Properties

Label 816.2.e.a.239.1
Level $816$
Weight $2$
Character 816.239
Analytic conductor $6.516$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,2,Mod(239,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 239.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 816.239
Dual form 816.2.e.a.239.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} -3.00000i q^{5} +3.46410i q^{7} +3.00000 q^{9} -1.73205 q^{11} -5.00000 q^{13} +5.19615i q^{15} +1.00000i q^{17} -1.73205i q^{19} -6.00000i q^{21} +5.19615 q^{23} -4.00000 q^{25} -5.19615 q^{27} +6.00000i q^{29} +6.92820i q^{31} +3.00000 q^{33} +10.3923 q^{35} +2.00000 q^{37} +8.66025 q^{39} +3.00000i q^{41} +12.1244i q^{43} -9.00000i q^{45} -6.92820 q^{47} -5.00000 q^{49} -1.73205i q^{51} +12.0000i q^{53} +5.19615i q^{55} +3.00000i q^{57} -10.3923 q^{59} +14.0000 q^{61} +10.3923i q^{63} +15.0000i q^{65} +3.46410i q^{67} -9.00000 q^{69} -3.46410 q^{71} +4.00000 q^{73} +6.92820 q^{75} -6.00000i q^{77} -10.3923i q^{79} +9.00000 q^{81} -6.92820 q^{83} +3.00000 q^{85} -10.3923i q^{87} -6.00000i q^{89} -17.3205i q^{91} -12.0000i q^{93} -5.19615 q^{95} -8.00000 q^{97} -5.19615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{9} - 20 q^{13} - 16 q^{25} + 12 q^{33} + 8 q^{37} - 20 q^{49} + 56 q^{61} - 36 q^{69} + 16 q^{73} + 36 q^{81} + 12 q^{85} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −1.00000
\(4\) 0 0
\(5\) − 3.00000i − 1.34164i −0.741620 0.670820i \(-0.765942\pi\)
0.741620 0.670820i \(-0.234058\pi\)
\(6\) 0 0
\(7\) 3.46410i 1.30931i 0.755929 + 0.654654i \(0.227186\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) −1.73205 −0.522233 −0.261116 0.965307i \(-0.584091\pi\)
−0.261116 + 0.965307i \(0.584091\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 5.19615i 1.34164i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) − 1.73205i − 0.397360i −0.980064 0.198680i \(-0.936335\pi\)
0.980064 0.198680i \(-0.0636654\pi\)
\(20\) 0 0
\(21\) − 6.00000i − 1.30931i
\(22\) 0 0
\(23\) 5.19615 1.08347 0.541736 0.840548i \(-0.317767\pi\)
0.541736 + 0.840548i \(0.317767\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 6.92820i 1.24434i 0.782881 + 0.622171i \(0.213749\pi\)
−0.782881 + 0.622171i \(0.786251\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) 10.3923 1.75662
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 8.66025 1.38675
\(40\) 0 0
\(41\) 3.00000i 0.468521i 0.972174 + 0.234261i \(0.0752669\pi\)
−0.972174 + 0.234261i \(0.924733\pi\)
\(42\) 0 0
\(43\) 12.1244i 1.84895i 0.381246 + 0.924473i \(0.375495\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) − 9.00000i − 1.34164i
\(46\) 0 0
\(47\) −6.92820 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) − 1.73205i − 0.242536i
\(52\) 0 0
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) 5.19615i 0.700649i
\(56\) 0 0
\(57\) 3.00000i 0.397360i
\(58\) 0 0
\(59\) −10.3923 −1.35296 −0.676481 0.736460i \(-0.736496\pi\)
−0.676481 + 0.736460i \(0.736496\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 10.3923i 1.30931i
\(64\) 0 0
\(65\) 15.0000i 1.86052i
\(66\) 0 0
\(67\) 3.46410i 0.423207i 0.977356 + 0.211604i \(0.0678686\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) −9.00000 −1.08347
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 6.92820 0.800000
\(76\) 0 0
\(77\) − 6.00000i − 0.683763i
\(78\) 0 0
\(79\) − 10.3923i − 1.16923i −0.811312 0.584613i \(-0.801246\pi\)
0.811312 0.584613i \(-0.198754\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −6.92820 −0.760469 −0.380235 0.924890i \(-0.624157\pi\)
−0.380235 + 0.924890i \(0.624157\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) − 10.3923i − 1.11417i
\(88\) 0 0
\(89\) − 6.00000i − 0.635999i −0.948091 0.317999i \(-0.896989\pi\)
0.948091 0.317999i \(-0.103011\pi\)
\(90\) 0 0
\(91\) − 17.3205i − 1.81568i
\(92\) 0 0
\(93\) − 12.0000i − 1.24434i
\(94\) 0 0
\(95\) −5.19615 −0.533114
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) −5.19615 −0.522233
\(100\) 0 0
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 0 0
\(103\) 8.66025i 0.853320i 0.904412 + 0.426660i \(0.140310\pi\)
−0.904412 + 0.426660i \(0.859690\pi\)
\(104\) 0 0
\(105\) −18.0000 −1.75662
\(106\) 0 0
\(107\) 1.73205 0.167444 0.0837218 0.996489i \(-0.473319\pi\)
0.0837218 + 0.996489i \(0.473319\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) −3.46410 −0.328798
\(112\) 0 0
\(113\) 3.00000i 0.282216i 0.989994 + 0.141108i \(0.0450665\pi\)
−0.989994 + 0.141108i \(0.954933\pi\)
\(114\) 0 0
\(115\) − 15.5885i − 1.45363i
\(116\) 0 0
\(117\) −15.0000 −1.38675
\(118\) 0 0
\(119\) −3.46410 −0.317554
\(120\) 0 0
\(121\) −8.00000 −0.727273
\(122\) 0 0
\(123\) − 5.19615i − 0.468521i
\(124\) 0 0
\(125\) − 3.00000i − 0.268328i
\(126\) 0 0
\(127\) 19.0526i 1.69064i 0.534259 + 0.845321i \(0.320591\pi\)
−0.534259 + 0.845321i \(0.679409\pi\)
\(128\) 0 0
\(129\) − 21.0000i − 1.84895i
\(130\) 0 0
\(131\) 15.5885 1.36197 0.680985 0.732297i \(-0.261552\pi\)
0.680985 + 0.732297i \(0.261552\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) 15.5885i 1.34164i
\(136\) 0 0
\(137\) − 18.0000i − 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) − 17.3205i − 1.46911i −0.678551 0.734553i \(-0.737392\pi\)
0.678551 0.734553i \(-0.262608\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 8.66025 0.724207
\(144\) 0 0
\(145\) 18.0000 1.49482
\(146\) 0 0
\(147\) 8.66025 0.714286
\(148\) 0 0
\(149\) − 6.00000i − 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i 0.990016 + 0.140952i \(0.0450164\pi\)
−0.990016 + 0.140952i \(0.954984\pi\)
\(152\) 0 0
\(153\) 3.00000i 0.242536i
\(154\) 0 0
\(155\) 20.7846 1.66946
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 0 0
\(159\) − 20.7846i − 1.64833i
\(160\) 0 0
\(161\) 18.0000i 1.41860i
\(162\) 0 0
\(163\) − 20.7846i − 1.62798i −0.580881 0.813988i \(-0.697292\pi\)
0.580881 0.813988i \(-0.302708\pi\)
\(164\) 0 0
\(165\) − 9.00000i − 0.700649i
\(166\) 0 0
\(167\) −5.19615 −0.402090 −0.201045 0.979582i \(-0.564434\pi\)
−0.201045 + 0.979582i \(0.564434\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) − 5.19615i − 0.397360i
\(172\) 0 0
\(173\) 21.0000i 1.59660i 0.602260 + 0.798300i \(0.294267\pi\)
−0.602260 + 0.798300i \(0.705733\pi\)
\(174\) 0 0
\(175\) − 13.8564i − 1.04745i
\(176\) 0 0
\(177\) 18.0000 1.35296
\(178\) 0 0
\(179\) 13.8564 1.03568 0.517838 0.855479i \(-0.326737\pi\)
0.517838 + 0.855479i \(0.326737\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) −24.2487 −1.79252
\(184\) 0 0
\(185\) − 6.00000i − 0.441129i
\(186\) 0 0
\(187\) − 1.73205i − 0.126660i
\(188\) 0 0
\(189\) − 18.0000i − 1.30931i
\(190\) 0 0
\(191\) −17.3205 −1.25327 −0.626634 0.779314i \(-0.715568\pi\)
−0.626634 + 0.779314i \(0.715568\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) − 25.9808i − 1.86052i
\(196\) 0 0
\(197\) 15.0000i 1.06871i 0.845262 + 0.534353i \(0.179445\pi\)
−0.845262 + 0.534353i \(0.820555\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) − 6.00000i − 0.423207i
\(202\) 0 0
\(203\) −20.7846 −1.45879
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 0 0
\(207\) 15.5885 1.08347
\(208\) 0 0
\(209\) 3.00000i 0.207514i
\(210\) 0 0
\(211\) − 13.8564i − 0.953914i −0.878927 0.476957i \(-0.841740\pi\)
0.878927 0.476957i \(-0.158260\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 36.3731 2.48062
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) −6.92820 −0.468165
\(220\) 0 0
\(221\) − 5.00000i − 0.336336i
\(222\) 0 0
\(223\) − 15.5885i − 1.04388i −0.852982 0.521940i \(-0.825208\pi\)
0.852982 0.521940i \(-0.174792\pi\)
\(224\) 0 0
\(225\) −12.0000 −0.800000
\(226\) 0 0
\(227\) −8.66025 −0.574801 −0.287401 0.957810i \(-0.592791\pi\)
−0.287401 + 0.957810i \(0.592791\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) 10.3923i 0.683763i
\(232\) 0 0
\(233\) − 3.00000i − 0.196537i −0.995160 0.0982683i \(-0.968670\pi\)
0.995160 0.0982683i \(-0.0313303\pi\)
\(234\) 0 0
\(235\) 20.7846i 1.35584i
\(236\) 0 0
\(237\) 18.0000i 1.16923i
\(238\) 0 0
\(239\) −20.7846 −1.34444 −0.672222 0.740349i \(-0.734660\pi\)
−0.672222 + 0.740349i \(0.734660\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) −15.5885 −1.00000
\(244\) 0 0
\(245\) 15.0000i 0.958315i
\(246\) 0 0
\(247\) 8.66025i 0.551039i
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −24.2487 −1.53057 −0.765283 0.643695i \(-0.777401\pi\)
−0.765283 + 0.643695i \(0.777401\pi\)
\(252\) 0 0
\(253\) −9.00000 −0.565825
\(254\) 0 0
\(255\) −5.19615 −0.325396
\(256\) 0 0
\(257\) − 6.00000i − 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 0 0
\(259\) 6.92820i 0.430498i
\(260\) 0 0
\(261\) 18.0000i 1.11417i
\(262\) 0 0
\(263\) 24.2487 1.49524 0.747620 0.664127i \(-0.231197\pi\)
0.747620 + 0.664127i \(0.231197\pi\)
\(264\) 0 0
\(265\) 36.0000 2.21146
\(266\) 0 0
\(267\) 10.3923i 0.635999i
\(268\) 0 0
\(269\) − 3.00000i − 0.182913i −0.995809 0.0914566i \(-0.970848\pi\)
0.995809 0.0914566i \(-0.0291523\pi\)
\(270\) 0 0
\(271\) − 19.0526i − 1.15736i −0.815555 0.578680i \(-0.803568\pi\)
0.815555 0.578680i \(-0.196432\pi\)
\(272\) 0 0
\(273\) 30.0000i 1.81568i
\(274\) 0 0
\(275\) 6.92820 0.417786
\(276\) 0 0
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 0 0
\(279\) 20.7846i 1.24434i
\(280\) 0 0
\(281\) − 6.00000i − 0.357930i −0.983855 0.178965i \(-0.942725\pi\)
0.983855 0.178965i \(-0.0572749\pi\)
\(282\) 0 0
\(283\) − 3.46410i − 0.205919i −0.994686 0.102960i \(-0.967169\pi\)
0.994686 0.102960i \(-0.0328313\pi\)
\(284\) 0 0
\(285\) 9.00000 0.533114
\(286\) 0 0
\(287\) −10.3923 −0.613438
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 13.8564 0.812277
\(292\) 0 0
\(293\) 30.0000i 1.75262i 0.481749 + 0.876309i \(0.340002\pi\)
−0.481749 + 0.876309i \(0.659998\pi\)
\(294\) 0 0
\(295\) 31.1769i 1.81519i
\(296\) 0 0
\(297\) 9.00000 0.522233
\(298\) 0 0
\(299\) −25.9808 −1.50251
\(300\) 0 0
\(301\) −42.0000 −2.42084
\(302\) 0 0
\(303\) − 20.7846i − 1.19404i
\(304\) 0 0
\(305\) − 42.0000i − 2.40491i
\(306\) 0 0
\(307\) − 10.3923i − 0.593120i −0.955014 0.296560i \(-0.904160\pi\)
0.955014 0.296560i \(-0.0958395\pi\)
\(308\) 0 0
\(309\) − 15.0000i − 0.853320i
\(310\) 0 0
\(311\) −3.46410 −0.196431 −0.0982156 0.995165i \(-0.531313\pi\)
−0.0982156 + 0.995165i \(0.531313\pi\)
\(312\) 0 0
\(313\) −4.00000 −0.226093 −0.113047 0.993590i \(-0.536061\pi\)
−0.113047 + 0.993590i \(0.536061\pi\)
\(314\) 0 0
\(315\) 31.1769 1.75662
\(316\) 0 0
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) − 10.3923i − 0.581857i
\(320\) 0 0
\(321\) −3.00000 −0.167444
\(322\) 0 0
\(323\) 1.73205 0.0963739
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) 0 0
\(327\) −6.92820 −0.383131
\(328\) 0 0
\(329\) − 24.0000i − 1.32316i
\(330\) 0 0
\(331\) 12.1244i 0.666415i 0.942854 + 0.333207i \(0.108131\pi\)
−0.942854 + 0.333207i \(0.891869\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 10.3923 0.567792
\(336\) 0 0
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 0 0
\(339\) − 5.19615i − 0.282216i
\(340\) 0 0
\(341\) − 12.0000i − 0.649836i
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 27.0000i 1.45363i
\(346\) 0 0
\(347\) 24.2487 1.30174 0.650870 0.759190i \(-0.274404\pi\)
0.650870 + 0.759190i \(0.274404\pi\)
\(348\) 0 0
\(349\) −7.00000 −0.374701 −0.187351 0.982293i \(-0.559990\pi\)
−0.187351 + 0.982293i \(0.559990\pi\)
\(350\) 0 0
\(351\) 25.9808 1.38675
\(352\) 0 0
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) 10.3923i 0.551566i
\(356\) 0 0
\(357\) 6.00000 0.317554
\(358\) 0 0
\(359\) 17.3205 0.914141 0.457071 0.889430i \(-0.348899\pi\)
0.457071 + 0.889430i \(0.348899\pi\)
\(360\) 0 0
\(361\) 16.0000 0.842105
\(362\) 0 0
\(363\) 13.8564 0.727273
\(364\) 0 0
\(365\) − 12.0000i − 0.628109i
\(366\) 0 0
\(367\) 17.3205i 0.904123i 0.891987 + 0.452062i \(0.149311\pi\)
−0.891987 + 0.452062i \(0.850689\pi\)
\(368\) 0 0
\(369\) 9.00000i 0.468521i
\(370\) 0 0
\(371\) −41.5692 −2.15817
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 5.19615i 0.268328i
\(376\) 0 0
\(377\) − 30.0000i − 1.54508i
\(378\) 0 0
\(379\) 24.2487i 1.24557i 0.782392 + 0.622786i \(0.213999\pi\)
−0.782392 + 0.622786i \(0.786001\pi\)
\(380\) 0 0
\(381\) − 33.0000i − 1.69064i
\(382\) 0 0
\(383\) 34.6410 1.77007 0.885037 0.465521i \(-0.154133\pi\)
0.885037 + 0.465521i \(0.154133\pi\)
\(384\) 0 0
\(385\) −18.0000 −0.917365
\(386\) 0 0
\(387\) 36.3731i 1.84895i
\(388\) 0 0
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) 5.19615i 0.262781i
\(392\) 0 0
\(393\) −27.0000 −1.36197
\(394\) 0 0
\(395\) −31.1769 −1.56868
\(396\) 0 0
\(397\) 32.0000 1.60603 0.803017 0.595956i \(-0.203227\pi\)
0.803017 + 0.595956i \(0.203227\pi\)
\(398\) 0 0
\(399\) −10.3923 −0.520266
\(400\) 0 0
\(401\) 27.0000i 1.34832i 0.738587 + 0.674158i \(0.235493\pi\)
−0.738587 + 0.674158i \(0.764507\pi\)
\(402\) 0 0
\(403\) − 34.6410i − 1.72559i
\(404\) 0 0
\(405\) − 27.0000i − 1.34164i
\(406\) 0 0
\(407\) −3.46410 −0.171709
\(408\) 0 0
\(409\) −5.00000 −0.247234 −0.123617 0.992330i \(-0.539449\pi\)
−0.123617 + 0.992330i \(0.539449\pi\)
\(410\) 0 0
\(411\) 31.1769i 1.53784i
\(412\) 0 0
\(413\) − 36.0000i − 1.77144i
\(414\) 0 0
\(415\) 20.7846i 1.02028i
\(416\) 0 0
\(417\) 30.0000i 1.46911i
\(418\) 0 0
\(419\) 24.2487 1.18463 0.592314 0.805708i \(-0.298215\pi\)
0.592314 + 0.805708i \(0.298215\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 0 0
\(423\) −20.7846 −1.01058
\(424\) 0 0
\(425\) − 4.00000i − 0.194029i
\(426\) 0 0
\(427\) 48.4974i 2.34695i
\(428\) 0 0
\(429\) −15.0000 −0.724207
\(430\) 0 0
\(431\) 3.46410 0.166860 0.0834300 0.996514i \(-0.473413\pi\)
0.0834300 + 0.996514i \(0.473413\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 0 0
\(435\) −31.1769 −1.49482
\(436\) 0 0
\(437\) − 9.00000i − 0.430528i
\(438\) 0 0
\(439\) − 6.92820i − 0.330665i −0.986238 0.165333i \(-0.947130\pi\)
0.986238 0.165333i \(-0.0528697\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) 0 0
\(443\) 34.6410 1.64584 0.822922 0.568154i \(-0.192342\pi\)
0.822922 + 0.568154i \(0.192342\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) 10.3923i 0.491539i
\(448\) 0 0
\(449\) − 30.0000i − 1.41579i −0.706319 0.707894i \(-0.749646\pi\)
0.706319 0.707894i \(-0.250354\pi\)
\(450\) 0 0
\(451\) − 5.19615i − 0.244677i
\(452\) 0 0
\(453\) − 6.00000i − 0.281905i
\(454\) 0 0
\(455\) −51.9615 −2.43599
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) 0 0
\(459\) − 5.19615i − 0.242536i
\(460\) 0 0
\(461\) 18.0000i 0.838344i 0.907907 + 0.419172i \(0.137680\pi\)
−0.907907 + 0.419172i \(0.862320\pi\)
\(462\) 0 0
\(463\) − 17.3205i − 0.804952i −0.915430 0.402476i \(-0.868150\pi\)
0.915430 0.402476i \(-0.131850\pi\)
\(464\) 0 0
\(465\) −36.0000 −1.66946
\(466\) 0 0
\(467\) −38.1051 −1.76329 −0.881647 0.471909i \(-0.843565\pi\)
−0.881647 + 0.471909i \(0.843565\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 22.5167 1.03751
\(472\) 0 0
\(473\) − 21.0000i − 0.965581i
\(474\) 0 0
\(475\) 6.92820i 0.317888i
\(476\) 0 0
\(477\) 36.0000i 1.64833i
\(478\) 0 0
\(479\) 29.4449 1.34537 0.672685 0.739929i \(-0.265141\pi\)
0.672685 + 0.739929i \(0.265141\pi\)
\(480\) 0 0
\(481\) −10.0000 −0.455961
\(482\) 0 0
\(483\) − 31.1769i − 1.41860i
\(484\) 0 0
\(485\) 24.0000i 1.08978i
\(486\) 0 0
\(487\) 24.2487i 1.09881i 0.835555 + 0.549407i \(0.185146\pi\)
−0.835555 + 0.549407i \(0.814854\pi\)
\(488\) 0 0
\(489\) 36.0000i 1.62798i
\(490\) 0 0
\(491\) 13.8564 0.625331 0.312665 0.949863i \(-0.398778\pi\)
0.312665 + 0.949863i \(0.398778\pi\)
\(492\) 0 0
\(493\) −6.00000 −0.270226
\(494\) 0 0
\(495\) 15.5885i 0.700649i
\(496\) 0 0
\(497\) − 12.0000i − 0.538274i
\(498\) 0 0
\(499\) 27.7128i 1.24060i 0.784366 + 0.620298i \(0.212988\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(500\) 0 0
\(501\) 9.00000 0.402090
\(502\) 0 0
\(503\) −36.3731 −1.62179 −0.810897 0.585188i \(-0.801021\pi\)
−0.810897 + 0.585188i \(0.801021\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) 0 0
\(507\) −20.7846 −0.923077
\(508\) 0 0
\(509\) − 36.0000i − 1.59567i −0.602875 0.797836i \(-0.705978\pi\)
0.602875 0.797836i \(-0.294022\pi\)
\(510\) 0 0
\(511\) 13.8564i 0.612971i
\(512\) 0 0
\(513\) 9.00000i 0.397360i
\(514\) 0 0
\(515\) 25.9808 1.14485
\(516\) 0 0
\(517\) 12.0000 0.527759
\(518\) 0 0
\(519\) − 36.3731i − 1.59660i
\(520\) 0 0
\(521\) 15.0000i 0.657162i 0.944476 + 0.328581i \(0.106570\pi\)
−0.944476 + 0.328581i \(0.893430\pi\)
\(522\) 0 0
\(523\) 31.1769i 1.36327i 0.731692 + 0.681636i \(0.238731\pi\)
−0.731692 + 0.681636i \(0.761269\pi\)
\(524\) 0 0
\(525\) 24.0000i 1.04745i
\(526\) 0 0
\(527\) −6.92820 −0.301797
\(528\) 0 0
\(529\) 4.00000 0.173913
\(530\) 0 0
\(531\) −31.1769 −1.35296
\(532\) 0 0
\(533\) − 15.0000i − 0.649722i
\(534\) 0 0
\(535\) − 5.19615i − 0.224649i
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) 8.66025 0.373024
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 0 0
\(543\) −17.3205 −0.743294
\(544\) 0 0
\(545\) − 12.0000i − 0.514024i
\(546\) 0 0
\(547\) − 3.46410i − 0.148114i −0.997254 0.0740571i \(-0.976405\pi\)
0.997254 0.0740571i \(-0.0235947\pi\)
\(548\) 0 0
\(549\) 42.0000 1.79252
\(550\) 0 0
\(551\) 10.3923 0.442727
\(552\) 0 0
\(553\) 36.0000 1.53088
\(554\) 0 0
\(555\) 10.3923i 0.441129i
\(556\) 0 0
\(557\) − 18.0000i − 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) − 60.6218i − 2.56403i
\(560\) 0 0
\(561\) 3.00000i 0.126660i
\(562\) 0 0
\(563\) 6.92820 0.291989 0.145994 0.989285i \(-0.453362\pi\)
0.145994 + 0.989285i \(0.453362\pi\)
\(564\) 0 0
\(565\) 9.00000 0.378633
\(566\) 0 0
\(567\) 31.1769i 1.30931i
\(568\) 0 0
\(569\) 24.0000i 1.00613i 0.864248 + 0.503066i \(0.167795\pi\)
−0.864248 + 0.503066i \(0.832205\pi\)
\(570\) 0 0
\(571\) 13.8564i 0.579873i 0.957046 + 0.289936i \(0.0936341\pi\)
−0.957046 + 0.289936i \(0.906366\pi\)
\(572\) 0 0
\(573\) 30.0000 1.25327
\(574\) 0 0
\(575\) −20.7846 −0.866778
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) 27.7128 1.15171
\(580\) 0 0
\(581\) − 24.0000i − 0.995688i
\(582\) 0 0
\(583\) − 20.7846i − 0.860811i
\(584\) 0 0
\(585\) 45.0000i 1.86052i
\(586\) 0 0
\(587\) 20.7846 0.857873 0.428936 0.903335i \(-0.358888\pi\)
0.428936 + 0.903335i \(0.358888\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) − 25.9808i − 1.06871i
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 10.3923i 0.426043i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.46410 0.141539 0.0707697 0.997493i \(-0.477454\pi\)
0.0707697 + 0.997493i \(0.477454\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 10.3923i 0.423207i
\(604\) 0 0
\(605\) 24.0000i 0.975739i
\(606\) 0 0
\(607\) 3.46410i 0.140604i 0.997526 + 0.0703018i \(0.0223962\pi\)
−0.997526 + 0.0703018i \(0.977604\pi\)
\(608\) 0 0
\(609\) 36.0000 1.45879
\(610\) 0 0
\(611\) 34.6410 1.40143
\(612\) 0 0
\(613\) −25.0000 −1.00974 −0.504870 0.863195i \(-0.668460\pi\)
−0.504870 + 0.863195i \(0.668460\pi\)
\(614\) 0 0
\(615\) −15.5885 −0.628587
\(616\) 0 0
\(617\) 18.0000i 0.724653i 0.932051 + 0.362326i \(0.118017\pi\)
−0.932051 + 0.362326i \(0.881983\pi\)
\(618\) 0 0
\(619\) − 31.1769i − 1.25311i −0.779379 0.626553i \(-0.784465\pi\)
0.779379 0.626553i \(-0.215535\pi\)
\(620\) 0 0
\(621\) −27.0000 −1.08347
\(622\) 0 0
\(623\) 20.7846 0.832718
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) − 5.19615i − 0.207514i
\(628\) 0 0
\(629\) 2.00000i 0.0797452i
\(630\) 0 0
\(631\) − 8.66025i − 0.344759i −0.985031 0.172380i \(-0.944854\pi\)
0.985031 0.172380i \(-0.0551456\pi\)
\(632\) 0 0
\(633\) 24.0000i 0.953914i
\(634\) 0 0
\(635\) 57.1577 2.26823
\(636\) 0 0
\(637\) 25.0000 0.990536
\(638\) 0 0
\(639\) −10.3923 −0.411113
\(640\) 0 0
\(641\) 21.0000i 0.829450i 0.909947 + 0.414725i \(0.136122\pi\)
−0.909947 + 0.414725i \(0.863878\pi\)
\(642\) 0 0
\(643\) − 27.7128i − 1.09289i −0.837496 0.546443i \(-0.815981\pi\)
0.837496 0.546443i \(-0.184019\pi\)
\(644\) 0 0
\(645\) −63.0000 −2.48062
\(646\) 0 0
\(647\) 17.3205 0.680939 0.340470 0.940255i \(-0.389414\pi\)
0.340470 + 0.940255i \(0.389414\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 41.5692 1.62923
\(652\) 0 0
\(653\) 3.00000i 0.117399i 0.998276 + 0.0586995i \(0.0186954\pi\)
−0.998276 + 0.0586995i \(0.981305\pi\)
\(654\) 0 0
\(655\) − 46.7654i − 1.82727i
\(656\) 0 0
\(657\) 12.0000 0.468165
\(658\) 0 0
\(659\) −38.1051 −1.48436 −0.742182 0.670198i \(-0.766209\pi\)
−0.742182 + 0.670198i \(0.766209\pi\)
\(660\) 0 0
\(661\) −7.00000 −0.272268 −0.136134 0.990690i \(-0.543468\pi\)
−0.136134 + 0.990690i \(0.543468\pi\)
\(662\) 0 0
\(663\) 8.66025i 0.336336i
\(664\) 0 0
\(665\) − 18.0000i − 0.698010i
\(666\) 0 0
\(667\) 31.1769i 1.20717i
\(668\) 0 0
\(669\) 27.0000i 1.04388i
\(670\) 0 0
\(671\) −24.2487 −0.936111
\(672\) 0 0
\(673\) −28.0000 −1.07932 −0.539660 0.841883i \(-0.681447\pi\)
−0.539660 + 0.841883i \(0.681447\pi\)
\(674\) 0 0
\(675\) 20.7846 0.800000
\(676\) 0 0
\(677\) − 3.00000i − 0.115299i −0.998337 0.0576497i \(-0.981639\pi\)
0.998337 0.0576497i \(-0.0183606\pi\)
\(678\) 0 0
\(679\) − 27.7128i − 1.06352i
\(680\) 0 0
\(681\) 15.0000 0.574801
\(682\) 0 0
\(683\) −25.9808 −0.994126 −0.497063 0.867714i \(-0.665588\pi\)
−0.497063 + 0.867714i \(0.665588\pi\)
\(684\) 0 0
\(685\) −54.0000 −2.06323
\(686\) 0 0
\(687\) 45.0333 1.71813
\(688\) 0 0
\(689\) − 60.0000i − 2.28582i
\(690\) 0 0
\(691\) 34.6410i 1.31781i 0.752228 + 0.658903i \(0.228979\pi\)
−0.752228 + 0.658903i \(0.771021\pi\)
\(692\) 0 0
\(693\) − 18.0000i − 0.683763i
\(694\) 0 0
\(695\) −51.9615 −1.97101
\(696\) 0 0
\(697\) −3.00000 −0.113633
\(698\) 0 0
\(699\) 5.19615i 0.196537i
\(700\) 0 0
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) − 3.46410i − 0.130651i
\(704\) 0 0
\(705\) − 36.0000i − 1.35584i
\(706\) 0 0
\(707\) −41.5692 −1.56337
\(708\) 0 0
\(709\) −8.00000 −0.300446 −0.150223 0.988652i \(-0.547999\pi\)
−0.150223 + 0.988652i \(0.547999\pi\)
\(710\) 0 0
\(711\) − 31.1769i − 1.16923i
\(712\) 0 0
\(713\) 36.0000i 1.34821i
\(714\) 0 0
\(715\) − 25.9808i − 0.971625i
\(716\) 0 0
\(717\) 36.0000 1.34444
\(718\) 0 0
\(719\) 1.73205 0.0645946 0.0322973 0.999478i \(-0.489718\pi\)
0.0322973 + 0.999478i \(0.489718\pi\)
\(720\) 0 0
\(721\) −30.0000 −1.11726
\(722\) 0 0
\(723\) 3.46410 0.128831
\(724\) 0 0
\(725\) − 24.0000i − 0.891338i
\(726\) 0 0
\(727\) 3.46410i 0.128476i 0.997935 + 0.0642382i \(0.0204617\pi\)
−0.997935 + 0.0642382i \(0.979538\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −12.1244 −0.448435
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) − 25.9808i − 0.958315i
\(736\) 0 0
\(737\) − 6.00000i − 0.221013i
\(738\) 0 0
\(739\) − 50.2295i − 1.84772i −0.382729 0.923861i \(-0.625016\pi\)
0.382729 0.923861i \(-0.374984\pi\)
\(740\) 0 0
\(741\) − 15.0000i − 0.551039i
\(742\) 0 0
\(743\) 3.46410 0.127086 0.0635428 0.997979i \(-0.479760\pi\)
0.0635428 + 0.997979i \(0.479760\pi\)
\(744\) 0 0
\(745\) −18.0000 −0.659469
\(746\) 0 0
\(747\) −20.7846 −0.760469
\(748\) 0 0
\(749\) 6.00000i 0.219235i
\(750\) 0 0
\(751\) 13.8564i 0.505627i 0.967515 + 0.252814i \(0.0813560\pi\)
−0.967515 + 0.252814i \(0.918644\pi\)
\(752\) 0 0
\(753\) 42.0000 1.53057
\(754\) 0 0
\(755\) 10.3923 0.378215
\(756\) 0 0
\(757\) −47.0000 −1.70824 −0.854122 0.520073i \(-0.825905\pi\)
−0.854122 + 0.520073i \(0.825905\pi\)
\(758\) 0 0
\(759\) 15.5885 0.565825
\(760\) 0 0
\(761\) − 24.0000i − 0.869999i −0.900431 0.435000i \(-0.856748\pi\)
0.900431 0.435000i \(-0.143252\pi\)
\(762\) 0 0
\(763\) 13.8564i 0.501636i
\(764\) 0 0
\(765\) 9.00000 0.325396
\(766\) 0 0
\(767\) 51.9615 1.87622
\(768\) 0 0
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) 10.3923i 0.374270i
\(772\) 0 0
\(773\) 24.0000i 0.863220i 0.902060 + 0.431610i \(0.142054\pi\)
−0.902060 + 0.431610i \(0.857946\pi\)
\(774\) 0 0
\(775\) − 27.7128i − 0.995474i
\(776\) 0 0
\(777\) − 12.0000i − 0.430498i
\(778\) 0 0
\(779\) 5.19615 0.186171
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) − 31.1769i − 1.11417i
\(784\) 0 0
\(785\) 39.0000i 1.39197i
\(786\) 0 0
\(787\) 13.8564i 0.493928i 0.969025 + 0.246964i \(0.0794329\pi\)
−0.969025 + 0.246964i \(0.920567\pi\)
\(788\) 0 0
\(789\) −42.0000 −1.49524
\(790\) 0 0
\(791\) −10.3923 −0.369508
\(792\) 0 0
\(793\) −70.0000 −2.48577
\(794\) 0 0
\(795\) −62.3538 −2.21146
\(796\) 0 0
\(797\) − 48.0000i − 1.70025i −0.526583 0.850124i \(-0.676527\pi\)
0.526583 0.850124i \(-0.323473\pi\)
\(798\) 0 0
\(799\) − 6.92820i − 0.245102i
\(800\) 0 0
\(801\) − 18.0000i − 0.635999i
\(802\) 0 0
\(803\) −6.92820 −0.244491
\(804\) 0 0
\(805\) 54.0000 1.90325
\(806\) 0 0
\(807\) 5.19615i 0.182913i
\(808\) 0 0
\(809\) − 45.0000i − 1.58212i −0.611741 0.791058i \(-0.709531\pi\)
0.611741 0.791058i \(-0.290469\pi\)
\(810\) 0 0
\(811\) − 27.7128i − 0.973128i −0.873645 0.486564i \(-0.838250\pi\)
0.873645 0.486564i \(-0.161750\pi\)
\(812\) 0 0
\(813\) 33.0000i 1.15736i
\(814\) 0 0
\(815\) −62.3538 −2.18416
\(816\) 0 0
\(817\) 21.0000 0.734697
\(818\) 0 0
\(819\) − 51.9615i − 1.81568i
\(820\) 0 0
\(821\) − 3.00000i − 0.104701i −0.998629 0.0523504i \(-0.983329\pi\)
0.998629 0.0523504i \(-0.0166713\pi\)
\(822\) 0 0
\(823\) − 3.46410i − 0.120751i −0.998176 0.0603755i \(-0.980770\pi\)
0.998176 0.0603755i \(-0.0192298\pi\)
\(824\) 0 0
\(825\) −12.0000 −0.417786
\(826\) 0 0
\(827\) 19.0526 0.662522 0.331261 0.943539i \(-0.392526\pi\)
0.331261 + 0.943539i \(0.392526\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 13.8564 0.480673
\(832\) 0 0
\(833\) − 5.00000i − 0.173240i
\(834\) 0 0
\(835\) 15.5885i 0.539461i
\(836\) 0 0
\(837\) − 36.0000i − 1.24434i
\(838\) 0 0
\(839\) −29.4449 −1.01655 −0.508275 0.861195i \(-0.669717\pi\)
−0.508275 + 0.861195i \(0.669717\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 10.3923i 0.357930i
\(844\) 0 0
\(845\) − 36.0000i − 1.23844i
\(846\) 0 0
\(847\) − 27.7128i − 0.952224i
\(848\) 0 0
\(849\) 6.00000i 0.205919i
\(850\) 0 0
\(851\) 10.3923 0.356244
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) −15.5885 −0.533114
\(856\) 0 0
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) − 17.3205i − 0.590968i −0.955348 0.295484i \(-0.904519\pi\)
0.955348 0.295484i \(-0.0954809\pi\)
\(860\) 0 0
\(861\) 18.0000 0.613438
\(862\) 0 0
\(863\) −38.1051 −1.29711 −0.648557 0.761166i \(-0.724627\pi\)
−0.648557 + 0.761166i \(0.724627\pi\)
\(864\) 0 0
\(865\) 63.0000 2.14206
\(866\) 0 0
\(867\) 1.73205 0.0588235
\(868\) 0 0
\(869\) 18.0000i 0.610608i
\(870\) 0 0
\(871\) − 17.3205i − 0.586883i
\(872\) 0 0
\(873\) −24.0000 −0.812277
\(874\) 0 0
\(875\) 10.3923 0.351324
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 0 0
\(879\) − 51.9615i − 1.75262i
\(880\) 0 0
\(881\) 30.0000i 1.01073i 0.862907 + 0.505363i \(0.168641\pi\)
−0.862907 + 0.505363i \(0.831359\pi\)
\(882\) 0 0
\(883\) − 5.19615i − 0.174864i −0.996170 0.0874322i \(-0.972134\pi\)
0.996170 0.0874322i \(-0.0278661\pi\)
\(884\) 0 0
\(885\) − 54.0000i − 1.81519i
\(886\) 0 0
\(887\) 8.66025 0.290783 0.145391 0.989374i \(-0.453556\pi\)
0.145391 + 0.989374i \(0.453556\pi\)
\(888\) 0 0
\(889\) −66.0000 −2.21357
\(890\) 0 0
\(891\) −15.5885 −0.522233
\(892\) 0 0
\(893\) 12.0000i 0.401565i
\(894\) 0 0
\(895\) − 41.5692i − 1.38951i
\(896\) 0 0
\(897\) 45.0000 1.50251
\(898\) 0 0
\(899\) −41.5692 −1.38641
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 72.7461 2.42084
\(904\) 0 0
\(905\) − 30.0000i − 0.997234i
\(906\) 0 0
\(907\) − 3.46410i − 0.115024i −0.998345 0.0575118i \(-0.981683\pi\)
0.998345 0.0575118i \(-0.0183167\pi\)
\(908\) 0 0
\(909\) 36.0000i 1.19404i
\(910\) 0 0
\(911\) 32.9090 1.09032 0.545161 0.838331i \(-0.316468\pi\)
0.545161 + 0.838331i \(0.316468\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) 0 0
\(915\) 72.7461i 2.40491i
\(916\) 0 0
\(917\) 54.0000i 1.78324i
\(918\) 0 0
\(919\) 15.5885i 0.514216i 0.966383 + 0.257108i \(0.0827696\pi\)
−0.966383 + 0.257108i \(0.917230\pi\)
\(920\) 0 0
\(921\) 18.0000i 0.593120i
\(922\) 0 0
\(923\) 17.3205 0.570111
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) 25.9808i 0.853320i
\(928\) 0 0
\(929\) 15.0000i 0.492134i 0.969253 + 0.246067i \(0.0791383\pi\)
−0.969253 + 0.246067i \(0.920862\pi\)
\(930\) 0 0
\(931\) 8.66025i 0.283828i
\(932\) 0 0
\(933\) 6.00000 0.196431
\(934\) 0 0
\(935\) −5.19615 −0.169932
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 6.92820 0.226093
\(940\) 0 0
\(941\) − 6.00000i − 0.195594i −0.995206 0.0977972i \(-0.968820\pi\)
0.995206 0.0977972i \(-0.0311797\pi\)
\(942\) 0 0
\(943\) 15.5885i 0.507630i
\(944\) 0 0
\(945\) −54.0000 −1.75662
\(946\) 0 0
\(947\) 31.1769 1.01311 0.506557 0.862207i \(-0.330918\pi\)
0.506557 + 0.862207i \(0.330918\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) − 31.1769i − 1.01098i
\(952\) 0 0
\(953\) − 36.0000i − 1.16615i −0.812417 0.583077i \(-0.801849\pi\)
0.812417 0.583077i \(-0.198151\pi\)
\(954\) 0 0
\(955\) 51.9615i 1.68144i
\(956\) 0 0
\(957\) 18.0000i 0.581857i
\(958\) 0 0
\(959\) 62.3538 2.01351
\(960\) 0 0
\(961\) −17.0000 −0.548387
\(962\) 0 0
\(963\) 5.19615 0.167444
\(964\) 0 0
\(965\) 48.0000i 1.54517i
\(966\) 0 0
\(967\) 25.9808i 0.835485i 0.908565 + 0.417742i \(0.137179\pi\)
−0.908565 + 0.417742i \(0.862821\pi\)
\(968\) 0 0
\(969\) −3.00000 −0.0963739
\(970\) 0 0
\(971\) −34.6410 −1.11168 −0.555842 0.831288i \(-0.687604\pi\)
−0.555842 + 0.831288i \(0.687604\pi\)
\(972\) 0 0
\(973\) 60.0000 1.92351
\(974\) 0 0
\(975\) −34.6410 −1.10940
\(976\) 0 0
\(977\) − 54.0000i − 1.72761i −0.503824 0.863807i \(-0.668074\pi\)
0.503824 0.863807i \(-0.331926\pi\)
\(978\) 0 0
\(979\) 10.3923i 0.332140i
\(980\) 0 0
\(981\) 12.0000 0.383131
\(982\) 0 0
\(983\) 43.3013 1.38110 0.690548 0.723287i \(-0.257369\pi\)
0.690548 + 0.723287i \(0.257369\pi\)
\(984\) 0 0
\(985\) 45.0000 1.43382
\(986\) 0 0
\(987\) 41.5692i 1.32316i
\(988\) 0 0
\(989\) 63.0000i 2.00328i
\(990\) 0 0
\(991\) − 20.7846i − 0.660245i −0.943938 0.330122i \(-0.892910\pi\)
0.943938 0.330122i \(-0.107090\pi\)
\(992\) 0 0
\(993\) − 21.0000i − 0.666415i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −22.0000 −0.696747 −0.348373 0.937356i \(-0.613266\pi\)
−0.348373 + 0.937356i \(0.613266\pi\)
\(998\) 0 0
\(999\) −10.3923 −0.328798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.e.a.239.1 4
3.2 odd 2 inner 816.2.e.a.239.4 yes 4
4.3 odd 2 inner 816.2.e.a.239.3 yes 4
12.11 even 2 inner 816.2.e.a.239.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
816.2.e.a.239.1 4 1.1 even 1 trivial
816.2.e.a.239.2 yes 4 12.11 even 2 inner
816.2.e.a.239.3 yes 4 4.3 odd 2 inner
816.2.e.a.239.4 yes 4 3.2 odd 2 inner