Properties

Label 816.3.m.b
Level $816$
Weight $3$
Character orbit 816.m
Self dual yes
Analytic conductor $22.234$
Analytic rank $0$
Dimension $1$
CM discriminant -51
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,3,Mod(305,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.305");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 816.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.2343895718\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 7 q^{5} + 9 q^{9} + 5 q^{11} - 25 q^{13} + 21 q^{15} + 17 q^{17} + 13 q^{19} + 29 q^{23} + 24 q^{25} + 27 q^{27} + 10 q^{29} + 15 q^{33} - 75 q^{39} - 65 q^{41} - 35 q^{43} + 63 q^{45} + 49 q^{49}+ \cdots + 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
305.1
0
0 3.00000 0 7.00000 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
51.c odd 2 1 CM by \(\Q(\sqrt{-51}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 816.3.m.b 1
3.b odd 2 1 816.3.m.a 1
4.b odd 2 1 51.3.c.a 1
12.b even 2 1 51.3.c.b yes 1
17.b even 2 1 816.3.m.a 1
51.c odd 2 1 CM 816.3.m.b 1
68.d odd 2 1 51.3.c.b yes 1
204.h even 2 1 51.3.c.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.3.c.a 1 4.b odd 2 1
51.3.c.a 1 204.h even 2 1
51.3.c.b yes 1 12.b even 2 1
51.3.c.b yes 1 68.d odd 2 1
816.3.m.a 1 3.b odd 2 1
816.3.m.a 1 17.b even 2 1
816.3.m.b 1 1.a even 1 1 trivial
816.3.m.b 1 51.c odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 7 \) acting on \(S_{3}^{\mathrm{new}}(816, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 7 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 5 \) Copy content Toggle raw display
$13$ \( T + 25 \) Copy content Toggle raw display
$17$ \( T - 17 \) Copy content Toggle raw display
$19$ \( T - 13 \) Copy content Toggle raw display
$23$ \( T - 29 \) Copy content Toggle raw display
$29$ \( T - 10 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T + 65 \) Copy content Toggle raw display
$43$ \( T + 35 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 70 \) Copy content Toggle raw display
$71$ \( T + 130 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less