Properties

Label 819.2.j.h.235.2
Level $819$
Weight $2$
Character 819.235
Analytic conductor $6.540$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(235,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 8x^{8} + 7x^{7} + 41x^{6} + 18x^{5} + 58x^{4} + 28x^{3} + 64x^{2} + 16x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.2
Root \(0.597828 + 1.03547i\) of defining polynomial
Character \(\chi\) \(=\) 819.235
Dual form 819.2.j.h.352.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0978281 - 0.169443i) q^{2} +(0.980859 - 1.69890i) q^{4} +(1.96625 + 3.40565i) q^{5} +(1.12324 + 2.39548i) q^{7} -0.775135 q^{8} +(0.384710 - 0.666337i) q^{10} +(2.25314 - 3.90255i) q^{11} +1.00000 q^{13} +(0.296013 - 0.424671i) q^{14} +(-1.88589 - 3.26645i) q^{16} +(-1.14070 + 1.97576i) q^{17} +(0.893841 + 1.54818i) q^{19} +7.71448 q^{20} -0.881681 q^{22} +(0.870106 + 1.50707i) q^{23} +(-5.23232 + 9.06264i) q^{25} +(-0.0978281 - 0.169443i) q^{26} +(5.17142 + 0.441354i) q^{28} -1.65110 q^{29} +(-2.80262 + 4.85427i) q^{31} +(-1.14412 + 1.98168i) q^{32} +0.446372 q^{34} +(-5.94959 + 8.53550i) q^{35} +(-3.57204 - 6.18695i) q^{37} +(0.174886 - 0.302911i) q^{38} +(-1.52411 - 2.63984i) q^{40} +8.11574 q^{41} +6.81353 q^{43} +(-4.42002 - 7.65570i) q^{44} +(0.170242 - 0.294867i) q^{46} +(1.77271 + 3.07043i) q^{47} +(-4.47665 + 5.38141i) q^{49} +2.04747 q^{50} +(0.980859 - 1.69890i) q^{52} +(1.64483 - 2.84892i) q^{53} +17.7210 q^{55} +(-0.870665 - 1.85682i) q^{56} +(0.161524 + 0.279768i) q^{58} +(2.25314 - 3.90255i) q^{59} +(-3.77234 - 6.53388i) q^{61} +1.09670 q^{62} -7.09585 q^{64} +(1.96625 + 3.40565i) q^{65} +(6.33263 - 10.9684i) q^{67} +(2.23774 + 3.87588i) q^{68} +(2.02832 + 0.173107i) q^{70} -9.54869 q^{71} +(-0.540019 + 0.935340i) q^{73} +(-0.698891 + 1.21052i) q^{74} +3.50693 q^{76} +(11.8793 + 1.01384i) q^{77} +(-0.395849 - 0.685630i) q^{79} +(7.41628 - 12.8454i) q^{80} +(-0.793947 - 1.37516i) q^{82} +7.14643 q^{83} -8.97166 q^{85} +(-0.666555 - 1.15451i) q^{86} +(-1.74649 + 3.02500i) q^{88} +(-5.63281 - 9.75631i) q^{89} +(1.12324 + 2.39548i) q^{91} +3.41381 q^{92} +(0.346843 - 0.600749i) q^{94} +(-3.51504 + 6.08823i) q^{95} -8.81353 q^{97} +(1.34979 + 0.232085i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} - 8 q^{4} + 2 q^{5} + q^{7} - 18 q^{8} + 5 q^{10} + 11 q^{11} + 10 q^{13} - 10 q^{14} - 10 q^{16} - 5 q^{17} - 9 q^{19} - 2 q^{20} + 16 q^{22} + 10 q^{23} - 9 q^{25} + 4 q^{26} + 37 q^{28}+ \cdots + 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0978281 0.169443i −0.0691749 0.119815i 0.829363 0.558710i \(-0.188703\pi\)
−0.898538 + 0.438895i \(0.855370\pi\)
\(3\) 0 0
\(4\) 0.980859 1.69890i 0.490430 0.849449i
\(5\) 1.96625 + 3.40565i 0.879336 + 1.52305i 0.852071 + 0.523426i \(0.175346\pi\)
0.0272650 + 0.999628i \(0.491320\pi\)
\(6\) 0 0
\(7\) 1.12324 + 2.39548i 0.424546 + 0.905406i
\(8\) −0.775135 −0.274052
\(9\) 0 0
\(10\) 0.384710 0.666337i 0.121656 0.210714i
\(11\) 2.25314 3.90255i 0.679346 1.17666i −0.295832 0.955240i \(-0.595597\pi\)
0.975178 0.221422i \(-0.0710699\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0.296013 0.424671i 0.0791129 0.113498i
\(15\) 0 0
\(16\) −1.88589 3.26645i −0.471472 0.816614i
\(17\) −1.14070 + 1.97576i −0.276661 + 0.479192i −0.970553 0.240888i \(-0.922561\pi\)
0.693891 + 0.720080i \(0.255895\pi\)
\(18\) 0 0
\(19\) 0.893841 + 1.54818i 0.205061 + 0.355177i 0.950152 0.311786i \(-0.100927\pi\)
−0.745091 + 0.666963i \(0.767594\pi\)
\(20\) 7.71448 1.72501
\(21\) 0 0
\(22\) −0.881681 −0.187975
\(23\) 0.870106 + 1.50707i 0.181430 + 0.314245i 0.942368 0.334579i \(-0.108594\pi\)
−0.760938 + 0.648825i \(0.775261\pi\)
\(24\) 0 0
\(25\) −5.23232 + 9.06264i −1.04646 + 1.81253i
\(26\) −0.0978281 0.169443i −0.0191857 0.0332306i
\(27\) 0 0
\(28\) 5.17142 + 0.441354i 0.977307 + 0.0834081i
\(29\) −1.65110 −0.306602 −0.153301 0.988180i \(-0.548990\pi\)
−0.153301 + 0.988180i \(0.548990\pi\)
\(30\) 0 0
\(31\) −2.80262 + 4.85427i −0.503365 + 0.871853i 0.496628 + 0.867964i \(0.334571\pi\)
−0.999992 + 0.00388953i \(0.998762\pi\)
\(32\) −1.14412 + 1.98168i −0.202254 + 0.350314i
\(33\) 0 0
\(34\) 0.446372 0.0765522
\(35\) −5.94959 + 8.53550i −1.00566 + 1.44276i
\(36\) 0 0
\(37\) −3.57204 6.18695i −0.587239 1.01713i −0.994592 0.103857i \(-0.966881\pi\)
0.407353 0.913271i \(-0.366452\pi\)
\(38\) 0.174886 0.302911i 0.0283702 0.0491386i
\(39\) 0 0
\(40\) −1.52411 2.63984i −0.240983 0.417396i
\(41\) 8.11574 1.26746 0.633732 0.773552i \(-0.281522\pi\)
0.633732 + 0.773552i \(0.281522\pi\)
\(42\) 0 0
\(43\) 6.81353 1.03905 0.519527 0.854454i \(-0.326108\pi\)
0.519527 + 0.854454i \(0.326108\pi\)
\(44\) −4.42002 7.65570i −0.666343 1.15414i
\(45\) 0 0
\(46\) 0.170242 0.294867i 0.0251008 0.0434758i
\(47\) 1.77271 + 3.07043i 0.258577 + 0.447868i 0.965861 0.259061i \(-0.0834131\pi\)
−0.707284 + 0.706929i \(0.750080\pi\)
\(48\) 0 0
\(49\) −4.47665 + 5.38141i −0.639522 + 0.768773i
\(50\) 2.04747 0.289556
\(51\) 0 0
\(52\) 0.980859 1.69890i 0.136021 0.235595i
\(53\) 1.64483 2.84892i 0.225934 0.391330i −0.730665 0.682736i \(-0.760790\pi\)
0.956599 + 0.291406i \(0.0941232\pi\)
\(54\) 0 0
\(55\) 17.7210 2.38949
\(56\) −0.870665 1.85682i −0.116347 0.248128i
\(57\) 0 0
\(58\) 0.161524 + 0.279768i 0.0212092 + 0.0367353i
\(59\) 2.25314 3.90255i 0.293333 0.508068i −0.681262 0.732039i \(-0.738569\pi\)
0.974596 + 0.223971i \(0.0719021\pi\)
\(60\) 0 0
\(61\) −3.77234 6.53388i −0.482998 0.836577i 0.516811 0.856099i \(-0.327119\pi\)
−0.999809 + 0.0195220i \(0.993786\pi\)
\(62\) 1.09670 0.139281
\(63\) 0 0
\(64\) −7.09585 −0.886981
\(65\) 1.96625 + 3.40565i 0.243884 + 0.422419i
\(66\) 0 0
\(67\) 6.33263 10.9684i 0.773653 1.34001i −0.161895 0.986808i \(-0.551761\pi\)
0.935548 0.353199i \(-0.114906\pi\)
\(68\) 2.23774 + 3.87588i 0.271366 + 0.470020i
\(69\) 0 0
\(70\) 2.02832 + 0.173107i 0.242431 + 0.0206902i
\(71\) −9.54869 −1.13322 −0.566610 0.823986i \(-0.691746\pi\)
−0.566610 + 0.823986i \(0.691746\pi\)
\(72\) 0 0
\(73\) −0.540019 + 0.935340i −0.0632044 + 0.109473i −0.895896 0.444264i \(-0.853465\pi\)
0.832692 + 0.553737i \(0.186799\pi\)
\(74\) −0.698891 + 1.21052i −0.0812445 + 0.140720i
\(75\) 0 0
\(76\) 3.50693 0.402273
\(77\) 11.8793 + 1.01384i 1.35377 + 0.115537i
\(78\) 0 0
\(79\) −0.395849 0.685630i −0.0445365 0.0771394i 0.842898 0.538074i \(-0.180848\pi\)
−0.887434 + 0.460934i \(0.847514\pi\)
\(80\) 7.41628 12.8454i 0.829165 1.43616i
\(81\) 0 0
\(82\) −0.793947 1.37516i −0.0876768 0.151861i
\(83\) 7.14643 0.784422 0.392211 0.919875i \(-0.371710\pi\)
0.392211 + 0.919875i \(0.371710\pi\)
\(84\) 0 0
\(85\) −8.97166 −0.973114
\(86\) −0.666555 1.15451i −0.0718765 0.124494i
\(87\) 0 0
\(88\) −1.74649 + 3.02500i −0.186176 + 0.322466i
\(89\) −5.63281 9.75631i −0.597077 1.03417i −0.993250 0.115992i \(-0.962995\pi\)
0.396174 0.918176i \(-0.370338\pi\)
\(90\) 0 0
\(91\) 1.12324 + 2.39548i 0.117748 + 0.251115i
\(92\) 3.41381 0.355914
\(93\) 0 0
\(94\) 0.346843 0.600749i 0.0357741 0.0619625i
\(95\) −3.51504 + 6.08823i −0.360636 + 0.624639i
\(96\) 0 0
\(97\) −8.81353 −0.894879 −0.447439 0.894314i \(-0.647664\pi\)
−0.447439 + 0.894314i \(0.647664\pi\)
\(98\) 1.34979 + 0.232085i 0.136349 + 0.0234441i
\(99\) 0 0
\(100\) 10.2643 + 17.7783i 1.02643 + 1.77783i
\(101\) −7.15855 + 12.3990i −0.712303 + 1.23374i 0.251688 + 0.967808i \(0.419014\pi\)
−0.963991 + 0.265936i \(0.914319\pi\)
\(102\) 0 0
\(103\) 3.74607 + 6.48839i 0.369111 + 0.639320i 0.989427 0.145033i \(-0.0463287\pi\)
−0.620315 + 0.784352i \(0.712995\pi\)
\(104\) −0.775135 −0.0760082
\(105\) 0 0
\(106\) −0.643641 −0.0625160
\(107\) 5.48919 + 9.50756i 0.530660 + 0.919130i 0.999360 + 0.0357726i \(0.0113892\pi\)
−0.468700 + 0.883357i \(0.655277\pi\)
\(108\) 0 0
\(109\) 6.22314 10.7788i 0.596068 1.03242i −0.397327 0.917677i \(-0.630062\pi\)
0.993395 0.114744i \(-0.0366046\pi\)
\(110\) −1.73361 3.00270i −0.165293 0.286296i
\(111\) 0 0
\(112\) 5.70642 8.18663i 0.539206 0.773564i
\(113\) 1.65110 0.155323 0.0776613 0.996980i \(-0.475255\pi\)
0.0776613 + 0.996980i \(0.475255\pi\)
\(114\) 0 0
\(115\) −3.42170 + 5.92656i −0.319075 + 0.552654i
\(116\) −1.61950 + 2.80505i −0.150367 + 0.260443i
\(117\) 0 0
\(118\) −0.881681 −0.0811653
\(119\) −6.01418 0.513279i −0.551319 0.0470522i
\(120\) 0 0
\(121\) −4.65325 8.05967i −0.423023 0.732697i
\(122\) −0.738081 + 1.27839i −0.0668227 + 0.115740i
\(123\) 0 0
\(124\) 5.49794 + 9.52272i 0.493730 + 0.855165i
\(125\) −21.4897 −1.92210
\(126\) 0 0
\(127\) −4.49297 −0.398687 −0.199343 0.979930i \(-0.563881\pi\)
−0.199343 + 0.979930i \(0.563881\pi\)
\(128\) 2.98242 + 5.16569i 0.263611 + 0.456587i
\(129\) 0 0
\(130\) 0.384710 0.666337i 0.0337413 0.0584417i
\(131\) −6.32836 10.9610i −0.552911 0.957670i −0.998063 0.0622152i \(-0.980184\pi\)
0.445151 0.895455i \(-0.353150\pi\)
\(132\) 0 0
\(133\) −2.70463 + 3.88016i −0.234521 + 0.336453i
\(134\) −2.47804 −0.214070
\(135\) 0 0
\(136\) 0.884200 1.53148i 0.0758195 0.131323i
\(137\) −4.64321 + 8.04227i −0.396696 + 0.687097i −0.993316 0.115426i \(-0.963177\pi\)
0.596620 + 0.802524i \(0.296510\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 8.66523 + 18.4799i 0.732346 + 1.56183i
\(141\) 0 0
\(142\) 0.934130 + 1.61796i 0.0783905 + 0.135776i
\(143\) 2.25314 3.90255i 0.188417 0.326347i
\(144\) 0 0
\(145\) −3.24649 5.62308i −0.269606 0.466971i
\(146\) 0.211316 0.0174887
\(147\) 0 0
\(148\) −14.0147 −1.15200
\(149\) −7.58243 13.1332i −0.621177 1.07591i −0.989267 0.146120i \(-0.953321\pi\)
0.368090 0.929790i \(-0.380012\pi\)
\(150\) 0 0
\(151\) −2.57079 + 4.45274i −0.209208 + 0.362359i −0.951465 0.307756i \(-0.900422\pi\)
0.742257 + 0.670115i \(0.233755\pi\)
\(152\) −0.692848 1.20005i −0.0561974 0.0973367i
\(153\) 0 0
\(154\) −0.990341 2.11205i −0.0798040 0.170194i
\(155\) −22.0426 −1.77051
\(156\) 0 0
\(157\) 5.36557 9.29344i 0.428219 0.741697i −0.568496 0.822686i \(-0.692474\pi\)
0.996715 + 0.0809889i \(0.0258078\pi\)
\(158\) −0.0774503 + 0.134148i −0.00616162 + 0.0106722i
\(159\) 0 0
\(160\) −8.99853 −0.711397
\(161\) −2.63281 + 3.77712i −0.207495 + 0.297679i
\(162\) 0 0
\(163\) −1.18620 2.05455i −0.0929101 0.160925i 0.815824 0.578300i \(-0.196284\pi\)
−0.908734 + 0.417375i \(0.862950\pi\)
\(164\) 7.96039 13.7878i 0.621602 1.07665i
\(165\) 0 0
\(166\) −0.699122 1.21091i −0.0542624 0.0939852i
\(167\) −12.0784 −0.934653 −0.467327 0.884085i \(-0.654783\pi\)
−0.467327 + 0.884085i \(0.654783\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0.877681 + 1.52019i 0.0673151 + 0.116593i
\(171\) 0 0
\(172\) 6.68312 11.5755i 0.509583 0.882624i
\(173\) −9.70485 16.8093i −0.737846 1.27799i −0.953463 0.301509i \(-0.902510\pi\)
0.215618 0.976478i \(-0.430824\pi\)
\(174\) 0 0
\(175\) −27.5865 2.35437i −2.08535 0.177974i
\(176\) −16.9967 −1.28117
\(177\) 0 0
\(178\) −1.10209 + 1.90888i −0.0826055 + 0.143077i
\(179\) 7.32219 12.6824i 0.547286 0.947928i −0.451173 0.892437i \(-0.648994\pi\)
0.998459 0.0554912i \(-0.0176725\pi\)
\(180\) 0 0
\(181\) −9.44627 −0.702136 −0.351068 0.936350i \(-0.614181\pi\)
−0.351068 + 0.936350i \(0.614181\pi\)
\(182\) 0.296013 0.424671i 0.0219420 0.0314787i
\(183\) 0 0
\(184\) −0.674450 1.16818i −0.0497211 0.0861194i
\(185\) 14.0471 24.3302i 1.03276 1.78879i
\(186\) 0 0
\(187\) 5.14033 + 8.90331i 0.375898 + 0.651074i
\(188\) 6.95513 0.507255
\(189\) 0 0
\(190\) 1.37548 0.0997878
\(191\) 6.27687 + 10.8719i 0.454179 + 0.786660i 0.998641 0.0521252i \(-0.0165995\pi\)
−0.544462 + 0.838786i \(0.683266\pi\)
\(192\) 0 0
\(193\) 4.68430 8.11344i 0.337183 0.584018i −0.646719 0.762729i \(-0.723859\pi\)
0.983902 + 0.178710i \(0.0571925\pi\)
\(194\) 0.862212 + 1.49339i 0.0619032 + 0.107219i
\(195\) 0 0
\(196\) 4.75151 + 12.8838i 0.339393 + 0.920270i
\(197\) 7.62276 0.543099 0.271550 0.962424i \(-0.412464\pi\)
0.271550 + 0.962424i \(0.412464\pi\)
\(198\) 0 0
\(199\) −6.76443 + 11.7163i −0.479518 + 0.830549i −0.999724 0.0234914i \(-0.992522\pi\)
0.520206 + 0.854041i \(0.325855\pi\)
\(200\) 4.05575 7.02477i 0.286785 0.496726i
\(201\) 0 0
\(202\) 2.80123 0.197094
\(203\) −1.85459 3.95518i −0.130167 0.277599i
\(204\) 0 0
\(205\) 15.9576 + 27.6394i 1.11453 + 1.93042i
\(206\) 0.732942 1.26949i 0.0510665 0.0884498i
\(207\) 0 0
\(208\) −1.88589 3.26645i −0.130763 0.226488i
\(209\) 8.05579 0.557231
\(210\) 0 0
\(211\) −15.7995 −1.08768 −0.543840 0.839189i \(-0.683030\pi\)
−0.543840 + 0.839189i \(0.683030\pi\)
\(212\) −3.22669 5.58879i −0.221610 0.383839i
\(213\) 0 0
\(214\) 1.07399 1.86021i 0.0734167 0.127162i
\(215\) 13.3971 + 23.2045i 0.913678 + 1.58254i
\(216\) 0 0
\(217\) −14.7763 1.26108i −1.00308 0.0856080i
\(218\) −2.43519 −0.164932
\(219\) 0 0
\(220\) 17.3818 30.1061i 1.17188 2.02975i
\(221\) −1.14070 + 1.97576i −0.0767321 + 0.132904i
\(222\) 0 0
\(223\) 22.4737 1.50495 0.752474 0.658622i \(-0.228861\pi\)
0.752474 + 0.658622i \(0.228861\pi\)
\(224\) −6.03219 0.514816i −0.403043 0.0343976i
\(225\) 0 0
\(226\) −0.161524 0.279768i −0.0107444 0.0186099i
\(227\) −4.60124 + 7.96959i −0.305395 + 0.528960i −0.977349 0.211633i \(-0.932122\pi\)
0.671954 + 0.740593i \(0.265455\pi\)
\(228\) 0 0
\(229\) −7.64611 13.2435i −0.505269 0.875152i −0.999981 0.00609528i \(-0.998060\pi\)
0.494712 0.869057i \(-0.335274\pi\)
\(230\) 1.33895 0.0882880
\(231\) 0 0
\(232\) 1.27983 0.0840247
\(233\) −4.02789 6.97652i −0.263876 0.457047i 0.703392 0.710802i \(-0.251668\pi\)
−0.967269 + 0.253755i \(0.918334\pi\)
\(234\) 0 0
\(235\) −6.97121 + 12.0745i −0.454752 + 0.787653i
\(236\) −4.42002 7.65570i −0.287719 0.498344i
\(237\) 0 0
\(238\) 0.501384 + 1.06928i 0.0324999 + 0.0693108i
\(239\) −21.7258 −1.40533 −0.702663 0.711523i \(-0.748006\pi\)
−0.702663 + 0.711523i \(0.748006\pi\)
\(240\) 0 0
\(241\) 10.2490 17.7518i 0.660195 1.14349i −0.320369 0.947293i \(-0.603807\pi\)
0.980564 0.196199i \(-0.0628598\pi\)
\(242\) −0.910438 + 1.57692i −0.0585252 + 0.101369i
\(243\) 0 0
\(244\) −14.8005 −0.947507
\(245\) −27.1295 4.66470i −1.73324 0.298017i
\(246\) 0 0
\(247\) 0.893841 + 1.54818i 0.0568738 + 0.0985083i
\(248\) 2.17241 3.76272i 0.137948 0.238933i
\(249\) 0 0
\(250\) 2.10230 + 3.64129i 0.132961 + 0.230295i
\(251\) −2.60871 −0.164660 −0.0823301 0.996605i \(-0.526236\pi\)
−0.0823301 + 0.996605i \(0.526236\pi\)
\(252\) 0 0
\(253\) 7.84187 0.493014
\(254\) 0.439539 + 0.761304i 0.0275791 + 0.0477685i
\(255\) 0 0
\(256\) −6.51232 + 11.2797i −0.407020 + 0.704979i
\(257\) −4.49838 7.79142i −0.280601 0.486016i 0.690932 0.722920i \(-0.257201\pi\)
−0.971533 + 0.236904i \(0.923867\pi\)
\(258\) 0 0
\(259\) 10.8084 15.5062i 0.671604 0.963508i
\(260\) 7.71448 0.478432
\(261\) 0 0
\(262\) −1.23818 + 2.14460i −0.0764952 + 0.132494i
\(263\) 0.716961 1.24181i 0.0442097 0.0765735i −0.843074 0.537798i \(-0.819256\pi\)
0.887284 + 0.461224i \(0.152590\pi\)
\(264\) 0 0
\(265\) 12.9366 0.794689
\(266\) 0.922056 + 0.0786927i 0.0565349 + 0.00482496i
\(267\) 0 0
\(268\) −12.4228 21.5170i −0.758845 1.31436i
\(269\) −4.08416 + 7.07397i −0.249016 + 0.431308i −0.963253 0.268596i \(-0.913440\pi\)
0.714237 + 0.699904i \(0.246774\pi\)
\(270\) 0 0
\(271\) 0.106159 + 0.183872i 0.00644867 + 0.0111694i 0.869232 0.494405i \(-0.164614\pi\)
−0.862783 + 0.505574i \(0.831281\pi\)
\(272\) 8.60497 0.521753
\(273\) 0 0
\(274\) 1.81695 0.109766
\(275\) 23.5783 + 40.8387i 1.42182 + 2.46267i
\(276\) 0 0
\(277\) −11.4875 + 19.8969i −0.690215 + 1.19549i 0.281552 + 0.959546i \(0.409151\pi\)
−0.971767 + 0.235942i \(0.924182\pi\)
\(278\) 0.391313 + 0.677773i 0.0234694 + 0.0406501i
\(279\) 0 0
\(280\) 4.61174 6.61617i 0.275604 0.395392i
\(281\) 0.345228 0.0205946 0.0102973 0.999947i \(-0.496722\pi\)
0.0102973 + 0.999947i \(0.496722\pi\)
\(282\) 0 0
\(283\) 14.4857 25.0900i 0.861087 1.49145i −0.00979277 0.999952i \(-0.503117\pi\)
0.870880 0.491495i \(-0.163549\pi\)
\(284\) −9.36592 + 16.2222i −0.555765 + 0.962613i
\(285\) 0 0
\(286\) −0.881681 −0.0521349
\(287\) 9.11594 + 19.4411i 0.538097 + 1.14757i
\(288\) 0 0
\(289\) 5.89759 + 10.2149i 0.346917 + 0.600878i
\(290\) −0.635195 + 1.10019i −0.0372999 + 0.0646054i
\(291\) 0 0
\(292\) 1.05937 + 1.83487i 0.0619947 + 0.107378i
\(293\) −31.5427 −1.84274 −0.921372 0.388682i \(-0.872930\pi\)
−0.921372 + 0.388682i \(0.872930\pi\)
\(294\) 0 0
\(295\) 17.7210 1.03175
\(296\) 2.76881 + 4.79572i 0.160934 + 0.278746i
\(297\) 0 0
\(298\) −1.48355 + 2.56958i −0.0859398 + 0.148852i
\(299\) 0.870106 + 1.50707i 0.0503195 + 0.0871560i
\(300\) 0 0
\(301\) 7.65325 + 16.3217i 0.441126 + 0.940766i
\(302\) 1.00598 0.0578879
\(303\) 0 0
\(304\) 3.37137 5.83939i 0.193361 0.334912i
\(305\) 14.8348 25.6945i 0.849435 1.47127i
\(306\) 0 0
\(307\) −18.1941 −1.03839 −0.519197 0.854655i \(-0.673769\pi\)
−0.519197 + 0.854655i \(0.673769\pi\)
\(308\) 13.3743 19.1873i 0.762073 1.09330i
\(309\) 0 0
\(310\) 2.15639 + 3.73498i 0.122475 + 0.212132i
\(311\) −0.188312 + 0.326165i −0.0106782 + 0.0184951i −0.871315 0.490724i \(-0.836732\pi\)
0.860637 + 0.509219i \(0.170066\pi\)
\(312\) 0 0
\(313\) −5.49415 9.51615i −0.310548 0.537884i 0.667933 0.744221i \(-0.267179\pi\)
−0.978481 + 0.206337i \(0.933846\pi\)
\(314\) −2.09961 −0.118488
\(315\) 0 0
\(316\) −1.55309 −0.0873680
\(317\) 13.0903 + 22.6731i 0.735225 + 1.27345i 0.954625 + 0.297812i \(0.0962568\pi\)
−0.219400 + 0.975635i \(0.570410\pi\)
\(318\) 0 0
\(319\) −3.72016 + 6.44350i −0.208289 + 0.360767i
\(320\) −13.9522 24.1660i −0.779954 1.35092i
\(321\) 0 0
\(322\) 0.897571 + 0.0766031i 0.0500197 + 0.00426892i
\(323\) −4.07844 −0.226930
\(324\) 0 0
\(325\) −5.23232 + 9.06264i −0.290237 + 0.502705i
\(326\) −0.232087 + 0.401986i −0.0128541 + 0.0222639i
\(327\) 0 0
\(328\) −6.29079 −0.347351
\(329\) −5.36397 + 7.69534i −0.295725 + 0.424258i
\(330\) 0 0
\(331\) 17.0466 + 29.5256i 0.936967 + 1.62287i 0.771089 + 0.636728i \(0.219712\pi\)
0.165878 + 0.986146i \(0.446954\pi\)
\(332\) 7.00964 12.1411i 0.384704 0.666327i
\(333\) 0 0
\(334\) 1.18161 + 2.04660i 0.0646546 + 0.111985i
\(335\) 49.8062 2.72120
\(336\) 0 0
\(337\) 14.7532 0.803657 0.401829 0.915715i \(-0.368375\pi\)
0.401829 + 0.915715i \(0.368375\pi\)
\(338\) −0.0978281 0.169443i −0.00532115 0.00921650i
\(339\) 0 0
\(340\) −8.79994 + 15.2419i −0.477244 + 0.826610i
\(341\) 12.6294 + 21.8747i 0.683918 + 1.18458i
\(342\) 0 0
\(343\) −17.9194 4.67910i −0.967558 0.252648i
\(344\) −5.28141 −0.284754
\(345\) 0 0
\(346\) −1.89881 + 3.28884i −0.102081 + 0.176809i
\(347\) 14.9733 25.9345i 0.803809 1.39224i −0.113284 0.993563i \(-0.536137\pi\)
0.917092 0.398675i \(-0.130530\pi\)
\(348\) 0 0
\(349\) −13.4793 −0.721532 −0.360766 0.932656i \(-0.617485\pi\)
−0.360766 + 0.932656i \(0.617485\pi\)
\(350\) 2.29981 + 4.90468i 0.122930 + 0.262166i
\(351\) 0 0
\(352\) 5.15572 + 8.92997i 0.274801 + 0.475969i
\(353\) 0.0817659 0.141623i 0.00435196 0.00753781i −0.863841 0.503764i \(-0.831948\pi\)
0.868193 + 0.496226i \(0.165281\pi\)
\(354\) 0 0
\(355\) −18.7752 32.5195i −0.996482 1.72596i
\(356\) −22.1000 −1.17130
\(357\) 0 0
\(358\) −2.86527 −0.151434
\(359\) 4.46065 + 7.72607i 0.235424 + 0.407766i 0.959396 0.282063i \(-0.0910188\pi\)
−0.723972 + 0.689830i \(0.757685\pi\)
\(360\) 0 0
\(361\) 7.90209 13.6868i 0.415900 0.720359i
\(362\) 0.924111 + 1.60061i 0.0485702 + 0.0841261i
\(363\) 0 0
\(364\) 5.17142 + 0.441354i 0.271056 + 0.0231332i
\(365\) −4.24726 −0.222312
\(366\) 0 0
\(367\) −18.3276 + 31.7443i −0.956693 + 1.65704i −0.226248 + 0.974070i \(0.572646\pi\)
−0.730445 + 0.682971i \(0.760687\pi\)
\(368\) 3.28185 5.68432i 0.171078 0.296316i
\(369\) 0 0
\(370\) −5.49679 −0.285765
\(371\) 8.67208 + 0.740117i 0.450232 + 0.0384250i
\(372\) 0 0
\(373\) −13.5637 23.4930i −0.702302 1.21642i −0.967656 0.252271i \(-0.918822\pi\)
0.265355 0.964151i \(-0.414511\pi\)
\(374\) 1.00574 1.74199i 0.0520054 0.0900761i
\(375\) 0 0
\(376\) −1.37409 2.38000i −0.0708634 0.122739i
\(377\) −1.65110 −0.0850360
\(378\) 0 0
\(379\) −15.8943 −0.816434 −0.408217 0.912885i \(-0.633849\pi\)
−0.408217 + 0.912885i \(0.633849\pi\)
\(380\) 6.89552 + 11.9434i 0.353733 + 0.612683i
\(381\) 0 0
\(382\) 1.22811 2.12715i 0.0628355 0.108834i
\(383\) 0.575394 + 0.996611i 0.0294013 + 0.0509245i 0.880352 0.474322i \(-0.157307\pi\)
−0.850950 + 0.525246i \(0.823973\pi\)
\(384\) 0 0
\(385\) 19.9049 + 42.4502i 1.01445 + 2.16346i
\(386\) −1.83302 −0.0932985
\(387\) 0 0
\(388\) −8.64484 + 14.9733i −0.438875 + 0.760154i
\(389\) −7.15651 + 12.3954i −0.362850 + 0.628474i −0.988429 0.151687i \(-0.951529\pi\)
0.625579 + 0.780161i \(0.284863\pi\)
\(390\) 0 0
\(391\) −3.97013 −0.200778
\(392\) 3.47001 4.17132i 0.175262 0.210684i
\(393\) 0 0
\(394\) −0.745721 1.29163i −0.0375689 0.0650712i
\(395\) 1.55668 2.69625i 0.0783251 0.135663i
\(396\) 0 0
\(397\) 12.9588 + 22.4453i 0.650383 + 1.12650i 0.983030 + 0.183445i \(0.0587248\pi\)
−0.332647 + 0.943051i \(0.607942\pi\)
\(398\) 2.64701 0.132682
\(399\) 0 0
\(400\) 39.4703 1.97351
\(401\) −2.14816 3.72072i −0.107274 0.185804i 0.807391 0.590017i \(-0.200879\pi\)
−0.914665 + 0.404213i \(0.867545\pi\)
\(402\) 0 0
\(403\) −2.80262 + 4.85427i −0.139608 + 0.241809i
\(404\) 14.0431 + 24.3233i 0.698669 + 1.21013i
\(405\) 0 0
\(406\) −0.488748 + 0.701175i −0.0242562 + 0.0347987i
\(407\) −32.1931 −1.59575
\(408\) 0 0
\(409\) 12.3536 21.3970i 0.610844 1.05801i −0.380255 0.924882i \(-0.624164\pi\)
0.991098 0.133131i \(-0.0425030\pi\)
\(410\) 3.12221 5.40782i 0.154195 0.267073i
\(411\) 0 0
\(412\) 14.6975 0.724093
\(413\) 11.8793 + 1.01384i 0.584542 + 0.0498876i
\(414\) 0 0
\(415\) 14.0517 + 24.3383i 0.689771 + 1.19472i
\(416\) −1.14412 + 1.98168i −0.0560951 + 0.0971596i
\(417\) 0 0
\(418\) −0.788083 1.36500i −0.0385464 0.0667643i
\(419\) 24.9293 1.21787 0.608937 0.793218i \(-0.291596\pi\)
0.608937 + 0.793218i \(0.291596\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 1.54563 + 2.67712i 0.0752402 + 0.130320i
\(423\) 0 0
\(424\) −1.27496 + 2.20830i −0.0619177 + 0.107245i
\(425\) −11.9371 20.6756i −0.579032 1.00291i
\(426\) 0 0
\(427\) 11.4145 16.3757i 0.552388 0.792475i
\(428\) 21.5365 1.04101
\(429\) 0 0
\(430\) 2.62124 4.54011i 0.126407 0.218944i
\(431\) −2.84426 + 4.92639i −0.137003 + 0.237296i −0.926361 0.376637i \(-0.877080\pi\)
0.789358 + 0.613933i \(0.210414\pi\)
\(432\) 0 0
\(433\) 12.2598 0.589169 0.294584 0.955625i \(-0.404819\pi\)
0.294584 + 0.955625i \(0.404819\pi\)
\(434\) 1.23186 + 2.62712i 0.0591311 + 0.126106i
\(435\) 0 0
\(436\) −12.2080 21.1450i −0.584659 1.01266i
\(437\) −1.55547 + 2.69416i −0.0744084 + 0.128879i
\(438\) 0 0
\(439\) −2.51158 4.35019i −0.119871 0.207623i 0.799845 0.600206i \(-0.204915\pi\)
−0.919717 + 0.392583i \(0.871582\pi\)
\(440\) −13.7361 −0.654845
\(441\) 0 0
\(442\) 0.446372 0.0212317
\(443\) 0.289401 + 0.501258i 0.0137499 + 0.0238155i 0.872818 0.488045i \(-0.162290\pi\)
−0.859069 + 0.511860i \(0.828956\pi\)
\(444\) 0 0
\(445\) 22.1511 38.3668i 1.05006 1.81876i
\(446\) −2.19856 3.80801i −0.104105 0.180315i
\(447\) 0 0
\(448\) −7.97036 16.9980i −0.376564 0.803078i
\(449\) 7.36359 0.347509 0.173755 0.984789i \(-0.444410\pi\)
0.173755 + 0.984789i \(0.444410\pi\)
\(450\) 0 0
\(451\) 18.2859 31.6720i 0.861048 1.49138i
\(452\) 1.61950 2.80505i 0.0761748 0.131939i
\(453\) 0 0
\(454\) 1.80052 0.0845028
\(455\) −5.94959 + 8.53550i −0.278921 + 0.400150i
\(456\) 0 0
\(457\) −3.95912 6.85739i −0.185200 0.320775i 0.758444 0.651738i \(-0.225960\pi\)
−0.943644 + 0.330963i \(0.892627\pi\)
\(458\) −1.49601 + 2.59117i −0.0699040 + 0.121077i
\(459\) 0 0
\(460\) 6.71241 + 11.6262i 0.312968 + 0.542076i
\(461\) 9.53600 0.444136 0.222068 0.975031i \(-0.428719\pi\)
0.222068 + 0.975031i \(0.428719\pi\)
\(462\) 0 0
\(463\) 2.16049 0.100406 0.0502032 0.998739i \(-0.484013\pi\)
0.0502032 + 0.998739i \(0.484013\pi\)
\(464\) 3.11379 + 5.39325i 0.144554 + 0.250375i
\(465\) 0 0
\(466\) −0.788083 + 1.36500i −0.0365072 + 0.0632324i
\(467\) −4.05950 7.03126i −0.187851 0.325368i 0.756682 0.653783i \(-0.226819\pi\)
−0.944534 + 0.328415i \(0.893486\pi\)
\(468\) 0 0
\(469\) 33.3877 + 2.84947i 1.54170 + 0.131576i
\(470\) 2.72792 0.125830
\(471\) 0 0
\(472\) −1.74649 + 3.02500i −0.0803885 + 0.139237i
\(473\) 15.3518 26.5901i 0.705878 1.22262i
\(474\) 0 0
\(475\) −18.7074 −0.858357
\(476\) −6.77107 + 9.71402i −0.310352 + 0.445241i
\(477\) 0 0
\(478\) 2.12540 + 3.68129i 0.0972133 + 0.168378i
\(479\) 7.27663 12.6035i 0.332478 0.575868i −0.650519 0.759490i \(-0.725449\pi\)
0.982997 + 0.183621i \(0.0587820\pi\)
\(480\) 0 0
\(481\) −3.57204 6.18695i −0.162871 0.282101i
\(482\) −4.01056 −0.182676
\(483\) 0 0
\(484\) −18.2567 −0.829852
\(485\) −17.3297 30.0158i −0.786899 1.36295i
\(486\) 0 0
\(487\) 16.6295 28.8031i 0.753554 1.30519i −0.192536 0.981290i \(-0.561671\pi\)
0.946090 0.323904i \(-0.104995\pi\)
\(488\) 2.92407 + 5.06464i 0.132366 + 0.229265i
\(489\) 0 0
\(490\) 1.86362 + 5.05324i 0.0841899 + 0.228282i
\(491\) 22.5563 1.01795 0.508977 0.860780i \(-0.330024\pi\)
0.508977 + 0.860780i \(0.330024\pi\)
\(492\) 0 0
\(493\) 1.88342 3.26218i 0.0848249 0.146921i
\(494\) 0.174886 0.302911i 0.00786848 0.0136286i
\(495\) 0 0
\(496\) 21.1417 0.949290
\(497\) −10.7255 22.8737i −0.481104 1.02603i
\(498\) 0 0
\(499\) 5.69271 + 9.86007i 0.254841 + 0.441397i 0.964852 0.262793i \(-0.0846436\pi\)
−0.710011 + 0.704190i \(0.751310\pi\)
\(500\) −21.0784 + 36.5089i −0.942655 + 1.63273i
\(501\) 0 0
\(502\) 0.255205 + 0.442028i 0.0113904 + 0.0197287i
\(503\) 8.81825 0.393186 0.196593 0.980485i \(-0.437012\pi\)
0.196593 + 0.980485i \(0.437012\pi\)
\(504\) 0 0
\(505\) −56.3022 −2.50541
\(506\) −0.767156 1.32875i −0.0341042 0.0590702i
\(507\) 0 0
\(508\) −4.40697 + 7.63310i −0.195528 + 0.338664i
\(509\) 9.64188 + 16.7002i 0.427369 + 0.740225i 0.996638 0.0819263i \(-0.0261072\pi\)
−0.569269 + 0.822151i \(0.692774\pi\)
\(510\) 0 0
\(511\) −2.84716 0.242991i −0.125951 0.0107493i
\(512\) 14.4780 0.639844
\(513\) 0 0
\(514\) −0.880136 + 1.52444i −0.0388211 + 0.0672402i
\(515\) −14.7315 + 25.5156i −0.649146 + 1.12435i
\(516\) 0 0
\(517\) 15.9767 0.702653
\(518\) −3.68479 0.314478i −0.161900 0.0138174i
\(519\) 0 0
\(520\) −1.52411 2.63984i −0.0668368 0.115765i
\(521\) 12.5584 21.7518i 0.550193 0.952963i −0.448067 0.894000i \(-0.647887\pi\)
0.998260 0.0589629i \(-0.0187794\pi\)
\(522\) 0 0
\(523\) 14.9824 + 25.9503i 0.655134 + 1.13473i 0.981860 + 0.189606i \(0.0607212\pi\)
−0.326726 + 0.945119i \(0.605946\pi\)
\(524\) −24.8289 −1.08466
\(525\) 0 0
\(526\) −0.280556 −0.0122328
\(527\) −6.39391 11.0746i −0.278523 0.482416i
\(528\) 0 0
\(529\) 9.98583 17.2960i 0.434167 0.751999i
\(530\) −1.26556 2.19202i −0.0549726 0.0952153i
\(531\) 0 0
\(532\) 3.93913 + 8.40078i 0.170783 + 0.364220i
\(533\) 8.11574 0.351532
\(534\) 0 0
\(535\) −21.5863 + 37.3886i −0.933257 + 1.61645i
\(536\) −4.90864 + 8.50201i −0.212021 + 0.367231i
\(537\) 0 0
\(538\) 1.59818 0.0689026
\(539\) 10.9147 + 29.5954i 0.470130 + 1.27476i
\(540\) 0 0
\(541\) −2.54987 4.41650i −0.109627 0.189880i 0.805992 0.591926i \(-0.201632\pi\)
−0.915619 + 0.402046i \(0.868299\pi\)
\(542\) 0.0207706 0.0359757i 0.000892173 0.00154529i
\(543\) 0 0
\(544\) −2.61021 4.52101i −0.111912 0.193837i
\(545\) 48.9451 2.09658
\(546\) 0 0
\(547\) 2.92025 0.124861 0.0624305 0.998049i \(-0.480115\pi\)
0.0624305 + 0.998049i \(0.480115\pi\)
\(548\) 9.10867 + 15.7767i 0.389103 + 0.673946i
\(549\) 0 0
\(550\) 4.61323 7.99035i 0.196709 0.340710i
\(551\) −1.47582 2.55620i −0.0628722 0.108898i
\(552\) 0 0
\(553\) 1.19778 1.71838i 0.0509348 0.0730728i
\(554\) 4.49519 0.190982
\(555\) 0 0
\(556\) −3.92344 + 6.79559i −0.166391 + 0.288197i
\(557\) 12.9937 22.5058i 0.550561 0.953600i −0.447673 0.894197i \(-0.647747\pi\)
0.998234 0.0594024i \(-0.0189195\pi\)
\(558\) 0 0
\(559\) 6.81353 0.288182
\(560\) 39.1011 + 3.33708i 1.65232 + 0.141017i
\(561\) 0 0
\(562\) −0.0337730 0.0584965i −0.00142463 0.00246753i
\(563\) 1.82534 3.16159i 0.0769291 0.133245i −0.824994 0.565141i \(-0.808822\pi\)
0.901924 + 0.431896i \(0.142155\pi\)
\(564\) 0 0
\(565\) 3.24649 + 5.62308i 0.136581 + 0.236565i
\(566\) −5.66845 −0.238263
\(567\) 0 0
\(568\) 7.40152 0.310561
\(569\) −12.6766 21.9566i −0.531432 0.920468i −0.999327 0.0366835i \(-0.988321\pi\)
0.467895 0.883784i \(-0.345013\pi\)
\(570\) 0 0
\(571\) −13.8626 + 24.0108i −0.580133 + 1.00482i 0.415330 + 0.909671i \(0.363666\pi\)
−0.995463 + 0.0951493i \(0.969667\pi\)
\(572\) −4.42002 7.65570i −0.184810 0.320101i
\(573\) 0 0
\(574\) 2.40237 3.44652i 0.100273 0.143855i
\(575\) −18.2107 −0.759438
\(576\) 0 0
\(577\) −19.7877 + 34.2733i −0.823773 + 1.42682i 0.0790809 + 0.996868i \(0.474801\pi\)
−0.902854 + 0.429948i \(0.858532\pi\)
\(578\) 1.15390 1.99861i 0.0479959 0.0831313i
\(579\) 0 0
\(580\) −12.7374 −0.528891
\(581\) 8.02717 + 17.1191i 0.333023 + 0.710221i
\(582\) 0 0
\(583\) −7.41204 12.8380i −0.306975 0.531697i
\(584\) 0.418588 0.725015i 0.0173213 0.0300013i
\(585\) 0 0
\(586\) 3.08576 + 5.34470i 0.127472 + 0.220787i
\(587\) 8.24177 0.340174 0.170087 0.985429i \(-0.445595\pi\)
0.170087 + 0.985429i \(0.445595\pi\)
\(588\) 0 0
\(589\) −10.0204 −0.412882
\(590\) −1.73361 3.00270i −0.0713716 0.123619i
\(591\) 0 0
\(592\) −13.4729 + 23.3358i −0.553734 + 0.959095i
\(593\) −5.96149 10.3256i −0.244809 0.424021i 0.717269 0.696796i \(-0.245392\pi\)
−0.962078 + 0.272775i \(0.912059\pi\)
\(594\) 0 0
\(595\) −10.0774 21.4914i −0.413131 0.881063i
\(596\) −29.7492 −1.21857
\(597\) 0 0
\(598\) 0.170242 0.294867i 0.00696170 0.0120580i
\(599\) −17.8079 + 30.8442i −0.727611 + 1.26026i 0.230279 + 0.973125i \(0.426036\pi\)
−0.957890 + 0.287135i \(0.907297\pi\)
\(600\) 0 0
\(601\) 38.9252 1.58779 0.793896 0.608054i \(-0.208050\pi\)
0.793896 + 0.608054i \(0.208050\pi\)
\(602\) 2.01690 2.89351i 0.0822026 0.117931i
\(603\) 0 0
\(604\) 5.04317 + 8.73503i 0.205204 + 0.355423i
\(605\) 18.2990 31.6947i 0.743959 1.28857i
\(606\) 0 0
\(607\) 6.84828 + 11.8616i 0.277963 + 0.481446i 0.970878 0.239573i \(-0.0770074\pi\)
−0.692915 + 0.721019i \(0.743674\pi\)
\(608\) −4.09065 −0.165898
\(609\) 0 0
\(610\) −5.80502 −0.235039
\(611\) 1.77271 + 3.07043i 0.0717163 + 0.124216i
\(612\) 0 0
\(613\) −1.58056 + 2.73761i −0.0638382 + 0.110571i −0.896178 0.443695i \(-0.853667\pi\)
0.832340 + 0.554266i \(0.187001\pi\)
\(614\) 1.77990 + 3.08287i 0.0718308 + 0.124415i
\(615\) 0 0
\(616\) −9.20806 0.785860i −0.371003 0.0316632i
\(617\) −20.9297 −0.842597 −0.421299 0.906922i \(-0.638426\pi\)
−0.421299 + 0.906922i \(0.638426\pi\)
\(618\) 0 0
\(619\) −15.4772 + 26.8073i −0.622082 + 1.07748i 0.367016 + 0.930215i \(0.380379\pi\)
−0.989097 + 0.147262i \(0.952954\pi\)
\(620\) −21.6207 + 37.4482i −0.868309 + 1.50396i
\(621\) 0 0
\(622\) 0.0736887 0.00295465
\(623\) 17.0440 24.4520i 0.682855 0.979648i
\(624\) 0 0
\(625\) −16.0927 27.8734i −0.643708 1.11494i
\(626\) −1.07496 + 1.86189i −0.0429642 + 0.0744162i
\(627\) 0 0
\(628\) −10.5257 18.2311i −0.420023 0.727501i
\(629\) 16.2986 0.649866
\(630\) 0 0
\(631\) −15.1218 −0.601988 −0.300994 0.953626i \(-0.597318\pi\)
−0.300994 + 0.953626i \(0.597318\pi\)
\(632\) 0.306836 + 0.531456i 0.0122053 + 0.0211402i
\(633\) 0 0
\(634\) 2.56120 4.43613i 0.101718 0.176181i
\(635\) −8.83433 15.3015i −0.350580 0.607222i
\(636\) 0 0
\(637\) −4.47665 + 5.38141i −0.177371 + 0.213219i
\(638\) 1.45574 0.0576335
\(639\) 0 0
\(640\) −11.7284 + 20.3141i −0.463605 + 0.802987i
\(641\) −23.6207 + 40.9123i −0.932962 + 1.61594i −0.154733 + 0.987956i \(0.549452\pi\)
−0.778229 + 0.627981i \(0.783882\pi\)
\(642\) 0 0
\(643\) 39.9249 1.57448 0.787241 0.616645i \(-0.211509\pi\)
0.787241 + 0.616645i \(0.211509\pi\)
\(644\) 3.83453 + 8.17770i 0.151102 + 0.322247i
\(645\) 0 0
\(646\) 0.398986 + 0.691064i 0.0156979 + 0.0271895i
\(647\) −14.9139 + 25.8317i −0.586327 + 1.01555i 0.408382 + 0.912811i \(0.366093\pi\)
−0.994709 + 0.102736i \(0.967240\pi\)
\(648\) 0 0
\(649\) −10.1533 17.5859i −0.398550 0.690309i
\(650\) 2.04747 0.0803084
\(651\) 0 0
\(652\) −4.65397 −0.182263
\(653\) 12.5774 + 21.7848i 0.492194 + 0.852504i 0.999960 0.00899079i \(-0.00286189\pi\)
−0.507766 + 0.861495i \(0.669529\pi\)
\(654\) 0 0
\(655\) 24.8863 43.1044i 0.972390 1.68423i
\(656\) −15.3054 26.5097i −0.597574 1.03503i
\(657\) 0 0
\(658\) 1.82867 + 0.156068i 0.0712890 + 0.00608415i
\(659\) −17.3155 −0.674517 −0.337258 0.941412i \(-0.609500\pi\)
−0.337258 + 0.941412i \(0.609500\pi\)
\(660\) 0 0
\(661\) 4.60037 7.96808i 0.178934 0.309922i −0.762582 0.646892i \(-0.776069\pi\)
0.941516 + 0.336969i \(0.109402\pi\)
\(662\) 3.33528 5.77687i 0.129629 0.224524i
\(663\) 0 0
\(664\) −5.53945 −0.214972
\(665\) −18.5325 1.58165i −0.718659 0.0613338i
\(666\) 0 0
\(667\) −1.43663 2.48832i −0.0556266 0.0963482i
\(668\) −11.8472 + 20.5199i −0.458382 + 0.793940i
\(669\) 0 0
\(670\) −4.87245 8.43933i −0.188239 0.326040i
\(671\) −33.9984 −1.31249
\(672\) 0 0
\(673\) 17.3609 0.669212 0.334606 0.942358i \(-0.391397\pi\)
0.334606 + 0.942358i \(0.391397\pi\)
\(674\) −1.44328 2.49983i −0.0555930 0.0962898i
\(675\) 0 0
\(676\) 0.980859 1.69890i 0.0377254 0.0653422i
\(677\) 24.9913 + 43.2861i 0.960492 + 1.66362i 0.721267 + 0.692657i \(0.243560\pi\)
0.239225 + 0.970964i \(0.423107\pi\)
\(678\) 0 0
\(679\) −9.89974 21.1126i −0.379917 0.810229i
\(680\) 6.95425 0.266683
\(681\) 0 0
\(682\) 2.47101 4.27992i 0.0946200 0.163887i
\(683\) 16.8077 29.1117i 0.643128 1.11393i −0.341603 0.939844i \(-0.610970\pi\)
0.984731 0.174086i \(-0.0556969\pi\)
\(684\) 0 0
\(685\) −36.5189 −1.39532
\(686\) 0.960183 + 3.49408i 0.0366599 + 0.133404i
\(687\) 0 0
\(688\) −12.8496 22.2561i −0.489885 0.848506i
\(689\) 1.64483 2.84892i 0.0626629 0.108535i
\(690\) 0 0
\(691\) 7.56545 + 13.1038i 0.287803 + 0.498490i 0.973285 0.229600i \(-0.0737417\pi\)
−0.685482 + 0.728090i \(0.740408\pi\)
\(692\) −38.0764 −1.44745
\(693\) 0 0
\(694\) −5.85924 −0.222414
\(695\) −7.86502 13.6226i −0.298337 0.516735i
\(696\) 0 0
\(697\) −9.25766 + 16.0347i −0.350659 + 0.607359i
\(698\) 1.31866 + 2.28398i 0.0499119 + 0.0864500i
\(699\) 0 0
\(700\) −31.0583 + 44.5574i −1.17390 + 1.68411i
\(701\) −2.02467 −0.0764705 −0.0382353 0.999269i \(-0.512174\pi\)
−0.0382353 + 0.999269i \(0.512174\pi\)
\(702\) 0 0
\(703\) 6.38567 11.0603i 0.240840 0.417147i
\(704\) −15.9879 + 27.6919i −0.602567 + 1.04368i
\(705\) 0 0
\(706\) −0.0319960 −0.00120419
\(707\) −37.7423 3.22111i −1.41945 0.121142i
\(708\) 0 0
\(709\) 15.2276 + 26.3751i 0.571886 + 0.990536i 0.996372 + 0.0851015i \(0.0271215\pi\)
−0.424486 + 0.905434i \(0.639545\pi\)
\(710\) −3.67348 + 6.36265i −0.137863 + 0.238786i
\(711\) 0 0
\(712\) 4.36619 + 7.56246i 0.163630 + 0.283415i
\(713\) −9.75429 −0.365301
\(714\) 0 0
\(715\) 17.7210 0.662727
\(716\) −14.3641 24.8793i −0.536811 0.929784i
\(717\) 0 0
\(718\) 0.872754 1.51165i 0.0325709 0.0564144i
\(719\) −12.2123 21.1523i −0.455442 0.788848i 0.543272 0.839557i \(-0.317185\pi\)
−0.998713 + 0.0507089i \(0.983852\pi\)
\(720\) 0 0
\(721\) −11.3351 + 16.2617i −0.422139 + 0.605616i
\(722\) −3.09219 −0.115079
\(723\) 0 0
\(724\) −9.26547 + 16.0483i −0.344348 + 0.596429i
\(725\) 8.63908 14.9633i 0.320848 0.555724i
\(726\) 0 0
\(727\) −3.09307 −0.114716 −0.0573578 0.998354i \(-0.518268\pi\)
−0.0573578 + 0.998354i \(0.518268\pi\)
\(728\) −0.870665 1.85682i −0.0322690 0.0688184i
\(729\) 0 0
\(730\) 0.415501 + 0.719670i 0.0153784 + 0.0266362i
\(731\) −7.77223 + 13.4619i −0.287466 + 0.497906i
\(732\) 0 0
\(733\) 4.20713 + 7.28697i 0.155394 + 0.269150i 0.933202 0.359351i \(-0.117002\pi\)
−0.777808 + 0.628501i \(0.783669\pi\)
\(734\) 7.17182 0.264717
\(735\) 0 0
\(736\) −3.98203 −0.146779
\(737\) −28.5365 49.4267i −1.05116 1.82066i
\(738\) 0 0
\(739\) 3.61379 6.25927i 0.132936 0.230251i −0.791871 0.610688i \(-0.790893\pi\)
0.924807 + 0.380437i \(0.124226\pi\)
\(740\) −27.5564 47.7291i −1.01299 1.75456i
\(741\) 0 0
\(742\) −0.722966 1.54183i −0.0265409 0.0566024i
\(743\) 53.9092 1.97774 0.988869 0.148791i \(-0.0475383\pi\)
0.988869 + 0.148791i \(0.0475383\pi\)
\(744\) 0 0
\(745\) 29.8180 51.6463i 1.09245 1.89217i
\(746\) −2.65382 + 4.59656i −0.0971634 + 0.168292i
\(747\) 0 0
\(748\) 20.1678 0.737406
\(749\) −16.6095 + 23.8285i −0.606897 + 0.870676i
\(750\) 0 0
\(751\) −14.6221 25.3262i −0.533568 0.924168i −0.999231 0.0392053i \(-0.987517\pi\)
0.465663 0.884962i \(-0.345816\pi\)
\(752\) 6.68628 11.5810i 0.243824 0.422315i
\(753\) 0 0
\(754\) 0.161524 + 0.279768i 0.00588236 + 0.0101885i
\(755\) −20.2193 −0.735857
\(756\) 0 0
\(757\) −22.0597 −0.801773 −0.400887 0.916128i \(-0.631298\pi\)
−0.400887 + 0.916128i \(0.631298\pi\)
\(758\) 1.55491 + 2.69318i 0.0564768 + 0.0978206i
\(759\) 0 0
\(760\) 2.72463 4.71920i 0.0988328 0.171183i
\(761\) 8.90805 + 15.4292i 0.322917 + 0.559308i 0.981089 0.193560i \(-0.0620033\pi\)
−0.658172 + 0.752868i \(0.728670\pi\)
\(762\) 0 0
\(763\) 32.8105 + 2.80020i 1.18782 + 0.101374i
\(764\) 24.6269 0.890971
\(765\) 0 0
\(766\) 0.112579 0.194993i 0.00406766 0.00704539i
\(767\) 2.25314 3.90255i 0.0813561 0.140913i
\(768\) 0 0
\(769\) −11.3069 −0.407738 −0.203869 0.978998i \(-0.565352\pi\)
−0.203869 + 0.978998i \(0.565352\pi\)
\(770\) 5.24564 7.52559i 0.189040 0.271203i
\(771\) 0 0
\(772\) −9.18927 15.9163i −0.330729 0.572840i
\(773\) −0.964104 + 1.66988i −0.0346764 + 0.0600613i −0.882843 0.469669i \(-0.844373\pi\)
0.848166 + 0.529730i \(0.177707\pi\)
\(774\) 0 0
\(775\) −29.3284 50.7982i −1.05351 1.82472i
\(776\) 6.83168 0.245243
\(777\) 0 0
\(778\) 2.80043 0.100400
\(779\) 7.25418 + 12.5646i 0.259908 + 0.450174i
\(780\) 0 0
\(781\) −21.5145 + 37.2642i −0.769849 + 1.33342i
\(782\) 0.388391 + 0.672713i 0.0138888 + 0.0240562i
\(783\) 0 0
\(784\) 26.0206 + 4.47404i 0.929307 + 0.159787i
\(785\) 42.2003 1.50619
\(786\) 0 0
\(787\) −2.76577 + 4.79046i −0.0985892 + 0.170761i −0.911101 0.412183i \(-0.864766\pi\)
0.812512 + 0.582945i \(0.198100\pi\)
\(788\) 7.47686 12.9503i 0.266352 0.461335i
\(789\) 0 0
\(790\) −0.609148 −0.0216725
\(791\) 1.85459 + 3.95518i 0.0659415 + 0.140630i
\(792\) 0 0
\(793\) −3.77234 6.53388i −0.133960 0.232025i
\(794\) 2.53547 4.39156i 0.0899804 0.155851i
\(795\) 0 0
\(796\) 13.2699 + 22.9842i 0.470340 + 0.814652i
\(797\) 13.8038 0.488955 0.244477 0.969655i \(-0.421384\pi\)
0.244477 + 0.969655i \(0.421384\pi\)
\(798\) 0 0
\(799\) −8.08857 −0.286153
\(800\) −11.9728 20.7375i −0.423303 0.733182i
\(801\) 0 0
\(802\) −0.420300 + 0.727982i −0.0148413 + 0.0257059i
\(803\) 2.43347 + 4.21490i 0.0858754 + 0.148741i
\(804\) 0 0
\(805\) −18.0404 1.53965i −0.635839 0.0542656i
\(806\) 1.09670 0.0386296
\(807\) 0 0
\(808\) 5.54885 9.61088i 0.195208 0.338110i
\(809\) 14.1498 24.5082i 0.497480 0.861661i −0.502515 0.864568i \(-0.667592\pi\)
0.999996 + 0.00290700i \(0.000925329\pi\)
\(810\) 0 0
\(811\) −12.2124 −0.428837 −0.214418 0.976742i \(-0.568786\pi\)
−0.214418 + 0.976742i \(0.568786\pi\)
\(812\) −8.53854 0.728720i −0.299644 0.0255731i
\(813\) 0 0
\(814\) 3.14940 + 5.45491i 0.110386 + 0.191195i
\(815\) 4.66473 8.07955i 0.163398 0.283014i
\(816\) 0 0
\(817\) 6.09022 + 10.5486i 0.213070 + 0.369048i
\(818\) −4.83410 −0.169020
\(819\) 0 0
\(820\) 62.6087 2.18639
\(821\) −20.7005 35.8544i −0.722453 1.25133i −0.960014 0.279953i \(-0.909681\pi\)
0.237560 0.971373i \(-0.423652\pi\)
\(822\) 0 0
\(823\) −23.5876 + 40.8550i −0.822213 + 1.42411i 0.0818184 + 0.996647i \(0.473927\pi\)
−0.904031 + 0.427467i \(0.859406\pi\)
\(824\) −2.90371 5.02938i −0.101156 0.175207i
\(825\) 0 0
\(826\) −0.990341 2.11205i −0.0344584 0.0734876i
\(827\) −21.1124 −0.734150 −0.367075 0.930191i \(-0.619641\pi\)
−0.367075 + 0.930191i \(0.619641\pi\)
\(828\) 0 0
\(829\) 0.318376 0.551444i 0.0110577 0.0191524i −0.860444 0.509546i \(-0.829813\pi\)
0.871501 + 0.490393i \(0.163147\pi\)
\(830\) 2.74930 4.76193i 0.0954297 0.165289i
\(831\) 0 0
\(832\) −7.09585 −0.246004
\(833\) −5.52583 14.9834i −0.191459 0.519143i
\(834\) 0 0
\(835\) −23.7492 41.1348i −0.821874 1.42353i
\(836\) 7.90160 13.6860i 0.273282 0.473339i
\(837\) 0 0
\(838\) −2.43878 4.22410i −0.0842464 0.145919i
\(839\) 26.9432 0.930183 0.465092 0.885263i \(-0.346021\pi\)
0.465092 + 0.885263i \(0.346021\pi\)
\(840\) 0 0
\(841\) −26.2739 −0.905995
\(842\) 0.978281 + 1.69443i 0.0337138 + 0.0583940i
\(843\) 0 0
\(844\) −15.4971 + 26.8417i −0.533431 + 0.923929i
\(845\) 1.96625 + 3.40565i 0.0676412 + 0.117158i
\(846\) 0 0
\(847\) 14.0800 20.1997i 0.483796 0.694071i
\(848\) −12.4078 −0.426087
\(849\) 0 0
\(850\) −2.33556 + 4.04531i −0.0801090 + 0.138753i
\(851\) 6.21610 10.7666i 0.213085 0.369074i
\(852\) 0 0
\(853\) 6.74784 0.231042 0.115521 0.993305i \(-0.463146\pi\)
0.115521 + 0.993305i \(0.463146\pi\)
\(854\) −3.89141 0.332112i −0.133161 0.0113646i
\(855\) 0 0
\(856\) −4.25486 7.36964i −0.145428 0.251889i
\(857\) −22.5134 + 38.9943i −0.769043 + 1.33202i 0.169040 + 0.985609i \(0.445933\pi\)
−0.938082 + 0.346412i \(0.887400\pi\)
\(858\) 0 0
\(859\) 18.3635 + 31.8065i 0.626554 + 1.08522i 0.988238 + 0.152923i \(0.0488687\pi\)
−0.361684 + 0.932301i \(0.617798\pi\)
\(860\) 52.5629 1.79238
\(861\) 0 0
\(862\) 1.11299 0.0379087
\(863\) −21.7137 37.6093i −0.739144 1.28024i −0.952881 0.303344i \(-0.901897\pi\)
0.213737 0.976891i \(-0.431437\pi\)
\(864\) 0 0
\(865\) 38.1644 66.1027i 1.29763 2.24756i
\(866\) −1.19935 2.07734i −0.0407557 0.0705910i
\(867\) 0 0
\(868\) −16.6360 + 23.8665i −0.564661 + 0.810083i
\(869\) −3.56761 −0.121023
\(870\) 0 0
\(871\) 6.33263 10.9684i 0.214573 0.371651i
\(872\) −4.82377 + 8.35502i −0.163354 + 0.282937i
\(873\) 0 0
\(874\) 0.608676 0.0205888
\(875\) −24.1382 51.4782i −0.816020 1.74028i
\(876\) 0 0
\(877\) −20.0040 34.6480i −0.675488 1.16998i −0.976326 0.216304i \(-0.930600\pi\)
0.300838 0.953675i \(-0.402734\pi\)
\(878\) −0.491407 + 0.851142i −0.0165842 + 0.0287247i
\(879\) 0 0
\(880\) −33.4198 57.8847i −1.12658 1.95129i
\(881\) −35.4308 −1.19370 −0.596848 0.802355i \(-0.703580\pi\)
−0.596848 + 0.802355i \(0.703580\pi\)
\(882\) 0 0
\(883\) 22.6654 0.762751 0.381375 0.924420i \(-0.375451\pi\)
0.381375 + 0.924420i \(0.375451\pi\)
\(884\) 2.23774 + 3.87588i 0.0752634 + 0.130360i
\(885\) 0 0
\(886\) 0.0566232 0.0980742i 0.00190229 0.00329487i
\(887\) 22.3440 + 38.7010i 0.750240 + 1.29945i 0.947706 + 0.319144i \(0.103395\pi\)
−0.197467 + 0.980310i \(0.563271\pi\)
\(888\) 0 0
\(889\) −5.04670 10.7628i −0.169261 0.360974i
\(890\) −8.66800 −0.290552
\(891\) 0 0
\(892\) 22.0435 38.1804i 0.738071 1.27838i
\(893\) −3.16905 + 5.48896i −0.106048 + 0.183681i
\(894\) 0 0
\(895\) 57.5892 1.92499
\(896\) −9.02434 + 12.9466i −0.301482 + 0.432517i
\(897\) 0 0
\(898\) −0.720366 1.24771i −0.0240389 0.0416366i
\(899\) 4.62740 8.01489i 0.154332 0.267312i
\(900\) 0 0
\(901\) 3.75252 + 6.49956i 0.125015 + 0.216532i
\(902\) −7.15549 −0.238252
\(903\) 0 0
\(904\) −1.27983 −0.0425664
\(905\) −18.5738 32.1707i −0.617413 1.06939i
\(906\) 0 0
\(907\) −27.2374 + 47.1766i −0.904403 + 1.56647i −0.0826860 + 0.996576i \(0.526350\pi\)
−0.821717 + 0.569896i \(0.806983\pi\)
\(908\) 9.02635 + 15.6341i 0.299550 + 0.518836i
\(909\) 0 0
\(910\) 2.02832 + 0.173107i 0.0672382 + 0.00573843i
\(911\) 27.4793 0.910431 0.455215 0.890381i \(-0.349562\pi\)
0.455215 + 0.890381i \(0.349562\pi\)
\(912\) 0 0
\(913\) 16.1019 27.8893i 0.532895 0.923000i
\(914\) −0.774626 + 1.34169i −0.0256224 + 0.0443792i
\(915\) 0 0
\(916\) −29.9990 −0.991196
\(917\) 19.1487 27.4714i 0.632345 0.907184i
\(918\) 0 0
\(919\) 24.1440 + 41.8186i 0.796437 + 1.37947i 0.921923 + 0.387374i \(0.126618\pi\)
−0.125486 + 0.992095i \(0.540049\pi\)
\(920\) 2.65228 4.59388i 0.0874431 0.151456i
\(921\) 0 0
\(922\) −0.932889 1.61581i −0.0307231 0.0532139i
\(923\) −9.54869 −0.314299
\(924\) 0 0
\(925\) 74.7601 2.45810
\(926\) −0.211356 0.366080i −0.00694560 0.0120301i
\(927\) 0 0
\(928\) 1.88906 3.27195i 0.0620114 0.107407i
\(929\) 21.6577 + 37.5122i 0.710566 + 1.23074i 0.964645 + 0.263553i \(0.0848943\pi\)
−0.254079 + 0.967183i \(0.581772\pi\)
\(930\) 0 0
\(931\) −12.3328 2.12053i −0.404191 0.0694975i
\(932\) −15.8032 −0.517651
\(933\) 0 0
\(934\) −0.794266 + 1.37571i −0.0259892 + 0.0450146i
\(935\) −20.2144 + 35.0123i −0.661081 + 1.14503i
\(936\) 0 0
\(937\) −37.2211 −1.21596 −0.607980 0.793952i \(-0.708020\pi\)
−0.607980 + 0.793952i \(0.708020\pi\)
\(938\) −2.78344 5.93609i −0.0908824 0.193820i
\(939\) 0 0
\(940\) 13.6756 + 23.6868i 0.446048 + 0.772577i
\(941\) 7.98754 13.8348i 0.260386 0.451002i −0.705958 0.708253i \(-0.749483\pi\)
0.966345 + 0.257251i \(0.0828167\pi\)
\(942\) 0 0
\(943\) 7.06155 + 12.2310i 0.229956 + 0.398295i
\(944\) −16.9967 −0.553194
\(945\) 0 0
\(946\) −6.00736 −0.195316
\(947\) 13.8786 + 24.0384i 0.450994 + 0.781144i 0.998448 0.0556912i \(-0.0177363\pi\)
−0.547454 + 0.836836i \(0.684403\pi\)
\(948\) 0 0
\(949\) −0.540019 + 0.935340i −0.0175298 + 0.0303624i
\(950\) 1.83011 + 3.16985i 0.0593768 + 0.102844i
\(951\) 0 0
\(952\) 4.66180 + 0.397861i 0.151090 + 0.0128947i
\(953\) −12.0303 −0.389700 −0.194850 0.980833i \(-0.562422\pi\)
−0.194850 + 0.980833i \(0.562422\pi\)
\(954\) 0 0
\(955\) −24.6839 + 42.7537i −0.798751 + 1.38348i
\(956\) −21.3100 + 36.9099i −0.689213 + 1.19375i
\(957\) 0 0
\(958\) −2.84744 −0.0919965
\(959\) −24.4805 2.08929i −0.790518 0.0674666i
\(960\) 0 0
\(961\) −0.209310 0.362536i −0.00675194 0.0116947i
\(962\) −0.698891 + 1.21052i −0.0225332 + 0.0390286i
\(963\) 0 0
\(964\) −20.1056 34.8240i −0.647559 1.12160i
\(965\) 36.8421 1.18599
\(966\) 0 0
\(967\) 5.40788 0.173906 0.0869528 0.996212i \(-0.472287\pi\)
0.0869528 + 0.996212i \(0.472287\pi\)
\(968\) 3.60690 + 6.24733i 0.115930 + 0.200797i
\(969\) 0 0
\(970\) −3.39066 + 5.87279i −0.108867 + 0.188564i
\(971\) 21.1376 + 36.6114i 0.678338 + 1.17492i 0.975481 + 0.220083i \(0.0706329\pi\)
−0.297143 + 0.954833i \(0.596034\pi\)
\(972\) 0 0
\(973\) −4.49297 9.58192i −0.144038 0.307182i
\(974\) −6.50733 −0.208508
\(975\) 0 0
\(976\) −14.2284 + 24.6443i −0.455440 + 0.788846i
\(977\) −5.41508 + 9.37920i −0.173244 + 0.300067i −0.939552 0.342406i \(-0.888758\pi\)
0.766308 + 0.642473i \(0.222092\pi\)
\(978\) 0 0
\(979\) −50.7660 −1.62249
\(980\) −34.5350 + 41.5148i −1.10318 + 1.32614i
\(981\) 0 0
\(982\) −2.20664 3.82202i −0.0704169 0.121966i
\(983\) 10.7805 18.6723i 0.343844 0.595555i −0.641299 0.767291i \(-0.721604\pi\)
0.985143 + 0.171736i \(0.0549375\pi\)
\(984\) 0 0
\(985\) 14.9883 + 25.9605i 0.477567 + 0.827170i
\(986\) −0.737005 −0.0234710
\(987\) 0 0
\(988\) 3.50693 0.111570
\(989\) 5.92850 + 10.2685i 0.188515 + 0.326518i
\(990\) 0 0
\(991\) −4.31312 + 7.47054i −0.137011 + 0.237310i −0.926364 0.376630i \(-0.877083\pi\)
0.789353 + 0.613940i \(0.210416\pi\)
\(992\) −6.41306 11.1078i −0.203615 0.352671i
\(993\) 0 0
\(994\) −2.82654 + 4.05505i −0.0896524 + 0.128618i
\(995\) −53.2024 −1.68663
\(996\) 0 0
\(997\) −10.8484 + 18.7899i −0.343571 + 0.595082i −0.985093 0.172022i \(-0.944970\pi\)
0.641522 + 0.767105i \(0.278303\pi\)
\(998\) 1.11381 1.92918i 0.0352572 0.0610672i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.j.h.235.2 10
3.2 odd 2 91.2.e.c.53.4 10
7.2 even 3 inner 819.2.j.h.352.2 10
7.3 odd 6 5733.2.a.bm.1.4 5
7.4 even 3 5733.2.a.bl.1.4 5
12.11 even 2 1456.2.r.p.417.3 10
21.2 odd 6 91.2.e.c.79.4 yes 10
21.5 even 6 637.2.e.m.79.4 10
21.11 odd 6 637.2.a.l.1.2 5
21.17 even 6 637.2.a.k.1.2 5
21.20 even 2 637.2.e.m.508.4 10
39.38 odd 2 1183.2.e.f.508.2 10
84.23 even 6 1456.2.r.p.625.3 10
273.38 even 6 8281.2.a.bx.1.4 5
273.116 odd 6 8281.2.a.bw.1.4 5
273.233 odd 6 1183.2.e.f.170.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.e.c.53.4 10 3.2 odd 2
91.2.e.c.79.4 yes 10 21.2 odd 6
637.2.a.k.1.2 5 21.17 even 6
637.2.a.l.1.2 5 21.11 odd 6
637.2.e.m.79.4 10 21.5 even 6
637.2.e.m.508.4 10 21.20 even 2
819.2.j.h.235.2 10 1.1 even 1 trivial
819.2.j.h.352.2 10 7.2 even 3 inner
1183.2.e.f.170.2 10 273.233 odd 6
1183.2.e.f.508.2 10 39.38 odd 2
1456.2.r.p.417.3 10 12.11 even 2
1456.2.r.p.625.3 10 84.23 even 6
5733.2.a.bl.1.4 5 7.4 even 3
5733.2.a.bm.1.4 5 7.3 odd 6
8281.2.a.bw.1.4 5 273.116 odd 6
8281.2.a.bx.1.4 5 273.38 even 6