gp: [N,k,chi] = [816,2,Mod(205,816)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(816, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("816.205");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [64,0,0,4,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 64 + 16 T 5 61 + 1056 T 5 60 + 336 T 5 59 + 128 T 5 58 + 11536 T 5 57 + ⋯ + 982540877824 T_{5}^{64} + 16 T_{5}^{61} + 1056 T_{5}^{60} + 336 T_{5}^{59} + 128 T_{5}^{58} + 11536 T_{5}^{57} + \cdots + 982540877824 T 5 6 4 + 1 6 T 5 6 1 + 1 0 5 6 T 5 6 0 + 3 3 6 T 5 5 9 + 1 2 8 T 5 5 8 + 1 1 5 3 6 T 5 5 7 + ⋯ + 9 8 2 5 4 0 8 7 7 8 2 4
T5^64 + 16*T5^61 + 1056*T5^60 + 336*T5^59 + 128*T5^58 + 11536*T5^57 + 467948*T5^56 + 275600*T5^55 + 105856*T5^54 + 2959504*T5^53 + 112577320*T5^52 + 89381840*T5^51 + 34812032*T5^50 + 273668944*T5^49 + 15923581094*T5^48 + 14590382160*T5^47 + 5823013248*T5^46 - 9343354512*T5^45 + 1352977021816*T5^44 + 1265742827440*T5^43 + 528360832384*T5^42 - 3520343514320*T5^41 + 69223934086876*T5^40 + 57316699001520*T5^39 + 26120107007104*T5^38 - 245164906466768*T5^37 + 2152361995757272*T5^36 + 1264771079703280*T5^35 + 693599629977984*T5^34 - 7450575292376464*T5^33 + 40842053369958689*T5^32 + 10483196395953776*T5^31 + 9492065390720128*T5^30 - 105177483237417024*T5^29 + 451042188479641320*T5^28 - 30058201046373312*T5^27 + 60566539291731968*T5^26 - 612457470867843584*T5^25 + 2549348309105768688*T5^24 - 698920823713825280*T5^23 + 157025385001365504*T5^22 - 1029980651682480128*T5^21 + 6203327028263088896*T5^20 - 1860762097433446400*T5^19 + 183821843036045312*T5^18 - 214831515175997440*T5^17 + 7068859786989219584*T5^16 - 1586230807798403072*T5^15 + 97329953047871488*T5^14 + 498251797527379968*T5^13 + 3822258329925445632*T5^12 - 377773532468133888*T5^11 + 18495571830505472*T5^10 + 208320585835479040*T5^9 + 776652446983786496*T5^8 + 18934518942007296*T5^7 - 190384240066560*T5^6 - 1402804757856256*T5^5 + 3343729163239424*T5^4 - 75285164720128*T5^3 + 491270438912*T5^2 + 982540877824*T5 + 982540877824
acting on S 2 n e w ( 816 , [ χ ] ) S_{2}^{\mathrm{new}}(816, [\chi]) S 2 n e w ( 8 1 6 , [ χ ] ) .