||||||
47.2 | 0 | −1.68530 | − | 0.399721i | 0 | 3.04809 | − | 3.04809i | 0 | −0.237565 | − | 0.237565i | 0 | 2.68045 | + | 1.34730i | 0 | ||||||||||
47.3 | 0 | −1.51804 | − | 0.834000i | 0 | −1.19416 | + | 1.19416i | 0 | 3.01763 | + | 3.01763i | 0 | 1.60889 | + | 2.53209i | 0 | ||||||||||
47.4 | 0 | −0.834000 | − | 1.51804i | 0 | 1.19416 | − | 1.19416i | 0 | −3.01763 | − | 3.01763i | 0 | −1.60889 | + | 2.53209i | 0 | ||||||||||
47.5 | 0 | −0.399721 | − | 1.68530i | 0 | −3.04809 | + | 3.04809i | 0 | 0.237565 | + | 0.237565i | 0 | −2.68045 | + | 1.34730i | 0 | ||||||||||
47.6 | 0 | −0.256691 | + | 1.71292i | 0 | 1.13275 | − | 1.13275i | 0 | −2.41609 | − | 2.41609i | 0 | −2.86822 | − | 0.879385i | 0 | ||||||||||
47.7 | 0 | 0.256691 | − | 1.71292i | 0 | 1.13275 | − | 1.13275i | 0 | 2.41609 | + | 2.41609i | 0 | −2.86822 | − | 0.879385i | 0 | ||||||||||
47.8 | 0 | 0.399721 | + | 1.68530i | 0 | −3.04809 | + | 3.04809i | 0 | −0.237565 | − | 0.237565i | 0 | −2.68045 | + | 1.34730i | 0 | ||||||||||
47.9 | 0 | 0.834000 | + | 1.51804i | 0 | 1.19416 | − | 1.19416i | 0 | 3.01763 | + | 3.01763i | 0 | −1.60889 | + | 2.53209i | 0 | ||||||||||
47.10 | 0 | 1.51804 | + | 0.834000i | 0 | −1.19416 | + | 1.19416i | 0 | −3.01763 | − | 3.01763i | 0 | 1.60889 | + | 2.53209i | 0 | ||||||||||
47.11 | 0 | 1.68530 | + | 0.399721i | 0 | 3.04809 | − | 3.04809i | 0 | 0.237565 | + | 0.237565i | 0 | 2.68045 | + | 1.34730i | 0 | ||||||||||
47.12 | 0 | 1.71292 | − | 0.256691i | 0 | −1.13275 | + | 1.13275i | 0 | 2.41609 | + | 2.41609i | 0 | 2.86822 | − | 0.879385i | 0 | ||||||||||
191.1 | 0 | −1.71292 | − | 0.256691i | 0 | −1.13275 | − | 1.13275i | 0 | −2.41609 | + | 2.41609i | 0 | 2.86822 | + | 0.879385i | 0 | ||||||||||
191.2 | 0 | −1.68530 | + | 0.399721i | 0 | 3.04809 | + | 3.04809i | 0 | −0.237565 | + | 0.237565i | 0 | 2.68045 | − | 1.34730i | 0 | ||||||||||
191.3 | 0 | −1.51804 | + | 0.834000i | 0 | −1.19416 | − | 1.19416i | 0 | 3.01763 | − | 3.01763i | 0 | 1.60889 | − | 2.53209i | 0 | ||||||||||
191.4 | 0 | −0.834000 | + | 1.51804i | 0 | 1.19416 | + | 1.19416i | 0 | −3.01763 | + | 3.01763i | 0 | −1.60889 | − | 2.53209i | 0 | ||||||||||
191.5 | 0 | −0.399721 | + | 1.68530i | 0 | −3.04809 | − | 3.04809i | 0 | 0.237565 | − | 0.237565i | 0 | −2.68045 | − | 1.34730i | 0 | ||||||||||
191.6 | 0 | −0.256691 | − | 1.71292i | 0 | 1.13275 | + | 1.13275i | 0 | −2.41609 | + | 2.41609i | 0 | −2.86822 | + | 0.879385i | 0 | ||||||||||
191.7 | 0 | 0.256691 | + | 1.71292i | 0 | 1.13275 | + | 1.13275i | 0 | 2.41609 | − | 2.41609i | 0 | −2.86822 | + | 0.879385i | 0 | ||||||||||
191.8 | 0 | 0.399721 | − | 1.68530i | 0 | −3.04809 | − | 3.04809i | 0 | −0.237565 | + | 0.237565i | 0 | −2.68045 | − | 1.34730i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
17.c | even | 4 | 1 | inner |
51.f | odd | 4 | 1 | inner |
68.f | odd | 4 | 1 | inner |
204.l | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 816.2.bf.d | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 816.2.bf.d | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 816.2.bf.d | ✓ | 24 |
12.b | even | 2 | 1 | inner | 816.2.bf.d | ✓ | 24 |
17.c | even | 4 | 1 | inner | 816.2.bf.d | ✓ | 24 |
51.f | odd | 4 | 1 | inner | 816.2.bf.d | ✓ | 24 |
68.f | odd | 4 | 1 | inner | 816.2.bf.d | ✓ | 24 |
204.l | even | 4 | 1 | inner | 816.2.bf.d | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
816.2.bf.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
816.2.bf.d | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
816.2.bf.d | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
816.2.bf.d | ✓ | 24 | 12.b | even | 2 | 1 | inner |
816.2.bf.d | ✓ | 24 | 17.c | even | 4 | 1 | inner |
816.2.bf.d | ✓ | 24 | 51.f | odd | 4 | 1 | inner |
816.2.bf.d | ✓ | 24 | 68.f | odd | 4 | 1 | inner |
816.2.bf.d | ✓ | 24 | 204.l | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(816, [\chi])\):
\( T_{5}^{12} + 360T_{5}^{8} + 5136T_{5}^{4} + 18496 \)
|
\( T_{11}^{12} + 216T_{11}^{8} + 12816T_{11}^{4} + 166464 \)
|