Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [816,2,Mod(205,816)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(816, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("816.205");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 816 = 2^{4} \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 816.u (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.51579280494\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205.1 | −1.41228 | + | 0.0739715i | −0.707107 | − | 0.707107i | 1.98906 | − | 0.208937i | −2.01039 | + | 2.01039i | 1.05094 | + | 0.946325i | − | 3.19495i | −2.79364 | + | 0.442210i | 1.00000i | 2.69052 | − | 2.98794i | |||
205.2 | −1.40827 | + | 0.129521i | 0.707107 | + | 0.707107i | 1.96645 | − | 0.364802i | −0.644405 | + | 0.644405i | −1.08738 | − | 0.904212i | − | 1.28446i | −2.72204 | + | 0.768437i | 1.00000i | 0.824032 | − | 0.990961i | |||
205.3 | −1.38749 | − | 0.273605i | −0.707107 | − | 0.707107i | 1.85028 | + | 0.759252i | 1.87129 | − | 1.87129i | 0.787638 | + | 1.17457i | − | 4.49580i | −2.35952 | − | 1.55970i | 1.00000i | −3.10841 | + | 2.08441i | |||
205.4 | −1.32847 | + | 0.484949i | 0.707107 | + | 0.707107i | 1.52965 | − | 1.28848i | −0.0879778 | + | 0.0879778i | −1.28228 | − | 0.596458i | 3.84329i | −1.40724 | + | 2.45350i | 1.00000i | 0.0742109 | − | 0.159540i | ||||
205.5 | −1.29863 | + | 0.559954i | −0.707107 | − | 0.707107i | 1.37290 | − | 1.45435i | 0.593934 | − | 0.593934i | 1.31422 | + | 0.522326i | 1.08628i | −0.968528 | + | 2.65743i | 1.00000i | −0.438728 | + | 1.10388i | ||||
205.6 | −1.29298 | − | 0.572901i | 0.707107 | + | 0.707107i | 1.34357 | + | 1.48149i | 2.98172 | − | 2.98172i | −0.509169 | − | 1.31937i | 1.17350i | −0.888453 | − | 2.68527i | 1.00000i | −5.56351 | + | 2.14706i | ||||
205.7 | −1.16815 | − | 0.797139i | −0.707107 | − | 0.707107i | 0.729140 | + | 1.86235i | −0.639271 | + | 0.639271i | 0.262343 | + | 1.38967i | 2.85654i | 0.632809 | − | 2.75673i | 1.00000i | 1.25635 | − | 0.237175i | ||||
205.8 | −1.13900 | − | 0.838255i | 0.707107 | + | 0.707107i | 0.594656 | + | 1.90955i | −0.565655 | + | 0.565655i | −0.212661 | − | 1.39813i | − | 1.93055i | 0.923376 | − | 2.67346i | 1.00000i | 1.11845 | − | 0.170119i | |||
205.9 | −0.860813 | + | 1.12205i | 0.707107 | + | 0.707107i | −0.518001 | − | 1.93175i | 0.163974 | − | 0.163974i | −1.40210 | + | 0.184723i | − | 4.22726i | 2.61343 | + | 1.08166i | 1.00000i | 0.0428363 | + | 0.325138i | |||
205.10 | −0.850495 | + | 1.12989i | −0.707107 | − | 0.707107i | −0.553316 | − | 1.92194i | 2.29734 | − | 2.29734i | 1.40035 | − | 0.197564i | 4.90695i | 2.64218 | + | 1.00941i | 1.00000i | 0.641871 | + | 4.54962i | ||||
205.11 | −0.780809 | + | 1.17913i | −0.707107 | − | 0.707107i | −0.780674 | − | 1.84134i | −2.45315 | + | 2.45315i | 1.38588 | − | 0.281652i | − | 3.71241i | 2.78073 | + | 0.517226i | 1.00000i | −0.977128 | − | 4.80801i | |||
205.12 | −0.606058 | − | 1.27777i | 0.707107 | + | 0.707107i | −1.26539 | + | 1.54880i | −2.11034 | + | 2.11034i | 0.474971 | − | 1.33207i | 1.09709i | 2.74591 | + | 0.678206i | 1.00000i | 3.97552 | + | 1.41754i | ||||
205.13 | −0.596675 | − | 1.28218i | −0.707107 | − | 0.707107i | −1.28796 | + | 1.53009i | 0.102668 | − | 0.102668i | −0.484724 | + | 1.32855i | − | 0.792539i | 2.73033 | + | 0.738428i | 1.00000i | −0.192897 | − | 0.0703790i | |||
205.14 | −0.359024 | + | 1.36788i | 0.707107 | + | 0.707107i | −1.74220 | − | 0.982204i | 2.64915 | − | 2.64915i | −1.22111 | + | 0.713371i | 1.00268i | 1.96903 | − | 2.03050i | 1.00000i | 2.67262 | + | 4.57484i | ||||
205.15 | 0.0155033 | + | 1.41413i | 0.707107 | + | 0.707107i | −1.99952 | + | 0.0438473i | −0.192924 | + | 0.192924i | −0.988977 | + | 1.01090i | − | 4.31863i | −0.0930049 | − | 2.82690i | 1.00000i | −0.275810 | − | 0.269828i | |||
205.16 | 0.0612118 | − | 1.41289i | 0.707107 | + | 0.707107i | −1.99251 | − | 0.172971i | −0.807173 | + | 0.807173i | 1.04235 | − | 0.955780i | 0.0213332i | −0.366353 | + | 2.80460i | 1.00000i | 1.09104 | + | 1.18985i | ||||
205.17 | 0.0694285 | − | 1.41251i | −0.707107 | − | 0.707107i | −1.99036 | − | 0.196137i | −2.79966 | + | 2.79966i | −1.04789 | + | 0.949701i | 3.41523i | −0.415232 | + | 2.79778i | 1.00000i | 3.76017 | + | 4.14892i | ||||
205.18 | 0.158748 | + | 1.40528i | −0.707107 | − | 0.707107i | −1.94960 | + | 0.446169i | −2.32351 | + | 2.32351i | 0.881428 | − | 1.10593i | 2.75370i | −0.936484 | − | 2.66889i | 1.00000i | −3.63402 | − | 2.89632i | ||||
205.19 | 0.326049 | + | 1.37611i | −0.707107 | − | 0.707107i | −1.78738 | + | 0.897362i | 2.69913 | − | 2.69913i | 0.742509 | − | 1.20361i | − | 1.55925i | −1.81765 | − | 2.16706i | 1.00000i | 4.59437 | + | 2.83427i | |||
205.20 | 0.487868 | − | 1.32740i | 0.707107 | + | 0.707107i | −1.52397 | − | 1.29519i | 0.905261 | − | 0.905261i | 1.28359 | − | 0.593637i | 5.09628i | −2.46273 | + | 1.39103i | 1.00000i | −0.759993 | − | 1.64329i | ||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 816.2.u.a | ✓ | 64 |
16.e | even | 4 | 1 | inner | 816.2.u.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
816.2.u.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
816.2.u.a | ✓ | 64 | 16.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{64} + 16 T_{5}^{61} + 1056 T_{5}^{60} + 336 T_{5}^{59} + 128 T_{5}^{58} + 11536 T_{5}^{57} + \cdots + 982540877824 \)
acting on \(S_{2}^{\mathrm{new}}(816, [\chi])\).