Properties

Label 819.2.j.h.235.1
Level $819$
Weight $2$
Character 819.235
Analytic conductor $6.540$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(235,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 8x^{8} + 7x^{7} + 41x^{6} + 18x^{5} + 58x^{4} + 28x^{3} + 64x^{2} + 16x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(1.50426 + 2.60546i\) of defining polynomial
Character \(\chi\) \(=\) 819.235
Dual form 819.2.j.h.352.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00426 - 1.73943i) q^{2} +(-1.01709 + 1.76164i) q^{4} +(0.452861 + 0.784378i) q^{5} +(0.237709 - 2.63505i) q^{7} +0.0686323 q^{8} +(0.909582 - 1.57544i) q^{10} +(0.358181 - 0.620387i) q^{11} +1.00000 q^{13} +(-4.82222 + 2.23280i) q^{14} +(1.96525 + 3.40391i) q^{16} +(1.17614 - 2.03713i) q^{17} +(-3.31796 - 5.74687i) q^{19} -1.84239 q^{20} -1.43883 q^{22} +(1.87953 + 3.25544i) q^{23} +(2.08983 - 3.61970i) q^{25} +(-1.00426 - 1.73943i) q^{26} +(4.40025 + 3.09883i) q^{28} -3.25799 q^{29} +(-0.785250 + 1.36009i) q^{31} +(4.01588 - 6.95570i) q^{32} -4.72459 q^{34} +(2.17452 - 1.00686i) q^{35} +(-2.60441 - 4.51098i) q^{37} +(-6.66419 + 11.5427i) q^{38} +(0.0310809 + 0.0538337i) q^{40} -4.92168 q^{41} -9.43766 q^{43} +(0.728600 + 1.26197i) q^{44} +(3.77508 - 6.53863i) q^{46} +(-4.15993 - 7.20521i) q^{47} +(-6.88699 - 1.25275i) q^{49} -8.39497 q^{50} +(-1.01709 + 1.76164i) q^{52} +(7.04163 - 12.1965i) q^{53} +0.648824 q^{55} +(0.0163145 - 0.180850i) q^{56} +(3.27188 + 5.66706i) q^{58} +(0.358181 - 0.620387i) q^{59} +(5.82633 + 10.0915i) q^{61} +3.15439 q^{62} -8.27099 q^{64} +(0.452861 + 0.784378i) q^{65} +(-4.69587 + 8.13349i) q^{67} +(2.39246 + 4.14386i) q^{68} +(-3.93516 - 2.77129i) q^{70} -10.9914 q^{71} +(1.73650 - 3.00771i) q^{73} +(-5.23103 + 9.06041i) q^{74} +13.4986 q^{76} +(-1.54961 - 1.09130i) q^{77} +(-6.50408 - 11.2654i) q^{79} +(-1.77997 + 3.08299i) q^{80} +(4.94265 + 8.56093i) q^{82} -3.54083 q^{83} +2.13050 q^{85} +(9.47789 + 16.4162i) q^{86} +(0.0245828 - 0.0425786i) q^{88} +(6.02503 + 10.4357i) q^{89} +(0.237709 - 2.63505i) q^{91} -7.64656 q^{92} +(-8.35532 + 14.4718i) q^{94} +(3.00514 - 5.20506i) q^{95} +7.43766 q^{97} +(4.73727 + 13.2375i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} - 8 q^{4} + 2 q^{5} + q^{7} - 18 q^{8} + 5 q^{10} + 11 q^{11} + 10 q^{13} - 10 q^{14} - 10 q^{16} - 5 q^{17} - 9 q^{19} - 2 q^{20} + 16 q^{22} + 10 q^{23} - 9 q^{25} + 4 q^{26} + 37 q^{28}+ \cdots + 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00426 1.73943i −0.710121 1.22997i −0.964812 0.262942i \(-0.915307\pi\)
0.254691 0.967023i \(-0.418026\pi\)
\(3\) 0 0
\(4\) −1.01709 + 1.76164i −0.508543 + 0.880822i
\(5\) 0.452861 + 0.784378i 0.202526 + 0.350784i 0.949342 0.314246i \(-0.101752\pi\)
−0.746816 + 0.665031i \(0.768418\pi\)
\(6\) 0 0
\(7\) 0.237709 2.63505i 0.0898454 0.995956i
\(8\) 0.0686323 0.0242652
\(9\) 0 0
\(10\) 0.909582 1.57544i 0.287635 0.498199i
\(11\) 0.358181 0.620387i 0.107996 0.187054i −0.806963 0.590603i \(-0.798890\pi\)
0.914958 + 0.403549i \(0.132223\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −4.82222 + 2.23280i −1.28879 + 0.596742i
\(15\) 0 0
\(16\) 1.96525 + 3.40391i 0.491311 + 0.850976i
\(17\) 1.17614 2.03713i 0.285255 0.494076i −0.687416 0.726264i \(-0.741255\pi\)
0.972671 + 0.232188i \(0.0745885\pi\)
\(18\) 0 0
\(19\) −3.31796 5.74687i −0.761191 1.31842i −0.942237 0.334947i \(-0.891282\pi\)
0.181046 0.983475i \(-0.442052\pi\)
\(20\) −1.84239 −0.411971
\(21\) 0 0
\(22\) −1.43883 −0.306759
\(23\) 1.87953 + 3.25544i 0.391909 + 0.678806i 0.992701 0.120599i \(-0.0384816\pi\)
−0.600793 + 0.799405i \(0.705148\pi\)
\(24\) 0 0
\(25\) 2.08983 3.61970i 0.417967 0.723940i
\(26\) −1.00426 1.73943i −0.196952 0.341131i
\(27\) 0 0
\(28\) 4.40025 + 3.09883i 0.831569 + 0.585624i
\(29\) −3.25799 −0.604994 −0.302497 0.953150i \(-0.597820\pi\)
−0.302497 + 0.953150i \(0.597820\pi\)
\(30\) 0 0
\(31\) −0.785250 + 1.36009i −0.141035 + 0.244280i −0.927887 0.372862i \(-0.878376\pi\)
0.786852 + 0.617142i \(0.211710\pi\)
\(32\) 4.01588 6.95570i 0.709913 1.22961i
\(33\) 0 0
\(34\) −4.72459 −0.810261
\(35\) 2.17452 1.00686i 0.367562 0.170190i
\(36\) 0 0
\(37\) −2.60441 4.51098i −0.428163 0.741600i 0.568547 0.822651i \(-0.307506\pi\)
−0.996710 + 0.0810508i \(0.974172\pi\)
\(38\) −6.66419 + 11.5427i −1.08108 + 1.87248i
\(39\) 0 0
\(40\) 0.0310809 + 0.0538337i 0.00491432 + 0.00851185i
\(41\) −4.92168 −0.768637 −0.384318 0.923201i \(-0.625563\pi\)
−0.384318 + 0.923201i \(0.625563\pi\)
\(42\) 0 0
\(43\) −9.43766 −1.43923 −0.719615 0.694373i \(-0.755682\pi\)
−0.719615 + 0.694373i \(0.755682\pi\)
\(44\) 0.728600 + 1.26197i 0.109841 + 0.190250i
\(45\) 0 0
\(46\) 3.77508 6.53863i 0.556605 0.964068i
\(47\) −4.15993 7.20521i −0.606788 1.05099i −0.991766 0.128062i \(-0.959124\pi\)
0.384978 0.922926i \(-0.374209\pi\)
\(48\) 0 0
\(49\) −6.88699 1.25275i −0.983856 0.178964i
\(50\) −8.39497 −1.18723
\(51\) 0 0
\(52\) −1.01709 + 1.76164i −0.141044 + 0.244296i
\(53\) 7.04163 12.1965i 0.967243 1.67531i 0.263777 0.964584i \(-0.415032\pi\)
0.703465 0.710729i \(-0.251635\pi\)
\(54\) 0 0
\(55\) 0.648824 0.0874874
\(56\) 0.0163145 0.180850i 0.00218012 0.0241671i
\(57\) 0 0
\(58\) 3.27188 + 5.66706i 0.429619 + 0.744122i
\(59\) 0.358181 0.620387i 0.0466311 0.0807675i −0.841768 0.539840i \(-0.818485\pi\)
0.888399 + 0.459072i \(0.151818\pi\)
\(60\) 0 0
\(61\) 5.82633 + 10.0915i 0.745986 + 1.29208i 0.949733 + 0.313061i \(0.101355\pi\)
−0.203747 + 0.979024i \(0.565312\pi\)
\(62\) 3.15439 0.400607
\(63\) 0 0
\(64\) −8.27099 −1.03387
\(65\) 0.452861 + 0.784378i 0.0561705 + 0.0972901i
\(66\) 0 0
\(67\) −4.69587 + 8.13349i −0.573692 + 0.993664i 0.422490 + 0.906367i \(0.361156\pi\)
−0.996182 + 0.0872964i \(0.972177\pi\)
\(68\) 2.39246 + 4.14386i 0.290128 + 0.502517i
\(69\) 0 0
\(70\) −3.93516 2.77129i −0.470341 0.331233i
\(71\) −10.9914 −1.30444 −0.652220 0.758030i \(-0.726162\pi\)
−0.652220 + 0.758030i \(0.726162\pi\)
\(72\) 0 0
\(73\) 1.73650 3.00771i 0.203242 0.352025i −0.746329 0.665577i \(-0.768186\pi\)
0.949571 + 0.313552i \(0.101519\pi\)
\(74\) −5.23103 + 9.06041i −0.608095 + 1.05325i
\(75\) 0 0
\(76\) 13.4986 1.54839
\(77\) −1.54961 1.09130i −0.176594 0.124365i
\(78\) 0 0
\(79\) −6.50408 11.2654i −0.731766 1.26746i −0.956128 0.292950i \(-0.905363\pi\)
0.224361 0.974506i \(-0.427970\pi\)
\(80\) −1.77997 + 3.08299i −0.199006 + 0.344689i
\(81\) 0 0
\(82\) 4.94265 + 8.56093i 0.545825 + 0.945396i
\(83\) −3.54083 −0.388656 −0.194328 0.980937i \(-0.562253\pi\)
−0.194328 + 0.980937i \(0.562253\pi\)
\(84\) 0 0
\(85\) 2.13050 0.231085
\(86\) 9.47789 + 16.4162i 1.02203 + 1.77020i
\(87\) 0 0
\(88\) 0.0245828 0.0425786i 0.00262053 0.00453889i
\(89\) 6.02503 + 10.4357i 0.638651 + 1.10618i 0.985729 + 0.168340i \(0.0538408\pi\)
−0.347077 + 0.937836i \(0.612826\pi\)
\(90\) 0 0
\(91\) 0.237709 2.63505i 0.0249186 0.276228i
\(92\) −7.64656 −0.797209
\(93\) 0 0
\(94\) −8.35532 + 14.4718i −0.861786 + 1.49266i
\(95\) 3.00514 5.20506i 0.308321 0.534028i
\(96\) 0 0
\(97\) 7.43766 0.755180 0.377590 0.925973i \(-0.376753\pi\)
0.377590 + 0.925973i \(0.376753\pi\)
\(98\) 4.73727 + 13.2375i 0.478537 + 1.33719i
\(99\) 0 0
\(100\) 4.25108 + 7.36309i 0.425108 + 0.736309i
\(101\) −0.599526 + 1.03841i −0.0596551 + 0.103326i −0.894311 0.447447i \(-0.852333\pi\)
0.834656 + 0.550772i \(0.185667\pi\)
\(102\) 0 0
\(103\) 7.20615 + 12.4814i 0.710043 + 1.22983i 0.964840 + 0.262837i \(0.0846580\pi\)
−0.254797 + 0.966995i \(0.582009\pi\)
\(104\) 0.0686323 0.00672995
\(105\) 0 0
\(106\) −28.2866 −2.74744
\(107\) 6.79661 + 11.7721i 0.657053 + 1.13805i 0.981375 + 0.192102i \(0.0615305\pi\)
−0.324322 + 0.945947i \(0.605136\pi\)
\(108\) 0 0
\(109\) 6.86241 11.8860i 0.657299 1.13848i −0.324013 0.946053i \(-0.605032\pi\)
0.981312 0.192423i \(-0.0616346\pi\)
\(110\) −0.651589 1.12859i −0.0621266 0.107606i
\(111\) 0 0
\(112\) 9.43662 4.36939i 0.891677 0.412868i
\(113\) 3.25799 0.306486 0.153243 0.988189i \(-0.451028\pi\)
0.153243 + 0.988189i \(0.451028\pi\)
\(114\) 0 0
\(115\) −1.70233 + 2.94852i −0.158743 + 0.274951i
\(116\) 3.31366 5.73942i 0.307665 0.532892i
\(117\) 0 0
\(118\) −1.43883 −0.132455
\(119\) −5.08836 3.58342i −0.466449 0.328492i
\(120\) 0 0
\(121\) 5.24341 + 9.08186i 0.476674 + 0.825623i
\(122\) 11.7023 20.2690i 1.05948 1.83507i
\(123\) 0 0
\(124\) −1.59733 2.76666i −0.143445 0.248453i
\(125\) 8.31422 0.743647
\(126\) 0 0
\(127\) −0.950834 −0.0843729 −0.0421865 0.999110i \(-0.513432\pi\)
−0.0421865 + 0.999110i \(0.513432\pi\)
\(128\) 0.274489 + 0.475429i 0.0242617 + 0.0420224i
\(129\) 0 0
\(130\) 0.909582 1.57544i 0.0797756 0.138175i
\(131\) −9.40980 16.2983i −0.822138 1.42399i −0.904087 0.427349i \(-0.859448\pi\)
0.0819487 0.996637i \(-0.473886\pi\)
\(132\) 0 0
\(133\) −15.9320 + 7.37690i −1.38148 + 0.639658i
\(134\) 18.8635 1.62956
\(135\) 0 0
\(136\) 0.0807209 0.139813i 0.00692176 0.0119888i
\(137\) 3.09090 5.35359i 0.264073 0.457388i −0.703247 0.710945i \(-0.748267\pi\)
0.967320 + 0.253557i \(0.0816006\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −0.437952 + 4.85480i −0.0370137 + 0.410305i
\(141\) 0 0
\(142\) 11.0383 + 19.1188i 0.926309 + 1.60441i
\(143\) 0.358181 0.620387i 0.0299526 0.0518794i
\(144\) 0 0
\(145\) −1.47542 2.55550i −0.122527 0.212223i
\(146\) −6.97560 −0.577305
\(147\) 0 0
\(148\) 10.5956 0.870956
\(149\) −10.5385 18.2533i −0.863351 1.49537i −0.868675 0.495382i \(-0.835028\pi\)
0.00532425 0.999986i \(-0.498305\pi\)
\(150\) 0 0
\(151\) 7.86171 13.6169i 0.639777 1.10813i −0.345704 0.938344i \(-0.612360\pi\)
0.985481 0.169783i \(-0.0543067\pi\)
\(152\) −0.227719 0.394421i −0.0184705 0.0319918i
\(153\) 0 0
\(154\) −0.342022 + 3.79139i −0.0275609 + 0.305519i
\(155\) −1.42244 −0.114253
\(156\) 0 0
\(157\) 3.89250 6.74200i 0.310655 0.538070i −0.667849 0.744297i \(-0.732785\pi\)
0.978504 + 0.206226i \(0.0661183\pi\)
\(158\) −13.0636 + 22.6268i −1.03928 + 1.80009i
\(159\) 0 0
\(160\) 7.27453 0.575102
\(161\) 9.02503 4.17881i 0.711272 0.329336i
\(162\) 0 0
\(163\) −0.844956 1.46351i −0.0661820 0.114631i 0.831036 0.556219i \(-0.187748\pi\)
−0.897218 + 0.441588i \(0.854415\pi\)
\(164\) 5.00576 8.67024i 0.390884 0.677032i
\(165\) 0 0
\(166\) 3.55592 + 6.15903i 0.275993 + 0.478034i
\(167\) 21.8667 1.69210 0.846049 0.533105i \(-0.178975\pi\)
0.846049 + 0.533105i \(0.178975\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −2.13958 3.70587i −0.164099 0.284227i
\(171\) 0 0
\(172\) 9.59891 16.6258i 0.731910 1.26770i
\(173\) 2.92061 + 5.05865i 0.222050 + 0.384602i 0.955430 0.295217i \(-0.0953918\pi\)
−0.733380 + 0.679819i \(0.762058\pi\)
\(174\) 0 0
\(175\) −9.04132 6.36725i −0.683460 0.481319i
\(176\) 2.81565 0.212238
\(177\) 0 0
\(178\) 12.1014 20.9603i 0.907039 1.57104i
\(179\) 1.26714 2.19475i 0.0947103 0.164043i −0.814777 0.579774i \(-0.803141\pi\)
0.909488 + 0.415731i \(0.136474\pi\)
\(180\) 0 0
\(181\) −10.7248 −0.797169 −0.398585 0.917132i \(-0.630498\pi\)
−0.398585 + 0.917132i \(0.630498\pi\)
\(182\) −4.82222 + 2.23280i −0.357447 + 0.165506i
\(183\) 0 0
\(184\) 0.128996 + 0.223428i 0.00950974 + 0.0164714i
\(185\) 2.35887 4.08569i 0.173428 0.300386i
\(186\) 0 0
\(187\) −0.842538 1.45932i −0.0616125 0.106716i
\(188\) 16.9240 1.23431
\(189\) 0 0
\(190\) −12.0718 −0.875781
\(191\) −0.839303 1.45371i −0.0607298 0.105187i 0.834062 0.551671i \(-0.186009\pi\)
−0.894792 + 0.446484i \(0.852676\pi\)
\(192\) 0 0
\(193\) 3.22408 5.58427i 0.232074 0.401964i −0.726344 0.687331i \(-0.758782\pi\)
0.958418 + 0.285367i \(0.0921154\pi\)
\(194\) −7.46936 12.9373i −0.536269 0.928845i
\(195\) 0 0
\(196\) 9.21155 10.8583i 0.657968 0.775590i
\(197\) −1.87251 −0.133411 −0.0667054 0.997773i \(-0.521249\pi\)
−0.0667054 + 0.997773i \(0.521249\pi\)
\(198\) 0 0
\(199\) 5.69833 9.86979i 0.403944 0.699651i −0.590254 0.807217i \(-0.700972\pi\)
0.994198 + 0.107566i \(0.0343058\pi\)
\(200\) 0.143430 0.248428i 0.0101420 0.0175665i
\(201\) 0 0
\(202\) 2.40833 0.169449
\(203\) −0.774453 + 8.58498i −0.0543559 + 0.602547i
\(204\) 0 0
\(205\) −2.22883 3.86045i −0.155669 0.269626i
\(206\) 14.4737 25.0692i 1.00843 1.74666i
\(207\) 0 0
\(208\) 1.96525 + 3.40391i 0.136265 + 0.236018i
\(209\) −4.75371 −0.328821
\(210\) 0 0
\(211\) 7.53599 0.518799 0.259400 0.965770i \(-0.416475\pi\)
0.259400 + 0.965770i \(0.416475\pi\)
\(212\) 14.3239 + 24.8097i 0.983768 + 1.70394i
\(213\) 0 0
\(214\) 13.6512 23.6445i 0.933174 1.61630i
\(215\) −4.27395 7.40269i −0.291481 0.504859i
\(216\) 0 0
\(217\) 3.39725 + 2.39248i 0.230621 + 0.162412i
\(218\) −27.5666 −1.86705
\(219\) 0 0
\(220\) −0.659909 + 1.14300i −0.0444911 + 0.0770608i
\(221\) 1.17614 2.03713i 0.0791154 0.137032i
\(222\) 0 0
\(223\) 17.6349 1.18092 0.590459 0.807067i \(-0.298947\pi\)
0.590459 + 0.807067i \(0.298947\pi\)
\(224\) −17.3740 12.2355i −1.16085 0.817517i
\(225\) 0 0
\(226\) −3.27188 5.66706i −0.217642 0.376967i
\(227\) −2.66452 + 4.61509i −0.176851 + 0.306314i −0.940800 0.338962i \(-0.889924\pi\)
0.763950 + 0.645276i \(0.223258\pi\)
\(228\) 0 0
\(229\) 4.25950 + 7.37767i 0.281476 + 0.487530i 0.971748 0.236019i \(-0.0758428\pi\)
−0.690273 + 0.723549i \(0.742509\pi\)
\(230\) 6.83834 0.450907
\(231\) 0 0
\(232\) −0.223604 −0.0146803
\(233\) 2.37685 + 4.11683i 0.155713 + 0.269703i 0.933318 0.359050i \(-0.116899\pi\)
−0.777605 + 0.628752i \(0.783566\pi\)
\(234\) 0 0
\(235\) 3.76774 6.52592i 0.245780 0.425704i
\(236\) 0.728600 + 1.26197i 0.0474278 + 0.0821474i
\(237\) 0 0
\(238\) −1.12308 + 12.4495i −0.0727983 + 0.806984i
\(239\) −14.8314 −0.959365 −0.479682 0.877442i \(-0.659248\pi\)
−0.479682 + 0.877442i \(0.659248\pi\)
\(240\) 0 0
\(241\) 3.06066 5.30121i 0.197154 0.341481i −0.750450 0.660927i \(-0.770163\pi\)
0.947605 + 0.319446i \(0.103497\pi\)
\(242\) 10.5315 18.2411i 0.676992 1.17258i
\(243\) 0 0
\(244\) −23.7035 −1.51746
\(245\) −2.13622 5.96932i −0.136478 0.381366i
\(246\) 0 0
\(247\) −3.31796 5.74687i −0.211116 0.365664i
\(248\) −0.0538935 + 0.0933463i −0.00342224 + 0.00592750i
\(249\) 0 0
\(250\) −8.34966 14.4620i −0.528079 0.914660i
\(251\) 13.9708 0.881832 0.440916 0.897548i \(-0.354654\pi\)
0.440916 + 0.897548i \(0.354654\pi\)
\(252\) 0 0
\(253\) 2.69284 0.169298
\(254\) 0.954887 + 1.65391i 0.0599149 + 0.103776i
\(255\) 0 0
\(256\) −7.71967 + 13.3709i −0.482479 + 0.835679i
\(257\) 8.63253 + 14.9520i 0.538482 + 0.932679i 0.998986 + 0.0450210i \(0.0143355\pi\)
−0.460504 + 0.887658i \(0.652331\pi\)
\(258\) 0 0
\(259\) −12.5057 + 5.79047i −0.777069 + 0.359802i
\(260\) −1.84239 −0.114260
\(261\) 0 0
\(262\) −18.8998 + 32.7354i −1.16763 + 2.02240i
\(263\) −1.30336 + 2.25749i −0.0803687 + 0.139203i −0.903408 0.428781i \(-0.858943\pi\)
0.823040 + 0.567984i \(0.192276\pi\)
\(264\) 0 0
\(265\) 12.7555 0.783565
\(266\) 28.8315 + 20.3043i 1.76777 + 1.24494i
\(267\) 0 0
\(268\) −9.55221 16.5449i −0.583494 1.01064i
\(269\) −7.24477 + 12.5483i −0.441721 + 0.765084i −0.997817 0.0660343i \(-0.978965\pi\)
0.556096 + 0.831118i \(0.312299\pi\)
\(270\) 0 0
\(271\) 4.31796 + 7.47892i 0.262297 + 0.454312i 0.966852 0.255338i \(-0.0821866\pi\)
−0.704555 + 0.709650i \(0.748853\pi\)
\(272\) 9.24558 0.560596
\(273\) 0 0
\(274\) −12.4163 −0.750095
\(275\) −1.49708 2.59301i −0.0902771 0.156364i
\(276\) 0 0
\(277\) −6.11349 + 10.5889i −0.367324 + 0.636223i −0.989146 0.146935i \(-0.953059\pi\)
0.621822 + 0.783158i \(0.286393\pi\)
\(278\) 4.01705 + 6.95773i 0.240927 + 0.417297i
\(279\) 0 0
\(280\) 0.149243 0.0691030i 0.00891896 0.00412970i
\(281\) 24.1822 1.44259 0.721293 0.692630i \(-0.243548\pi\)
0.721293 + 0.692630i \(0.243548\pi\)
\(282\) 0 0
\(283\) 15.3842 26.6461i 0.914493 1.58395i 0.106851 0.994275i \(-0.465923\pi\)
0.807642 0.589674i \(-0.200744\pi\)
\(284\) 11.1792 19.3629i 0.663363 1.14898i
\(285\) 0 0
\(286\) −1.43883 −0.0850797
\(287\) −1.16992 + 12.9689i −0.0690585 + 0.765528i
\(288\) 0 0
\(289\) 5.73341 + 9.93056i 0.337259 + 0.584150i
\(290\) −2.96341 + 5.13278i −0.174018 + 0.301407i
\(291\) 0 0
\(292\) 3.53234 + 6.11819i 0.206714 + 0.358040i
\(293\) 31.8295 1.85950 0.929749 0.368193i \(-0.120024\pi\)
0.929749 + 0.368193i \(0.120024\pi\)
\(294\) 0 0
\(295\) 0.648824 0.0377760
\(296\) −0.178747 0.309599i −0.0103895 0.0179951i
\(297\) 0 0
\(298\) −21.1669 + 36.6622i −1.22617 + 2.12378i
\(299\) 1.87953 + 3.25544i 0.108696 + 0.188267i
\(300\) 0 0
\(301\) −2.24341 + 24.8687i −0.129308 + 1.43341i
\(302\) −31.5809 −1.81728
\(303\) 0 0
\(304\) 13.0412 22.5880i 0.747964 1.29551i
\(305\) −5.27704 + 9.14010i −0.302162 + 0.523360i
\(306\) 0 0
\(307\) 28.7884 1.64304 0.821520 0.570179i \(-0.193126\pi\)
0.821520 + 0.570179i \(0.193126\pi\)
\(308\) 3.49856 1.61992i 0.199349 0.0923034i
\(309\) 0 0
\(310\) 1.42850 + 2.47423i 0.0811332 + 0.140527i
\(311\) 2.75931 4.77927i 0.156466 0.271007i −0.777126 0.629345i \(-0.783323\pi\)
0.933592 + 0.358338i \(0.116656\pi\)
\(312\) 0 0
\(313\) 2.42399 + 4.19848i 0.137012 + 0.237312i 0.926364 0.376629i \(-0.122917\pi\)
−0.789352 + 0.613941i \(0.789583\pi\)
\(314\) −15.6363 −0.882410
\(315\) 0 0
\(316\) 26.4608 1.48854
\(317\) −3.82756 6.62952i −0.214977 0.372351i 0.738288 0.674485i \(-0.235634\pi\)
−0.953265 + 0.302134i \(0.902301\pi\)
\(318\) 0 0
\(319\) −1.16695 + 2.02122i −0.0653366 + 0.113166i
\(320\) −3.74561 6.48758i −0.209386 0.362667i
\(321\) 0 0
\(322\) −16.3322 11.5018i −0.910161 0.640971i
\(323\) −15.6095 −0.868534
\(324\) 0 0
\(325\) 2.08983 3.61970i 0.115923 0.200785i
\(326\) −1.69711 + 2.93949i −0.0939945 + 0.162803i
\(327\) 0 0
\(328\) −0.337786 −0.0186511
\(329\) −19.9750 + 9.24889i −1.10125 + 0.509908i
\(330\) 0 0
\(331\) −5.67159 9.82348i −0.311739 0.539947i 0.667000 0.745058i \(-0.267578\pi\)
−0.978739 + 0.205110i \(0.934245\pi\)
\(332\) 3.60132 6.23768i 0.197648 0.342337i
\(333\) 0 0
\(334\) −21.9599 38.0357i −1.20159 2.08122i
\(335\) −8.50631 −0.464749
\(336\) 0 0
\(337\) 1.74149 0.0948649 0.0474324 0.998874i \(-0.484896\pi\)
0.0474324 + 0.998874i \(0.484896\pi\)
\(338\) −1.00426 1.73943i −0.0546247 0.0946127i
\(339\) 0 0
\(340\) −2.16690 + 3.75319i −0.117517 + 0.203545i
\(341\) 0.562522 + 0.974317i 0.0304623 + 0.0527622i
\(342\) 0 0
\(343\) −4.93815 + 17.8498i −0.266635 + 0.963798i
\(344\) −0.647729 −0.0349232
\(345\) 0 0
\(346\) 5.86612 10.1604i 0.315365 0.546228i
\(347\) 10.5251 18.2301i 0.565019 0.978641i −0.432029 0.901860i \(-0.642202\pi\)
0.997048 0.0767814i \(-0.0244643\pi\)
\(348\) 0 0
\(349\) −8.35601 −0.447287 −0.223643 0.974671i \(-0.571795\pi\)
−0.223643 + 0.974671i \(0.571795\pi\)
\(350\) −1.99556 + 22.1212i −0.106667 + 1.18243i
\(351\) 0 0
\(352\) −2.87682 4.98279i −0.153335 0.265584i
\(353\) −4.26677 + 7.39027i −0.227097 + 0.393344i −0.956947 0.290264i \(-0.906257\pi\)
0.729849 + 0.683608i \(0.239590\pi\)
\(354\) 0 0
\(355\) −4.97758 8.62141i −0.264182 0.457577i
\(356\) −24.5119 −1.29913
\(357\) 0 0
\(358\) −5.09015 −0.269023
\(359\) −8.08565 14.0047i −0.426744 0.739142i 0.569837 0.821757i \(-0.307006\pi\)
−0.996582 + 0.0826150i \(0.973673\pi\)
\(360\) 0 0
\(361\) −12.5177 + 21.6812i −0.658824 + 1.14112i
\(362\) 10.7705 + 18.6551i 0.566086 + 0.980490i
\(363\) 0 0
\(364\) 4.40025 + 3.09883i 0.230636 + 0.162423i
\(365\) 3.14557 0.164647
\(366\) 0 0
\(367\) −14.0770 + 24.3821i −0.734813 + 1.27273i 0.219992 + 0.975502i \(0.429397\pi\)
−0.954805 + 0.297232i \(0.903936\pi\)
\(368\) −7.38747 + 12.7955i −0.385098 + 0.667010i
\(369\) 0 0
\(370\) −9.47571 −0.492619
\(371\) −30.4644 21.4543i −1.58164 1.11385i
\(372\) 0 0
\(373\) 14.2518 + 24.6849i 0.737932 + 1.27814i 0.953425 + 0.301630i \(0.0975308\pi\)
−0.215493 + 0.976505i \(0.569136\pi\)
\(374\) −1.69226 + 2.93108i −0.0875046 + 0.151562i
\(375\) 0 0
\(376\) −0.285506 0.494511i −0.0147238 0.0255024i
\(377\) −3.25799 −0.167795
\(378\) 0 0
\(379\) −7.26263 −0.373056 −0.186528 0.982450i \(-0.559724\pi\)
−0.186528 + 0.982450i \(0.559724\pi\)
\(380\) 6.11297 + 10.5880i 0.313589 + 0.543152i
\(381\) 0 0
\(382\) −1.68576 + 2.91982i −0.0862510 + 0.149391i
\(383\) 6.46627 + 11.1999i 0.330411 + 0.572289i 0.982592 0.185774i \(-0.0594793\pi\)
−0.652181 + 0.758063i \(0.726146\pi\)
\(384\) 0 0
\(385\) 0.154231 1.70968i 0.00786034 0.0871336i
\(386\) −12.9513 −0.659203
\(387\) 0 0
\(388\) −7.56474 + 13.1025i −0.384041 + 0.665179i
\(389\) −10.5679 + 18.3041i −0.535811 + 0.928053i 0.463312 + 0.886195i \(0.346661\pi\)
−0.999124 + 0.0418574i \(0.986672\pi\)
\(390\) 0 0
\(391\) 8.84232 0.447175
\(392\) −0.472670 0.0859791i −0.0238734 0.00434260i
\(393\) 0 0
\(394\) 1.88049 + 3.25711i 0.0947378 + 0.164091i
\(395\) 5.89089 10.2033i 0.296403 0.513384i
\(396\) 0 0
\(397\) −9.60366 16.6340i −0.481994 0.834838i 0.517792 0.855506i \(-0.326754\pi\)
−0.999786 + 0.0206683i \(0.993421\pi\)
\(398\) −22.8905 −1.14740
\(399\) 0 0
\(400\) 16.4282 0.821408
\(401\) 8.33460 + 14.4360i 0.416210 + 0.720897i 0.995555 0.0941856i \(-0.0300247\pi\)
−0.579344 + 0.815083i \(0.696691\pi\)
\(402\) 0 0
\(403\) −0.785250 + 1.36009i −0.0391161 + 0.0677510i
\(404\) −1.21954 2.11230i −0.0606743 0.105091i
\(405\) 0 0
\(406\) 15.7107 7.27446i 0.779711 0.361025i
\(407\) −3.73140 −0.184959
\(408\) 0 0
\(409\) −6.17416 + 10.6940i −0.305293 + 0.528782i −0.977326 0.211738i \(-0.932088\pi\)
0.672034 + 0.740520i \(0.265421\pi\)
\(410\) −4.47667 + 7.75382i −0.221087 + 0.382934i
\(411\) 0 0
\(412\) −29.3171 −1.44435
\(413\) −1.54961 1.09130i −0.0762513 0.0536991i
\(414\) 0 0
\(415\) −1.60350 2.77735i −0.0787128 0.136335i
\(416\) 4.01588 6.95570i 0.196895 0.341031i
\(417\) 0 0
\(418\) 4.77397 + 8.26876i 0.233502 + 0.404438i
\(419\) −4.35934 −0.212968 −0.106484 0.994314i \(-0.533959\pi\)
−0.106484 + 0.994314i \(0.533959\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −7.56811 13.1084i −0.368410 0.638105i
\(423\) 0 0
\(424\) 0.483284 0.837072i 0.0234703 0.0406518i
\(425\) −4.91586 8.51451i −0.238454 0.413015i
\(426\) 0 0
\(427\) 27.9766 12.9538i 1.35388 0.626881i
\(428\) −27.6509 −1.33656
\(429\) 0 0
\(430\) −8.58433 + 14.8685i −0.413973 + 0.717022i
\(431\) −11.6813 + 20.2326i −0.562667 + 0.974569i 0.434595 + 0.900626i \(0.356891\pi\)
−0.997262 + 0.0739426i \(0.976442\pi\)
\(432\) 0 0
\(433\) −2.71285 −0.130371 −0.0651856 0.997873i \(-0.520764\pi\)
−0.0651856 + 0.997873i \(0.520764\pi\)
\(434\) 0.749825 8.31197i 0.0359927 0.398987i
\(435\) 0 0
\(436\) 13.9593 + 24.1782i 0.668529 + 1.15793i
\(437\) 12.4724 21.6028i 0.596635 1.03340i
\(438\) 0 0
\(439\) 4.41760 + 7.65150i 0.210840 + 0.365186i 0.951978 0.306167i \(-0.0990467\pi\)
−0.741137 + 0.671353i \(0.765713\pi\)
\(440\) 0.0445303 0.00212290
\(441\) 0 0
\(442\) −4.72459 −0.224726
\(443\) −1.45279 2.51630i −0.0690240 0.119553i 0.829448 0.558584i \(-0.188655\pi\)
−0.898472 + 0.439031i \(0.855322\pi\)
\(444\) 0 0
\(445\) −5.45700 + 9.45179i −0.258686 + 0.448058i
\(446\) −17.7100 30.6747i −0.838595 1.45249i
\(447\) 0 0
\(448\) −1.96609 + 21.7945i −0.0928888 + 1.02969i
\(449\) 15.2777 0.720998 0.360499 0.932760i \(-0.382606\pi\)
0.360499 + 0.932760i \(0.382606\pi\)
\(450\) 0 0
\(451\) −1.76285 + 3.05334i −0.0830093 + 0.143776i
\(452\) −3.31366 + 5.73942i −0.155861 + 0.269960i
\(453\) 0 0
\(454\) 10.7035 0.502341
\(455\) 2.17452 1.00686i 0.101943 0.0472022i
\(456\) 0 0
\(457\) −11.8300 20.4902i −0.553384 0.958489i −0.998027 0.0627815i \(-0.980003\pi\)
0.444643 0.895708i \(-0.353330\pi\)
\(458\) 8.55531 14.8182i 0.399763 0.692410i
\(459\) 0 0
\(460\) −3.46283 5.99779i −0.161455 0.279649i
\(461\) 26.6170 1.23968 0.619839 0.784729i \(-0.287198\pi\)
0.619839 + 0.784729i \(0.287198\pi\)
\(462\) 0 0
\(463\) −1.44250 −0.0670385 −0.0335193 0.999438i \(-0.510672\pi\)
−0.0335193 + 0.999438i \(0.510672\pi\)
\(464\) −6.40276 11.0899i −0.297240 0.514836i
\(465\) 0 0
\(466\) 4.77397 8.26876i 0.221150 0.383043i
\(467\) −4.19480 7.26560i −0.194112 0.336212i 0.752497 0.658596i \(-0.228849\pi\)
−0.946609 + 0.322384i \(0.895516\pi\)
\(468\) 0 0
\(469\) 20.3159 + 14.3073i 0.938102 + 0.660648i
\(470\) −15.1352 −0.698135
\(471\) 0 0
\(472\) 0.0245828 0.0425786i 0.00113151 0.00195984i
\(473\) −3.38039 + 5.85500i −0.155430 + 0.269213i
\(474\) 0 0
\(475\) −27.7359 −1.27261
\(476\) 11.4880 5.31922i 0.526552 0.243806i
\(477\) 0 0
\(478\) 14.8946 + 25.7983i 0.681265 + 1.17999i
\(479\) 6.30608 10.9225i 0.288132 0.499060i −0.685232 0.728325i \(-0.740299\pi\)
0.973364 + 0.229265i \(0.0736324\pi\)
\(480\) 0 0
\(481\) −2.60441 4.51098i −0.118751 0.205683i
\(482\) −12.2948 −0.560013
\(483\) 0 0
\(484\) −21.3320 −0.969636
\(485\) 3.36823 + 5.83394i 0.152943 + 0.264905i
\(486\) 0 0
\(487\) −10.7840 + 18.6785i −0.488671 + 0.846403i −0.999915 0.0130329i \(-0.995851\pi\)
0.511244 + 0.859435i \(0.329185\pi\)
\(488\) 0.399875 + 0.692604i 0.0181015 + 0.0313527i
\(489\) 0 0
\(490\) −8.23791 + 9.71058i −0.372151 + 0.438679i
\(491\) −39.2347 −1.77064 −0.885318 0.464987i \(-0.846059\pi\)
−0.885318 + 0.464987i \(0.846059\pi\)
\(492\) 0 0
\(493\) −3.83184 + 6.63694i −0.172577 + 0.298913i
\(494\) −6.66419 + 11.5427i −0.299836 + 0.519332i
\(495\) 0 0
\(496\) −6.17283 −0.277168
\(497\) −2.61275 + 28.9629i −0.117198 + 1.29916i
\(498\) 0 0
\(499\) −4.58407 7.93984i −0.205211 0.355436i 0.744989 0.667077i \(-0.232455\pi\)
−0.950200 + 0.311641i \(0.899121\pi\)
\(500\) −8.45627 + 14.6467i −0.378176 + 0.655020i
\(501\) 0 0
\(502\) −14.0304 24.3013i −0.626207 1.08462i
\(503\) −24.9370 −1.11188 −0.555942 0.831221i \(-0.687642\pi\)
−0.555942 + 0.831221i \(0.687642\pi\)
\(504\) 0 0
\(505\) −1.08601 −0.0483267
\(506\) −2.70432 4.68402i −0.120222 0.208230i
\(507\) 0 0
\(508\) 0.967080 1.67503i 0.0429072 0.0743175i
\(509\) 2.94904 + 5.10788i 0.130714 + 0.226403i 0.923952 0.382509i \(-0.124940\pi\)
−0.793238 + 0.608912i \(0.791606\pi\)
\(510\) 0 0
\(511\) −7.51268 5.29072i −0.332341 0.234048i
\(512\) 32.1083 1.41900
\(513\) 0 0
\(514\) 17.3386 30.0314i 0.764775 1.32463i
\(515\) −6.52677 + 11.3047i −0.287604 + 0.498144i
\(516\) 0 0
\(517\) −5.96003 −0.262122
\(518\) 22.6312 + 15.9378i 0.994357 + 0.700265i
\(519\) 0 0
\(520\) 0.0310809 + 0.0538337i 0.00136299 + 0.00236076i
\(521\) −18.5948 + 32.2071i −0.814652 + 1.41102i 0.0949259 + 0.995484i \(0.469739\pi\)
−0.909578 + 0.415534i \(0.863595\pi\)
\(522\) 0 0
\(523\) 2.54540 + 4.40876i 0.111303 + 0.192782i 0.916296 0.400502i \(-0.131164\pi\)
−0.804993 + 0.593284i \(0.797831\pi\)
\(524\) 38.2823 1.67237
\(525\) 0 0
\(526\) 5.23567 0.228286
\(527\) 1.84712 + 3.19931i 0.0804618 + 0.139364i
\(528\) 0 0
\(529\) 4.43475 7.68121i 0.192815 0.333966i
\(530\) −12.8099 22.1874i −0.556426 0.963758i
\(531\) 0 0
\(532\) 3.20873 35.5694i 0.139116 1.54213i
\(533\) −4.92168 −0.213181
\(534\) 0 0
\(535\) −6.15583 + 10.6622i −0.266140 + 0.460968i
\(536\) −0.322289 + 0.558220i −0.0139208 + 0.0241114i
\(537\) 0 0
\(538\) 29.1026 1.25470
\(539\) −3.24397 + 3.82389i −0.139728 + 0.164707i
\(540\) 0 0
\(541\) 0.383425 + 0.664111i 0.0164847 + 0.0285524i 0.874150 0.485656i \(-0.161419\pi\)
−0.857665 + 0.514208i \(0.828086\pi\)
\(542\) 8.67272 15.0216i 0.372525 0.645232i
\(543\) 0 0
\(544\) −9.44643 16.3617i −0.405012 0.701502i
\(545\) 12.4309 0.532480
\(546\) 0 0
\(547\) 14.1428 0.604702 0.302351 0.953197i \(-0.402229\pi\)
0.302351 + 0.953197i \(0.402229\pi\)
\(548\) 6.28741 + 10.8901i 0.268585 + 0.465203i
\(549\) 0 0
\(550\) −3.00691 + 5.20813i −0.128215 + 0.222075i
\(551\) 10.8099 + 18.7233i 0.460516 + 0.797637i
\(552\) 0 0
\(553\) −31.2310 + 14.4607i −1.32808 + 0.614932i
\(554\) 24.5582 1.04338
\(555\) 0 0
\(556\) 4.06834 7.04657i 0.172536 0.298841i
\(557\) −12.4314 + 21.5317i −0.526733 + 0.912329i 0.472782 + 0.881180i \(0.343250\pi\)
−0.999515 + 0.0311490i \(0.990083\pi\)
\(558\) 0 0
\(559\) −9.43766 −0.399171
\(560\) 7.70072 + 5.42315i 0.325415 + 0.229170i
\(561\) 0 0
\(562\) −24.2852 42.0633i −1.02441 1.77433i
\(563\) 22.0047 38.1133i 0.927388 1.60628i 0.139713 0.990192i \(-0.455382\pi\)
0.787675 0.616091i \(-0.211285\pi\)
\(564\) 0 0
\(565\) 1.47542 + 2.55550i 0.0620713 + 0.107511i
\(566\) −61.7989 −2.59760
\(567\) 0 0
\(568\) −0.754366 −0.0316525
\(569\) −16.6308 28.8054i −0.697199 1.20758i −0.969434 0.245353i \(-0.921096\pi\)
0.272235 0.962231i \(-0.412237\pi\)
\(570\) 0 0
\(571\) 6.17699 10.6989i 0.258499 0.447734i −0.707341 0.706873i \(-0.750105\pi\)
0.965840 + 0.259139i \(0.0834387\pi\)
\(572\) 0.728600 + 1.26197i 0.0304643 + 0.0527657i
\(573\) 0 0
\(574\) 23.7334 10.9891i 0.990613 0.458678i
\(575\) 15.7116 0.655219
\(576\) 0 0
\(577\) 12.9829 22.4871i 0.540486 0.936150i −0.458390 0.888751i \(-0.651574\pi\)
0.998876 0.0473984i \(-0.0150930\pi\)
\(578\) 11.5157 19.9458i 0.478990 0.829635i
\(579\) 0 0
\(580\) 6.00250 0.249240
\(581\) −0.841685 + 9.33026i −0.0349190 + 0.387085i
\(582\) 0 0
\(583\) −5.04435 8.73707i −0.208916 0.361853i
\(584\) 0.119180 0.206426i 0.00493171 0.00854196i
\(585\) 0 0
\(586\) −31.9652 55.3653i −1.32047 2.28712i
\(587\) 23.9747 0.989543 0.494771 0.869023i \(-0.335252\pi\)
0.494771 + 0.869023i \(0.335252\pi\)
\(588\) 0 0
\(589\) 10.4217 0.429418
\(590\) −0.651589 1.12859i −0.0268255 0.0464631i
\(591\) 0 0
\(592\) 10.2366 17.7304i 0.420723 0.728713i
\(593\) 23.5240 + 40.7448i 0.966015 + 1.67319i 0.706862 + 0.707352i \(0.250110\pi\)
0.259154 + 0.965836i \(0.416556\pi\)
\(594\) 0 0
\(595\) 0.506439 5.61398i 0.0207620 0.230151i
\(596\) 42.8744 1.75620
\(597\) 0 0
\(598\) 3.77508 6.53863i 0.154374 0.267384i
\(599\) 10.0868 17.4708i 0.412135 0.713840i −0.582988 0.812481i \(-0.698116\pi\)
0.995123 + 0.0986415i \(0.0314497\pi\)
\(600\) 0 0
\(601\) 29.5773 1.20648 0.603242 0.797558i \(-0.293875\pi\)
0.603242 + 0.797558i \(0.293875\pi\)
\(602\) 45.5105 21.0724i 1.85487 0.858849i
\(603\) 0 0
\(604\) 15.9921 + 27.6991i 0.650708 + 1.12706i
\(605\) −4.74907 + 8.22564i −0.193077 + 0.334420i
\(606\) 0 0
\(607\) 7.72099 + 13.3732i 0.313385 + 0.542799i 0.979093 0.203413i \(-0.0652035\pi\)
−0.665708 + 0.746213i \(0.731870\pi\)
\(608\) −53.2980 −2.16152
\(609\) 0 0
\(610\) 21.1981 0.858287
\(611\) −4.15993 7.20521i −0.168293 0.291492i
\(612\) 0 0
\(613\) −0.997423 + 1.72759i −0.0402855 + 0.0697766i −0.885465 0.464706i \(-0.846160\pi\)
0.845180 + 0.534482i \(0.179493\pi\)
\(614\) −28.9111 50.0755i −1.16676 2.02088i
\(615\) 0 0
\(616\) −0.106353 0.0748982i −0.00428510 0.00301773i
\(617\) 2.85584 0.114972 0.0574858 0.998346i \(-0.481692\pi\)
0.0574858 + 0.998346i \(0.481692\pi\)
\(618\) 0 0
\(619\) −15.9911 + 27.6975i −0.642738 + 1.11326i 0.342080 + 0.939671i \(0.388868\pi\)
−0.984819 + 0.173585i \(0.944465\pi\)
\(620\) 1.44674 2.50582i 0.0581024 0.100636i
\(621\) 0 0
\(622\) −11.0843 −0.444440
\(623\) 28.9307 13.3956i 1.15908 0.536684i
\(624\) 0 0
\(625\) −6.68398 11.5770i −0.267359 0.463080i
\(626\) 4.86865 8.43275i 0.194590 0.337040i
\(627\) 0 0
\(628\) 7.91800 + 13.7144i 0.315963 + 0.547263i
\(629\) −12.2526 −0.488542
\(630\) 0 0
\(631\) 32.1115 1.27834 0.639169 0.769066i \(-0.279278\pi\)
0.639169 + 0.769066i \(0.279278\pi\)
\(632\) −0.446390 0.773171i −0.0177565 0.0307551i
\(633\) 0 0
\(634\) −7.68774 + 13.3156i −0.305319 + 0.528828i
\(635\) −0.430596 0.745814i −0.0170877 0.0295967i
\(636\) 0 0
\(637\) −6.88699 1.25275i −0.272872 0.0496357i
\(638\) 4.68769 0.185588
\(639\) 0 0
\(640\) −0.248611 + 0.430607i −0.00982721 + 0.0170212i
\(641\) 16.5124 28.6003i 0.652200 1.12964i −0.330387 0.943845i \(-0.607179\pi\)
0.982588 0.185799i \(-0.0594873\pi\)
\(642\) 0 0
\(643\) 15.7942 0.622863 0.311432 0.950269i \(-0.399192\pi\)
0.311432 + 0.950269i \(0.399192\pi\)
\(644\) −1.81765 + 20.1491i −0.0716256 + 0.793985i
\(645\) 0 0
\(646\) 15.6760 + 27.1516i 0.616764 + 1.06827i
\(647\) −2.32036 + 4.01898i −0.0912227 + 0.158002i −0.908026 0.418914i \(-0.862411\pi\)
0.816803 + 0.576916i \(0.195744\pi\)
\(648\) 0 0
\(649\) −0.256587 0.444421i −0.0100719 0.0174451i
\(650\) −8.39497 −0.329278
\(651\) 0 0
\(652\) 3.43757 0.134626
\(653\) 13.4143 + 23.2342i 0.524941 + 0.909225i 0.999578 + 0.0290430i \(0.00924599\pi\)
−0.474637 + 0.880182i \(0.657421\pi\)
\(654\) 0 0
\(655\) 8.52266 14.7617i 0.333008 0.576787i
\(656\) −9.67230 16.7529i −0.377640 0.654092i
\(657\) 0 0
\(658\) 36.1479 + 25.4568i 1.40919 + 0.992409i
\(659\) 42.9889 1.67461 0.837306 0.546735i \(-0.184129\pi\)
0.837306 + 0.546735i \(0.184129\pi\)
\(660\) 0 0
\(661\) 14.7349 25.5216i 0.573122 0.992676i −0.423121 0.906073i \(-0.639066\pi\)
0.996243 0.0866030i \(-0.0276012\pi\)
\(662\) −11.3915 + 19.7307i −0.442744 + 0.766855i
\(663\) 0 0
\(664\) −0.243015 −0.00943082
\(665\) −13.0013 9.15599i −0.504167 0.355054i
\(666\) 0 0
\(667\) −6.12349 10.6062i −0.237102 0.410673i
\(668\) −22.2403 + 38.5214i −0.860504 + 1.49044i
\(669\) 0 0
\(670\) 8.54256 + 14.7962i 0.330028 + 0.571625i
\(671\) 8.34752 0.322252
\(672\) 0 0
\(673\) −20.1702 −0.777504 −0.388752 0.921342i \(-0.627094\pi\)
−0.388752 + 0.921342i \(0.627094\pi\)
\(674\) −1.74891 3.02920i −0.0673655 0.116680i
\(675\) 0 0
\(676\) −1.01709 + 1.76164i −0.0391187 + 0.0677555i
\(677\) −3.10241 5.37353i −0.119235 0.206521i 0.800230 0.599694i \(-0.204711\pi\)
−0.919465 + 0.393172i \(0.871378\pi\)
\(678\) 0 0
\(679\) 1.76800 19.5986i 0.0678495 0.752126i
\(680\) 0.146221 0.00560733
\(681\) 0 0
\(682\) 1.12984 1.95694i 0.0432638 0.0749351i
\(683\) −0.884758 + 1.53245i −0.0338543 + 0.0586374i −0.882456 0.470395i \(-0.844112\pi\)
0.848602 + 0.529032i \(0.177445\pi\)
\(684\) 0 0
\(685\) 5.59899 0.213926
\(686\) 36.0077 9.33627i 1.37478 0.356460i
\(687\) 0 0
\(688\) −18.5473 32.1249i −0.707110 1.22475i
\(689\) 7.04163 12.1965i 0.268265 0.464648i
\(690\) 0 0
\(691\) −22.4658 38.9120i −0.854641 1.48028i −0.876977 0.480531i \(-0.840444\pi\)
0.0223363 0.999751i \(-0.492890\pi\)
\(692\) −11.8820 −0.451688
\(693\) 0 0
\(694\) −42.2800 −1.60493
\(695\) −1.81144 3.13751i −0.0687120 0.119013i
\(696\) 0 0
\(697\) −5.78856 + 10.0261i −0.219257 + 0.379765i
\(698\) 8.39162 + 14.5347i 0.317628 + 0.550147i
\(699\) 0 0
\(700\) 20.4126 9.45154i 0.771525 0.357235i
\(701\) −38.5707 −1.45679 −0.728397 0.685156i \(-0.759734\pi\)
−0.728397 + 0.685156i \(0.759734\pi\)
\(702\) 0 0
\(703\) −17.2827 + 29.9344i −0.651828 + 1.12900i
\(704\) −2.96251 + 5.13121i −0.111654 + 0.193390i
\(705\) 0 0
\(706\) 17.1398 0.645066
\(707\) 2.59375 + 1.82662i 0.0975480 + 0.0686972i
\(708\) 0 0
\(709\) −4.38866 7.60137i −0.164819 0.285476i 0.771772 0.635900i \(-0.219371\pi\)
−0.936591 + 0.350424i \(0.886037\pi\)
\(710\) −9.99758 + 17.3163i −0.375203 + 0.649870i
\(711\) 0 0
\(712\) 0.413512 + 0.716223i 0.0154970 + 0.0268416i
\(713\) −5.90360 −0.221091
\(714\) 0 0
\(715\) 0.648824 0.0242646
\(716\) 2.57757 + 4.46449i 0.0963284 + 0.166846i
\(717\) 0 0
\(718\) −16.2402 + 28.1289i −0.606080 + 1.04976i
\(719\) 2.10218 + 3.64109i 0.0783982 + 0.135790i 0.902559 0.430566i \(-0.141686\pi\)
−0.824161 + 0.566356i \(0.808353\pi\)
\(720\) 0 0
\(721\) 34.6022 16.0216i 1.28865 0.596677i
\(722\) 50.2840 1.87138
\(723\) 0 0
\(724\) 10.9080 18.8933i 0.405394 0.702164i
\(725\) −6.80866 + 11.7930i −0.252867 + 0.437979i
\(726\) 0 0
\(727\) −28.9856 −1.07502 −0.537509 0.843258i \(-0.680634\pi\)
−0.537509 + 0.843258i \(0.680634\pi\)
\(728\) 0.0163145 0.180850i 0.000604656 0.00670274i
\(729\) 0 0
\(730\) −3.15898 5.47151i −0.116919 0.202510i
\(731\) −11.1000 + 19.2257i −0.410547 + 0.711089i
\(732\) 0 0
\(733\) 12.0172 + 20.8145i 0.443867 + 0.768800i 0.997972 0.0636467i \(-0.0202731\pi\)
−0.554106 + 0.832446i \(0.686940\pi\)
\(734\) 56.5480 2.08722
\(735\) 0 0
\(736\) 30.1918 1.11288
\(737\) 3.36394 + 5.82652i 0.123912 + 0.214622i
\(738\) 0 0
\(739\) −5.90276 + 10.2239i −0.217136 + 0.376091i −0.953931 0.300025i \(-0.903005\pi\)
0.736795 + 0.676116i \(0.236338\pi\)
\(740\) 4.79835 + 8.31099i 0.176391 + 0.305518i
\(741\) 0 0
\(742\) −6.72396 + 74.5366i −0.246844 + 2.73632i
\(743\) −47.2786 −1.73448 −0.867241 0.497888i \(-0.834109\pi\)
−0.867241 + 0.497888i \(0.834109\pi\)
\(744\) 0 0
\(745\) 9.54499 16.5324i 0.349701 0.605700i
\(746\) 28.6252 49.5802i 1.04804 1.81526i
\(747\) 0 0
\(748\) 3.42773 0.125330
\(749\) 32.6356 15.1111i 1.19248 0.552147i
\(750\) 0 0
\(751\) −2.73850 4.74322i −0.0999294 0.173083i 0.811726 0.584039i \(-0.198528\pi\)
−0.911655 + 0.410956i \(0.865195\pi\)
\(752\) 16.3506 28.3200i 0.596244 1.03273i
\(753\) 0 0
\(754\) 3.27188 + 5.66706i 0.119155 + 0.206382i
\(755\) 14.2410 0.518285
\(756\) 0 0
\(757\) 10.7453 0.390546 0.195273 0.980749i \(-0.437441\pi\)
0.195273 + 0.980749i \(0.437441\pi\)
\(758\) 7.29358 + 12.6329i 0.264915 + 0.458846i
\(759\) 0 0
\(760\) 0.206250 0.357236i 0.00748148 0.0129583i
\(761\) −16.5200 28.6134i −0.598848 1.03724i −0.992991 0.118186i \(-0.962292\pi\)
0.394143 0.919049i \(-0.371041\pi\)
\(762\) 0 0
\(763\) −29.6891 20.9082i −1.07482 0.756928i
\(764\) 3.41457 0.123535
\(765\) 0 0
\(766\) 12.9877 22.4953i 0.469263 0.812788i
\(767\) 0.358181 0.620387i 0.0129332 0.0224009i
\(768\) 0 0
\(769\) 2.98332 0.107581 0.0537907 0.998552i \(-0.482870\pi\)
0.0537907 + 0.998552i \(0.482870\pi\)
\(770\) −3.12877 + 1.44870i −0.112753 + 0.0522074i
\(771\) 0 0
\(772\) 6.55833 + 11.3594i 0.236039 + 0.408832i
\(773\) −10.9543 + 18.9733i −0.393998 + 0.682424i −0.992973 0.118344i \(-0.962242\pi\)
0.598975 + 0.800768i \(0.295575\pi\)
\(774\) 0 0
\(775\) 3.28208 + 5.68473i 0.117896 + 0.204202i
\(776\) 0.510464 0.0183246
\(777\) 0 0
\(778\) 42.4516 1.52196
\(779\) 16.3299 + 28.2842i 0.585079 + 1.01339i
\(780\) 0 0
\(781\) −3.93691 + 6.81892i −0.140874 + 0.244000i
\(782\) −8.88001 15.3806i −0.317548 0.550010i
\(783\) 0 0
\(784\) −9.27039 25.9046i −0.331085 0.925165i
\(785\) 7.05104 0.251662
\(786\) 0 0
\(787\) 6.68161 11.5729i 0.238174 0.412529i −0.722017 0.691876i \(-0.756785\pi\)
0.960190 + 0.279347i \(0.0901179\pi\)
\(788\) 1.90450 3.29869i 0.0678451 0.117511i
\(789\) 0 0
\(790\) −23.6640 −0.841927
\(791\) 0.774453 8.58498i 0.0275364 0.305247i
\(792\) 0 0
\(793\) 5.82633 + 10.0915i 0.206899 + 0.358360i
\(794\) −19.2892 + 33.4099i −0.684548 + 1.18567i
\(795\) 0 0
\(796\) 11.5914 + 20.0768i 0.410845 + 0.711605i
\(797\) −32.5388 −1.15258 −0.576292 0.817244i \(-0.695501\pi\)
−0.576292 + 0.817244i \(0.695501\pi\)
\(798\) 0 0
\(799\) −19.5706 −0.692357
\(800\) −16.7850 29.0725i −0.593440 1.02787i
\(801\) 0 0
\(802\) 16.7403 28.9950i 0.591119 1.02385i
\(803\) −1.24396 2.15460i −0.0438984 0.0760343i
\(804\) 0 0
\(805\) 7.36484 + 5.18661i 0.259577 + 0.182804i
\(806\) 3.15439 0.111109
\(807\) 0 0
\(808\) −0.0411469 + 0.0712685i −0.00144754 + 0.00250722i
\(809\) 3.84413 6.65824i 0.135153 0.234091i −0.790503 0.612458i \(-0.790181\pi\)
0.925656 + 0.378367i \(0.123514\pi\)
\(810\) 0 0
\(811\) −48.3178 −1.69667 −0.848334 0.529461i \(-0.822394\pi\)
−0.848334 + 0.529461i \(0.822394\pi\)
\(812\) −14.3360 10.0960i −0.503094 0.354299i
\(813\) 0 0
\(814\) 3.74731 + 6.49052i 0.131343 + 0.227493i
\(815\) 0.765295 1.32553i 0.0268071 0.0464313i
\(816\) 0 0
\(817\) 31.3137 + 54.2370i 1.09553 + 1.89751i
\(818\) 24.8019 0.867178
\(819\) 0 0
\(820\) 9.06766 0.316656
\(821\) −1.86721 3.23410i −0.0651661 0.112871i 0.831602 0.555373i \(-0.187424\pi\)
−0.896768 + 0.442502i \(0.854091\pi\)
\(822\) 0 0
\(823\) −7.11590 + 12.3251i −0.248045 + 0.429626i −0.962983 0.269561i \(-0.913121\pi\)
0.714939 + 0.699187i \(0.246455\pi\)
\(824\) 0.494575 + 0.856629i 0.0172293 + 0.0298421i
\(825\) 0 0
\(826\) −0.342022 + 3.79139i −0.0119005 + 0.131919i
\(827\) −48.3016 −1.67961 −0.839805 0.542888i \(-0.817331\pi\)
−0.839805 + 0.542888i \(0.817331\pi\)
\(828\) 0 0
\(829\) −5.75506 + 9.96806i −0.199882 + 0.346205i −0.948490 0.316808i \(-0.897389\pi\)
0.748608 + 0.663013i \(0.230722\pi\)
\(830\) −3.22067 + 5.57837i −0.111791 + 0.193628i
\(831\) 0 0
\(832\) −8.27099 −0.286745
\(833\) −10.6520 + 12.5563i −0.369071 + 0.435049i
\(834\) 0 0
\(835\) 9.90258 + 17.1518i 0.342693 + 0.593562i
\(836\) 4.83493 8.37434i 0.167219 0.289633i
\(837\) 0 0
\(838\) 4.37792 + 7.58278i 0.151233 + 0.261943i
\(839\) −13.1103 −0.452616 −0.226308 0.974056i \(-0.572666\pi\)
−0.226308 + 0.974056i \(0.572666\pi\)
\(840\) 0 0
\(841\) −18.3855 −0.633982
\(842\) 10.0426 + 17.3943i 0.346092 + 0.599448i
\(843\) 0 0
\(844\) −7.66475 + 13.2757i −0.263831 + 0.456969i
\(845\) 0.452861 + 0.784378i 0.0155789 + 0.0269834i
\(846\) 0 0
\(847\) 25.1776 11.6578i 0.865111 0.400568i
\(848\) 55.3541 1.90087
\(849\) 0 0
\(850\) −9.87362 + 17.1016i −0.338662 + 0.586580i
\(851\) 9.79014 16.9570i 0.335602 0.581279i
\(852\) 0 0
\(853\) 8.80346 0.301425 0.150712 0.988578i \(-0.451843\pi\)
0.150712 + 0.988578i \(0.451843\pi\)
\(854\) −50.6282 35.6544i −1.73246 1.22007i
\(855\) 0 0
\(856\) 0.466467 + 0.807945i 0.0159435 + 0.0276150i
\(857\) 8.48254 14.6922i 0.289758 0.501876i −0.683994 0.729488i \(-0.739758\pi\)
0.973752 + 0.227612i \(0.0730918\pi\)
\(858\) 0 0
\(859\) −7.27049 12.5929i −0.248066 0.429663i 0.714923 0.699203i \(-0.246462\pi\)
−0.962989 + 0.269540i \(0.913128\pi\)
\(860\) 17.3879 0.592922
\(861\) 0 0
\(862\) 46.9243 1.59825
\(863\) 19.5222 + 33.8135i 0.664544 + 1.15102i 0.979409 + 0.201887i \(0.0647074\pi\)
−0.314865 + 0.949136i \(0.601959\pi\)
\(864\) 0 0
\(865\) −2.64526 + 4.58173i −0.0899416 + 0.155783i
\(866\) 2.72441 + 4.71882i 0.0925793 + 0.160352i
\(867\) 0 0
\(868\) −7.66999 + 3.55139i −0.260336 + 0.120542i
\(869\) −9.31854 −0.316110
\(870\) 0 0
\(871\) −4.69587 + 8.13349i −0.159114 + 0.275593i
\(872\) 0.470983 0.815767i 0.0159495 0.0276253i
\(873\) 0 0
\(874\) −50.1022 −1.69473
\(875\) 1.97636 21.9084i 0.0668133 0.740639i
\(876\) 0 0
\(877\) −16.2971 28.2273i −0.550312 0.953169i −0.998252 0.0591051i \(-0.981175\pi\)
0.447939 0.894064i \(-0.352158\pi\)
\(878\) 8.87285 15.3682i 0.299444 0.518652i
\(879\) 0 0
\(880\) 1.27510 + 2.20853i 0.0429835 + 0.0744497i
\(881\) 43.4141 1.46266 0.731330 0.682024i \(-0.238900\pi\)
0.731330 + 0.682024i \(0.238900\pi\)
\(882\) 0 0
\(883\) 28.2902 0.952040 0.476020 0.879434i \(-0.342079\pi\)
0.476020 + 0.879434i \(0.342079\pi\)
\(884\) 2.39246 + 4.14386i 0.0804672 + 0.139373i
\(885\) 0 0
\(886\) −2.91796 + 5.05406i −0.0980308 + 0.169794i
\(887\) −25.1325 43.5307i −0.843866 1.46162i −0.886602 0.462532i \(-0.846941\pi\)
0.0427364 0.999086i \(-0.486392\pi\)
\(888\) 0 0
\(889\) −0.226022 + 2.50550i −0.00758052 + 0.0840317i
\(890\) 21.9210 0.734794
\(891\) 0 0
\(892\) −17.9362 + 31.0664i −0.600548 + 1.04018i
\(893\) −27.6049 + 47.8131i −0.923764 + 1.60001i
\(894\) 0 0
\(895\) 2.29535 0.0767250
\(896\) 1.31803 0.610280i 0.0440323 0.0203880i
\(897\) 0 0
\(898\) −15.3428 26.5745i −0.511996 0.886803i
\(899\) 2.55834 4.43117i 0.0853253 0.147788i
\(900\) 0 0
\(901\) −16.5638 28.6894i −0.551821 0.955782i
\(902\) 7.08145 0.235786
\(903\) 0 0
\(904\) 0.223604 0.00743695
\(905\) −4.85685 8.41231i −0.161447 0.279635i
\(906\) 0 0
\(907\) −13.4138 + 23.2334i −0.445399 + 0.771453i −0.998080 0.0619394i \(-0.980271\pi\)
0.552681 + 0.833393i \(0.313605\pi\)
\(908\) −5.42009 9.38787i −0.179872 0.311548i
\(909\) 0 0
\(910\) −3.93516 2.77129i −0.130449 0.0918674i
\(911\) 22.3560 0.740687 0.370344 0.928895i \(-0.379240\pi\)
0.370344 + 0.928895i \(0.379240\pi\)
\(912\) 0 0
\(913\) −1.26826 + 2.19668i −0.0419731 + 0.0726996i
\(914\) −23.7608 + 41.1550i −0.785939 + 1.36129i
\(915\) 0 0
\(916\) −17.3291 −0.572569
\(917\) −45.1835 + 20.9211i −1.49209 + 0.690875i
\(918\) 0 0
\(919\) 4.31122 + 7.46725i 0.142214 + 0.246322i 0.928330 0.371757i \(-0.121245\pi\)
−0.786116 + 0.618079i \(0.787911\pi\)
\(920\) −0.116835 + 0.202364i −0.00385193 + 0.00667174i
\(921\) 0 0
\(922\) −26.7305 46.2985i −0.880321 1.52476i
\(923\) −10.9914 −0.361786
\(924\) 0 0
\(925\) −21.7712 −0.715832
\(926\) 1.44865 + 2.50913i 0.0476054 + 0.0824550i
\(927\) 0 0
\(928\) −13.0837 + 22.6616i −0.429493 + 0.743904i
\(929\) 20.6930 + 35.8414i 0.678916 + 1.17592i 0.975308 + 0.220851i \(0.0708834\pi\)
−0.296391 + 0.955067i \(0.595783\pi\)
\(930\) 0 0
\(931\) 15.6513 + 43.7352i 0.512952 + 1.43336i
\(932\) −9.66985 −0.316747
\(933\) 0 0
\(934\) −8.42535 + 14.5931i −0.275686 + 0.477502i
\(935\) 0.763105 1.32174i 0.0249562 0.0432254i
\(936\) 0 0
\(937\) 21.3818 0.698514 0.349257 0.937027i \(-0.386434\pi\)
0.349257 + 0.937027i \(0.386434\pi\)
\(938\) 4.48403 49.7064i 0.146409 1.62297i
\(939\) 0 0
\(940\) 7.66423 + 13.2748i 0.249979 + 0.432977i
\(941\) −26.5740 + 46.0275i −0.866288 + 1.50046i −0.000525658 1.00000i \(0.500167\pi\)
−0.865762 + 0.500455i \(0.833166\pi\)
\(942\) 0 0
\(943\) −9.25043 16.0222i −0.301235 0.521755i
\(944\) 2.81565 0.0916416
\(945\) 0 0
\(946\) 13.5792 0.441497
\(947\) −4.43468 7.68109i −0.144108 0.249602i 0.784932 0.619582i \(-0.212698\pi\)
−0.929040 + 0.369980i \(0.879365\pi\)
\(948\) 0 0
\(949\) 1.73650 3.00771i 0.0563692 0.0976343i
\(950\) 27.8541 + 48.2448i 0.903707 + 1.56527i
\(951\) 0 0
\(952\) −0.349226 0.245939i −0.0113185 0.00797091i
\(953\) 39.8167 1.28979 0.644894 0.764272i \(-0.276901\pi\)
0.644894 + 0.764272i \(0.276901\pi\)
\(954\) 0 0
\(955\) 0.760174 1.31666i 0.0245987 0.0426061i
\(956\) 15.0848 26.1277i 0.487878 0.845029i
\(957\) 0 0
\(958\) −25.3319 −0.818435
\(959\) −13.3723 9.41727i −0.431813 0.304099i
\(960\) 0 0
\(961\) 14.2668 + 24.7108i 0.460218 + 0.797121i
\(962\) −5.23103 + 9.06041i −0.168655 + 0.292119i
\(963\) 0 0
\(964\) 6.22589 + 10.7836i 0.200523 + 0.347315i
\(965\) 5.84024 0.188004
\(966\) 0 0
\(967\) −22.1611 −0.712652 −0.356326 0.934362i \(-0.615971\pi\)
−0.356326 + 0.934362i \(0.615971\pi\)
\(968\) 0.359868 + 0.623309i 0.0115666 + 0.0200339i
\(969\) 0 0
\(970\) 6.76516 11.7176i 0.217216 0.376230i
\(971\) 18.0212 + 31.2136i 0.578327 + 1.00169i 0.995671 + 0.0929428i \(0.0296274\pi\)
−0.417345 + 0.908748i \(0.637039\pi\)
\(972\) 0 0
\(973\) −0.950834 + 10.5402i −0.0304824 + 0.337903i
\(974\) 43.3199 1.38806
\(975\) 0 0
\(976\) −22.9004 + 39.6646i −0.733022 + 1.26963i
\(977\) 16.4708 28.5283i 0.526947 0.912700i −0.472559 0.881299i \(-0.656670\pi\)
0.999507 0.0314009i \(-0.00999687\pi\)
\(978\) 0 0
\(979\) 8.63219 0.275886
\(980\) 12.6885 + 2.30805i 0.405320 + 0.0737281i
\(981\) 0 0
\(982\) 39.4019 + 68.2461i 1.25736 + 2.17782i
\(983\) −2.09973 + 3.63683i −0.0669709 + 0.115997i −0.897567 0.440879i \(-0.854667\pi\)
0.830596 + 0.556876i \(0.188000\pi\)
\(984\) 0 0
\(985\) −0.847986 1.46876i −0.0270191 0.0467984i
\(986\) 15.3927 0.490203
\(987\) 0 0
\(988\) 13.4986 0.429447
\(989\) −17.7383 30.7237i −0.564047 0.976958i
\(990\) 0 0
\(991\) 6.70693 11.6167i 0.213053 0.369018i −0.739616 0.673029i \(-0.764993\pi\)
0.952668 + 0.304011i \(0.0983261\pi\)
\(992\) 6.30693 + 10.9239i 0.200245 + 0.346835i
\(993\) 0 0
\(994\) 53.0029 24.5416i 1.68115 0.778414i
\(995\) 10.3222 0.327236
\(996\) 0 0
\(997\) 23.9434 41.4712i 0.758295 1.31341i −0.185424 0.982659i \(-0.559366\pi\)
0.943719 0.330747i \(-0.107301\pi\)
\(998\) −9.20722 + 15.9474i −0.291449 + 0.504805i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.j.h.235.1 10
3.2 odd 2 91.2.e.c.53.5 10
7.2 even 3 inner 819.2.j.h.352.1 10
7.3 odd 6 5733.2.a.bm.1.5 5
7.4 even 3 5733.2.a.bl.1.5 5
12.11 even 2 1456.2.r.p.417.4 10
21.2 odd 6 91.2.e.c.79.5 yes 10
21.5 even 6 637.2.e.m.79.5 10
21.11 odd 6 637.2.a.l.1.1 5
21.17 even 6 637.2.a.k.1.1 5
21.20 even 2 637.2.e.m.508.5 10
39.38 odd 2 1183.2.e.f.508.1 10
84.23 even 6 1456.2.r.p.625.4 10
273.38 even 6 8281.2.a.bx.1.5 5
273.116 odd 6 8281.2.a.bw.1.5 5
273.233 odd 6 1183.2.e.f.170.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.e.c.53.5 10 3.2 odd 2
91.2.e.c.79.5 yes 10 21.2 odd 6
637.2.a.k.1.1 5 21.17 even 6
637.2.a.l.1.1 5 21.11 odd 6
637.2.e.m.79.5 10 21.5 even 6
637.2.e.m.508.5 10 21.20 even 2
819.2.j.h.235.1 10 1.1 even 1 trivial
819.2.j.h.352.1 10 7.2 even 3 inner
1183.2.e.f.170.1 10 273.233 odd 6
1183.2.e.f.508.1 10 39.38 odd 2
1456.2.r.p.417.4 10 12.11 even 2
1456.2.r.p.625.4 10 84.23 even 6
5733.2.a.bl.1.5 5 7.4 even 3
5733.2.a.bm.1.5 5 7.3 odd 6
8281.2.a.bw.1.5 5 273.116 odd 6
8281.2.a.bx.1.5 5 273.38 even 6