Properties

Label 819.2.j.h.352.5
Level $819$
Weight $2$
Character 819.352
Analytic conductor $6.540$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(235,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 8x^{8} + 7x^{7} + 41x^{6} + 18x^{5} + 58x^{4} + 28x^{3} + 64x^{2} + 16x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.5
Root \(-0.862625 + 1.49411i\) of defining polynomial
Character \(\chi\) \(=\) 819.352
Dual form 819.2.j.h.235.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36263 - 2.36014i) q^{2} +(-2.71349 - 4.69991i) q^{4} +(1.09358 - 1.89414i) q^{5} +(-2.19729 + 1.47375i) q^{7} -9.33940 q^{8} +(-2.98028 - 5.16200i) q^{10} +(-0.524077 - 0.907729i) q^{11} +1.00000 q^{13} +(0.484172 + 7.19406i) q^{14} +(-7.29912 + 12.6424i) q^{16} +(-2.64562 - 4.58236i) q^{17} +(-0.378453 + 0.655500i) q^{19} -11.8697 q^{20} -2.85648 q^{22} +(0.326792 - 0.566020i) q^{23} +(0.108157 + 0.187333i) q^{25} +(1.36263 - 2.36014i) q^{26} +(12.8888 + 6.32803i) q^{28} +3.10408 q^{29} +(-0.513956 - 0.890198i) q^{31} +(10.5525 + 18.2775i) q^{32} -14.4200 q^{34} +(0.388575 + 5.77363i) q^{35} +(5.44661 - 9.43381i) q^{37} +(1.03138 + 1.78640i) q^{38} +(-10.2134 + 17.6901i) q^{40} -7.32040 q^{41} +0.887771 q^{43} +(-2.84416 + 4.92623i) q^{44} +(-0.890590 - 1.54255i) q^{46} +(1.16875 - 2.02434i) q^{47} +(2.65613 - 6.47650i) q^{49} +0.589510 q^{50} +(-2.71349 - 4.69991i) q^{52} +(2.44407 + 4.23325i) q^{53} -2.29249 q^{55} +(20.5213 - 13.7639i) q^{56} +(4.22970 - 7.32606i) q^{58} +(-0.524077 - 0.907729i) q^{59} +(6.24989 - 10.8251i) q^{61} -2.80132 q^{62} +28.3200 q^{64} +(1.09358 - 1.89414i) q^{65} +(-2.23944 - 3.87883i) q^{67} +(-14.3578 + 24.8684i) q^{68} +(14.1560 + 6.95021i) q^{70} +6.60274 q^{71} +(4.14174 + 7.17370i) q^{73} +(-14.8434 - 25.7095i) q^{74} +4.10772 q^{76} +(2.48931 + 1.22218i) q^{77} +(-1.07007 + 1.85342i) q^{79} +(15.9644 + 27.6511i) q^{80} +(-9.97496 + 17.2771i) q^{82} +6.66558 q^{83} -11.5728 q^{85} +(1.20970 - 2.09526i) q^{86} +(4.89457 + 8.47765i) q^{88} +(-2.88388 + 4.99503i) q^{89} +(-2.19729 + 1.47375i) q^{91} -3.54699 q^{92} +(-3.18515 - 5.51684i) q^{94} +(0.827739 + 1.43369i) q^{95} -2.88777 q^{97} +(-11.6661 - 15.0939i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} - 8 q^{4} + 2 q^{5} + q^{7} - 18 q^{8} + 5 q^{10} + 11 q^{11} + 10 q^{13} - 10 q^{14} - 10 q^{16} - 5 q^{17} - 9 q^{19} - 2 q^{20} + 16 q^{22} + 10 q^{23} - 9 q^{25} + 4 q^{26} + 37 q^{28}+ \cdots + 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36263 2.36014i 0.963521 1.66887i 0.249986 0.968250i \(-0.419574\pi\)
0.713536 0.700619i \(-0.247093\pi\)
\(3\) 0 0
\(4\) −2.71349 4.69991i −1.35675 2.34996i
\(5\) 1.09358 1.89414i 0.489065 0.847085i −0.510856 0.859666i \(-0.670672\pi\)
0.999921 + 0.0125813i \(0.00400485\pi\)
\(6\) 0 0
\(7\) −2.19729 + 1.47375i −0.830496 + 0.557025i
\(8\) −9.33940 −3.30198
\(9\) 0 0
\(10\) −2.98028 5.16200i −0.942449 1.63237i
\(11\) −0.524077 0.907729i −0.158015 0.273691i 0.776138 0.630564i \(-0.217176\pi\)
−0.934153 + 0.356873i \(0.883843\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0.484172 + 7.19406i 0.129400 + 1.92269i
\(15\) 0 0
\(16\) −7.29912 + 12.6424i −1.82478 + 3.16061i
\(17\) −2.64562 4.58236i −0.641658 1.11138i −0.985063 0.172197i \(-0.944913\pi\)
0.343404 0.939188i \(-0.388420\pi\)
\(18\) 0 0
\(19\) −0.378453 + 0.655500i −0.0868231 + 0.150382i −0.906167 0.422921i \(-0.861005\pi\)
0.819344 + 0.573303i \(0.194338\pi\)
\(20\) −11.8697 −2.65415
\(21\) 0 0
\(22\) −2.85648 −0.609005
\(23\) 0.326792 0.566020i 0.0681408 0.118023i −0.829942 0.557850i \(-0.811627\pi\)
0.898083 + 0.439826i \(0.144960\pi\)
\(24\) 0 0
\(25\) 0.108157 + 0.187333i 0.0216314 + 0.0374667i
\(26\) 1.36263 2.36014i 0.267233 0.462861i
\(27\) 0 0
\(28\) 12.8888 + 6.32803i 2.43576 + 1.19589i
\(29\) 3.10408 0.576414 0.288207 0.957568i \(-0.406941\pi\)
0.288207 + 0.957568i \(0.406941\pi\)
\(30\) 0 0
\(31\) −0.513956 0.890198i −0.0923092 0.159884i 0.816173 0.577807i \(-0.196091\pi\)
−0.908482 + 0.417923i \(0.862758\pi\)
\(32\) 10.5525 + 18.2775i 1.86544 + 3.23104i
\(33\) 0 0
\(34\) −14.4200 −2.47301
\(35\) 0.388575 + 5.77363i 0.0656811 + 0.975922i
\(36\) 0 0
\(37\) 5.44661 9.43381i 0.895418 1.55091i 0.0621309 0.998068i \(-0.480210\pi\)
0.833287 0.552841i \(-0.186456\pi\)
\(38\) 1.03138 + 1.78640i 0.167312 + 0.289793i
\(39\) 0 0
\(40\) −10.2134 + 17.6901i −1.61488 + 2.79706i
\(41\) −7.32040 −1.14325 −0.571627 0.820514i \(-0.693688\pi\)
−0.571627 + 0.820514i \(0.693688\pi\)
\(42\) 0 0
\(43\) 0.887771 0.135384 0.0676919 0.997706i \(-0.478437\pi\)
0.0676919 + 0.997706i \(0.478437\pi\)
\(44\) −2.84416 + 4.92623i −0.428774 + 0.742658i
\(45\) 0 0
\(46\) −0.890590 1.54255i −0.131310 0.227436i
\(47\) 1.16875 2.02434i 0.170480 0.295281i −0.768108 0.640321i \(-0.778801\pi\)
0.938588 + 0.345040i \(0.112135\pi\)
\(48\) 0 0
\(49\) 2.65613 6.47650i 0.379447 0.925214i
\(50\) 0.589510 0.0833692
\(51\) 0 0
\(52\) −2.71349 4.69991i −0.376294 0.651760i
\(53\) 2.44407 + 4.23325i 0.335719 + 0.581482i 0.983623 0.180240i \(-0.0576875\pi\)
−0.647904 + 0.761722i \(0.724354\pi\)
\(54\) 0 0
\(55\) −2.29249 −0.309119
\(56\) 20.5213 13.7639i 2.74228 1.83928i
\(57\) 0 0
\(58\) 4.22970 7.32606i 0.555387 0.961959i
\(59\) −0.524077 0.907729i −0.0682291 0.118176i 0.829893 0.557923i \(-0.188402\pi\)
−0.898122 + 0.439747i \(0.855068\pi\)
\(60\) 0 0
\(61\) 6.24989 10.8251i 0.800217 1.38602i −0.119256 0.992864i \(-0.538051\pi\)
0.919473 0.393153i \(-0.128616\pi\)
\(62\) −2.80132 −0.355768
\(63\) 0 0
\(64\) 28.3200 3.54000
\(65\) 1.09358 1.89414i 0.135642 0.234939i
\(66\) 0 0
\(67\) −2.23944 3.87883i −0.273592 0.473875i 0.696187 0.717860i \(-0.254878\pi\)
−0.969779 + 0.243986i \(0.921545\pi\)
\(68\) −14.3578 + 24.8684i −1.74114 + 3.01574i
\(69\) 0 0
\(70\) 14.1560 + 6.95021i 1.69197 + 0.830708i
\(71\) 6.60274 0.783601 0.391801 0.920050i \(-0.371852\pi\)
0.391801 + 0.920050i \(0.371852\pi\)
\(72\) 0 0
\(73\) 4.14174 + 7.17370i 0.484754 + 0.839618i 0.999847 0.0175164i \(-0.00557593\pi\)
−0.515093 + 0.857134i \(0.672243\pi\)
\(74\) −14.8434 25.7095i −1.72551 2.98867i
\(75\) 0 0
\(76\) 4.10772 0.471188
\(77\) 2.48931 + 1.22218i 0.283683 + 0.139280i
\(78\) 0 0
\(79\) −1.07007 + 1.85342i −0.120392 + 0.208526i −0.919922 0.392100i \(-0.871749\pi\)
0.799530 + 0.600626i \(0.205082\pi\)
\(80\) 15.9644 + 27.6511i 1.78487 + 3.09149i
\(81\) 0 0
\(82\) −9.97496 + 17.2771i −1.10155 + 1.90794i
\(83\) 6.66558 0.731642 0.365821 0.930685i \(-0.380788\pi\)
0.365821 + 0.930685i \(0.380788\pi\)
\(84\) 0 0
\(85\) −11.5728 −1.25525
\(86\) 1.20970 2.09526i 0.130445 0.225938i
\(87\) 0 0
\(88\) 4.89457 + 8.47765i 0.521763 + 0.903720i
\(89\) −2.88388 + 4.99503i −0.305691 + 0.529472i −0.977415 0.211329i \(-0.932221\pi\)
0.671724 + 0.740802i \(0.265554\pi\)
\(90\) 0 0
\(91\) −2.19729 + 1.47375i −0.230338 + 0.154491i
\(92\) −3.54699 −0.369800
\(93\) 0 0
\(94\) −3.18515 5.51684i −0.328523 0.569019i
\(95\) 0.827739 + 1.43369i 0.0849242 + 0.147093i
\(96\) 0 0
\(97\) −2.88777 −0.293209 −0.146604 0.989195i \(-0.546834\pi\)
−0.146604 + 0.989195i \(0.546834\pi\)
\(98\) −11.6661 15.0939i −1.17845 1.52471i
\(99\) 0 0
\(100\) 0.586967 1.01666i 0.0586967 0.101666i
\(101\) −5.62716 9.74653i −0.559924 0.969816i −0.997502 0.0706359i \(-0.977497\pi\)
0.437579 0.899180i \(-0.355836\pi\)
\(102\) 0 0
\(103\) −10.1167 + 17.5226i −0.996828 + 1.72656i −0.429487 + 0.903073i \(0.641306\pi\)
−0.567341 + 0.823483i \(0.692028\pi\)
\(104\) −9.33940 −0.915804
\(105\) 0 0
\(106\) 13.3214 1.29389
\(107\) 4.52758 7.84201i 0.437698 0.758115i −0.559813 0.828619i \(-0.689127\pi\)
0.997512 + 0.0705034i \(0.0224606\pi\)
\(108\) 0 0
\(109\) −7.55070 13.0782i −0.723226 1.25266i −0.959700 0.281026i \(-0.909325\pi\)
0.236474 0.971638i \(-0.424008\pi\)
\(110\) −3.12380 + 5.41058i −0.297843 + 0.515879i
\(111\) 0 0
\(112\) −2.59354 38.5361i −0.245067 3.64132i
\(113\) −3.10408 −0.292008 −0.146004 0.989284i \(-0.546641\pi\)
−0.146004 + 0.989284i \(0.546641\pi\)
\(114\) 0 0
\(115\) −0.714748 1.23798i −0.0666506 0.115442i
\(116\) −8.42292 14.5889i −0.782048 1.35455i
\(117\) 0 0
\(118\) −2.85648 −0.262961
\(119\) 12.5664 + 6.16976i 1.15196 + 0.565581i
\(120\) 0 0
\(121\) 4.95069 8.57484i 0.450062 0.779531i
\(122\) −17.0325 29.5012i −1.54205 2.67091i
\(123\) 0 0
\(124\) −2.78923 + 4.83109i −0.250481 + 0.433845i
\(125\) 11.4089 1.02045
\(126\) 0 0
\(127\) 8.78914 0.779910 0.389955 0.920834i \(-0.372491\pi\)
0.389955 + 0.920834i \(0.372491\pi\)
\(128\) 17.4846 30.2841i 1.54543 2.67676i
\(129\) 0 0
\(130\) −2.98028 5.16200i −0.261388 0.452738i
\(131\) −5.25723 + 9.10580i −0.459327 + 0.795577i −0.998925 0.0463451i \(-0.985243\pi\)
0.539599 + 0.841922i \(0.318576\pi\)
\(132\) 0 0
\(133\) −0.134473 1.99807i −0.0116603 0.173254i
\(134\) −12.2061 −1.05445
\(135\) 0 0
\(136\) 24.7086 + 42.7965i 2.11874 + 3.66977i
\(137\) 4.36583 + 7.56183i 0.372998 + 0.646051i 0.990025 0.140891i \(-0.0449966\pi\)
−0.617028 + 0.786942i \(0.711663\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 26.0812 17.4930i 2.20426 1.47843i
\(141\) 0 0
\(142\) 8.99706 15.5834i 0.755016 1.30773i
\(143\) −0.524077 0.907729i −0.0438256 0.0759081i
\(144\) 0 0
\(145\) 3.39457 5.87957i 0.281904 0.488272i
\(146\) 22.5745 1.86828
\(147\) 0 0
\(148\) −59.1174 −4.85942
\(149\) 7.69632 13.3304i 0.630507 1.09207i −0.356941 0.934127i \(-0.616180\pi\)
0.987448 0.157944i \(-0.0504864\pi\)
\(150\) 0 0
\(151\) 6.83786 + 11.8435i 0.556457 + 0.963812i 0.997789 + 0.0664680i \(0.0211730\pi\)
−0.441331 + 0.897344i \(0.645494\pi\)
\(152\) 3.53453 6.12198i 0.286688 0.496558i
\(153\) 0 0
\(154\) 6.27651 4.20974i 0.505776 0.339231i
\(155\) −2.24821 −0.180581
\(156\) 0 0
\(157\) −1.69378 2.93371i −0.135178 0.234136i 0.790487 0.612478i \(-0.209827\pi\)
−0.925666 + 0.378343i \(0.876494\pi\)
\(158\) 2.91621 + 5.05102i 0.232001 + 0.401838i
\(159\) 0 0
\(160\) 46.1602 3.64928
\(161\) 0.116117 + 1.72532i 0.00915128 + 0.135974i
\(162\) 0 0
\(163\) 6.90502 11.9598i 0.540843 0.936767i −0.458013 0.888946i \(-0.651439\pi\)
0.998856 0.0478219i \(-0.0152280\pi\)
\(164\) 19.8639 + 34.4052i 1.55111 + 2.68660i
\(165\) 0 0
\(166\) 9.08268 15.7317i 0.704953 1.22101i
\(167\) −16.3783 −1.26739 −0.633695 0.773583i \(-0.718462\pi\)
−0.633695 + 0.773583i \(0.718462\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −15.7694 + 27.3134i −1.20946 + 2.09485i
\(171\) 0 0
\(172\) −2.40896 4.17244i −0.183682 0.318146i
\(173\) 2.06273 3.57275i 0.156826 0.271631i −0.776896 0.629629i \(-0.783207\pi\)
0.933723 + 0.357997i \(0.116540\pi\)
\(174\) 0 0
\(175\) −0.513734 0.252229i −0.0388346 0.0190667i
\(176\) 15.3012 1.15337
\(177\) 0 0
\(178\) 7.85930 + 13.6127i 0.589080 + 1.02032i
\(179\) 7.20679 + 12.4825i 0.538661 + 0.932988i 0.998976 + 0.0452324i \(0.0144028\pi\)
−0.460316 + 0.887755i \(0.652264\pi\)
\(180\) 0 0
\(181\) 18.1014 1.34547 0.672733 0.739885i \(-0.265120\pi\)
0.672733 + 0.739885i \(0.265120\pi\)
\(182\) 0.484172 + 7.19406i 0.0358892 + 0.533259i
\(183\) 0 0
\(184\) −3.05204 + 5.28629i −0.225000 + 0.389711i
\(185\) −11.9126 20.6333i −0.875834 1.51699i
\(186\) 0 0
\(187\) −2.77302 + 4.80302i −0.202784 + 0.351232i
\(188\) −12.6856 −0.925195
\(189\) 0 0
\(190\) 4.51159 0.327305
\(191\) 2.77068 4.79895i 0.200479 0.347240i −0.748204 0.663469i \(-0.769083\pi\)
0.948683 + 0.316229i \(0.102417\pi\)
\(192\) 0 0
\(193\) 4.37044 + 7.56983i 0.314591 + 0.544888i 0.979351 0.202170i \(-0.0647992\pi\)
−0.664759 + 0.747058i \(0.731466\pi\)
\(194\) −3.93495 + 6.81553i −0.282513 + 0.489327i
\(195\) 0 0
\(196\) −37.6463 + 5.09038i −2.68902 + 0.363598i
\(197\) 5.46874 0.389632 0.194816 0.980840i \(-0.437589\pi\)
0.194816 + 0.980840i \(0.437589\pi\)
\(198\) 0 0
\(199\) −9.76839 16.9193i −0.692463 1.19938i −0.971029 0.238963i \(-0.923192\pi\)
0.278566 0.960417i \(-0.410141\pi\)
\(200\) −1.01012 1.74958i −0.0714264 0.123714i
\(201\) 0 0
\(202\) −30.6708 −2.15799
\(203\) −6.82056 + 4.57464i −0.478709 + 0.321077i
\(204\) 0 0
\(205\) −8.00546 + 13.8659i −0.559125 + 0.968433i
\(206\) 27.5705 + 47.7536i 1.92093 + 3.32715i
\(207\) 0 0
\(208\) −7.29912 + 12.6424i −0.506103 + 0.876596i
\(209\) 0.793355 0.0548775
\(210\) 0 0
\(211\) 16.6905 1.14902 0.574511 0.818497i \(-0.305192\pi\)
0.574511 + 0.818497i \(0.305192\pi\)
\(212\) 13.2639 22.9738i 0.910971 1.57785i
\(213\) 0 0
\(214\) −12.3388 21.3714i −0.843463 1.46092i
\(215\) 0.970850 1.68156i 0.0662114 0.114682i
\(216\) 0 0
\(217\) 2.44124 + 1.19858i 0.165722 + 0.0813647i
\(218\) −41.1551 −2.78737
\(219\) 0 0
\(220\) 6.22065 + 10.7745i 0.419396 + 0.726415i
\(221\) −2.64562 4.58236i −0.177964 0.308243i
\(222\) 0 0
\(223\) −5.34217 −0.357738 −0.178869 0.983873i \(-0.557244\pi\)
−0.178869 + 0.983873i \(0.557244\pi\)
\(224\) −50.1233 24.6091i −3.34901 1.64427i
\(225\) 0 0
\(226\) −4.22970 + 7.32606i −0.281356 + 0.487322i
\(227\) 10.0608 + 17.4258i 0.667757 + 1.15659i 0.978530 + 0.206104i \(0.0660786\pi\)
−0.310774 + 0.950484i \(0.600588\pi\)
\(228\) 0 0
\(229\) −12.6249 + 21.8669i −0.834275 + 1.44501i 0.0603445 + 0.998178i \(0.480780\pi\)
−0.894619 + 0.446829i \(0.852553\pi\)
\(230\) −3.89573 −0.256877
\(231\) 0 0
\(232\) −28.9903 −1.90331
\(233\) −0.396678 + 0.687066i −0.0259872 + 0.0450112i −0.878727 0.477326i \(-0.841606\pi\)
0.852739 + 0.522337i \(0.174940\pi\)
\(234\) 0 0
\(235\) −2.55626 4.42757i −0.166752 0.288823i
\(236\) −2.84416 + 4.92623i −0.185139 + 0.320671i
\(237\) 0 0
\(238\) 31.6848 21.2514i 2.05382 1.37753i
\(239\) −20.0488 −1.29685 −0.648425 0.761279i \(-0.724572\pi\)
−0.648425 + 0.761279i \(0.724572\pi\)
\(240\) 0 0
\(241\) −6.90602 11.9616i −0.444856 0.770513i 0.553186 0.833058i \(-0.313412\pi\)
−0.998042 + 0.0625446i \(0.980078\pi\)
\(242\) −13.4919 23.3686i −0.867289 1.50219i
\(243\) 0 0
\(244\) −67.8362 −4.34277
\(245\) −9.36269 12.1137i −0.598161 0.773913i
\(246\) 0 0
\(247\) −0.378453 + 0.655500i −0.0240804 + 0.0417085i
\(248\) 4.80004 + 8.31392i 0.304803 + 0.527934i
\(249\) 0 0
\(250\) 15.5461 26.9266i 0.983222 1.70299i
\(251\) 26.1095 1.64802 0.824010 0.566576i \(-0.191732\pi\)
0.824010 + 0.566576i \(0.191732\pi\)
\(252\) 0 0
\(253\) −0.685057 −0.0430692
\(254\) 11.9763 20.7436i 0.751460 1.30157i
\(255\) 0 0
\(256\) −19.3298 33.4801i −1.20811 2.09251i
\(257\) 5.30990 9.19701i 0.331222 0.573694i −0.651530 0.758623i \(-0.725872\pi\)
0.982752 + 0.184930i \(0.0592057\pi\)
\(258\) 0 0
\(259\) 1.93531 + 28.7557i 0.120254 + 1.78679i
\(260\) −11.8697 −0.736128
\(261\) 0 0
\(262\) 14.3273 + 24.8156i 0.885142 + 1.53311i
\(263\) 5.17888 + 8.97008i 0.319343 + 0.553119i 0.980351 0.197260i \(-0.0632044\pi\)
−0.661008 + 0.750379i \(0.729871\pi\)
\(264\) 0 0
\(265\) 10.6912 0.656753
\(266\) −4.89894 2.40524i −0.300374 0.147475i
\(267\) 0 0
\(268\) −12.1534 + 21.0504i −0.742389 + 1.28586i
\(269\) 5.98503 + 10.3664i 0.364914 + 0.632049i 0.988762 0.149496i \(-0.0477652\pi\)
−0.623849 + 0.781545i \(0.714432\pi\)
\(270\) 0 0
\(271\) 1.37845 2.38755i 0.0837351 0.145033i −0.821116 0.570761i \(-0.806648\pi\)
0.904852 + 0.425727i \(0.139982\pi\)
\(272\) 77.2429 4.68354
\(273\) 0 0
\(274\) 23.7959 1.43757
\(275\) 0.113365 0.196354i 0.00683618 0.0118406i
\(276\) 0 0
\(277\) 11.9637 + 20.7218i 0.718831 + 1.24505i 0.961463 + 0.274933i \(0.0886558\pi\)
−0.242632 + 0.970118i \(0.578011\pi\)
\(278\) −5.45050 + 9.44054i −0.326899 + 0.566206i
\(279\) 0 0
\(280\) −3.62906 53.9223i −0.216878 3.22247i
\(281\) 3.87870 0.231384 0.115692 0.993285i \(-0.463091\pi\)
0.115692 + 0.993285i \(0.463091\pi\)
\(282\) 0 0
\(283\) 3.10499 + 5.37801i 0.184573 + 0.319689i 0.943432 0.331565i \(-0.107577\pi\)
−0.758860 + 0.651254i \(0.774243\pi\)
\(284\) −17.9165 31.0323i −1.06315 1.84143i
\(285\) 0 0
\(286\) −2.85648 −0.168907
\(287\) 16.0850 10.7884i 0.949468 0.636821i
\(288\) 0 0
\(289\) −5.49866 + 9.52395i −0.323450 + 0.560232i
\(290\) −9.25106 16.0233i −0.543241 0.940920i
\(291\) 0 0
\(292\) 22.4772 38.9316i 1.31538 2.27830i
\(293\) −16.5754 −0.968347 −0.484174 0.874972i \(-0.660880\pi\)
−0.484174 + 0.874972i \(0.660880\pi\)
\(294\) 0 0
\(295\) −2.29249 −0.133474
\(296\) −50.8681 + 88.1062i −2.95665 + 5.12107i
\(297\) 0 0
\(298\) −20.9744 36.3287i −1.21501 2.10447i
\(299\) 0.326792 0.566020i 0.0188989 0.0327338i
\(300\) 0 0
\(301\) −1.95069 + 1.30835i −0.112436 + 0.0754121i
\(302\) 37.2698 2.14463
\(303\) 0 0
\(304\) −5.52475 9.56914i −0.316866 0.548828i
\(305\) −13.6695 23.6763i −0.782716 1.35570i
\(306\) 0 0
\(307\) −7.05788 −0.402815 −0.201407 0.979508i \(-0.564551\pi\)
−0.201407 + 0.979508i \(0.564551\pi\)
\(308\) −1.01060 15.0159i −0.0575841 0.855612i
\(309\) 0 0
\(310\) −3.06347 + 5.30609i −0.173993 + 0.301365i
\(311\) 10.5551 + 18.2820i 0.598525 + 1.03668i 0.993039 + 0.117785i \(0.0375795\pi\)
−0.394514 + 0.918890i \(0.629087\pi\)
\(312\) 0 0
\(313\) −0.990260 + 1.71518i −0.0559728 + 0.0969477i −0.892654 0.450742i \(-0.851159\pi\)
0.836681 + 0.547690i \(0.184493\pi\)
\(314\) −9.23194 −0.520989
\(315\) 0 0
\(316\) 11.6145 0.653368
\(317\) −9.02297 + 15.6282i −0.506781 + 0.877770i 0.493189 + 0.869922i \(0.335831\pi\)
−0.999969 + 0.00784727i \(0.997502\pi\)
\(318\) 0 0
\(319\) −1.62678 2.81767i −0.0910822 0.157759i
\(320\) 30.9703 53.6421i 1.73129 2.99868i
\(321\) 0 0
\(322\) 4.23021 + 2.07691i 0.235740 + 0.115742i
\(323\) 4.00498 0.222843
\(324\) 0 0
\(325\) 0.108157 + 0.187333i 0.00599947 + 0.0103914i
\(326\) −18.8179 32.5936i −1.04223 1.80519i
\(327\) 0 0
\(328\) 68.3682 3.77500
\(329\) 0.415285 + 6.17051i 0.0228954 + 0.340191i
\(330\) 0 0
\(331\) 7.33689 12.7079i 0.403272 0.698488i −0.590847 0.806784i \(-0.701206\pi\)
0.994119 + 0.108296i \(0.0345395\pi\)
\(332\) −18.0870 31.3276i −0.992653 1.71933i
\(333\) 0 0
\(334\) −22.3175 + 38.6550i −1.22116 + 2.11511i
\(335\) −9.79606 −0.535216
\(336\) 0 0
\(337\) 12.8080 0.697698 0.348849 0.937179i \(-0.386573\pi\)
0.348849 + 0.937179i \(0.386573\pi\)
\(338\) 1.36263 2.36014i 0.0741170 0.128374i
\(339\) 0 0
\(340\) 31.4028 + 54.3913i 1.70306 + 2.94978i
\(341\) −0.538705 + 0.933065i −0.0291725 + 0.0505283i
\(342\) 0 0
\(343\) 3.70846 + 18.1452i 0.200238 + 0.979747i
\(344\) −8.29125 −0.447034
\(345\) 0 0
\(346\) −5.62146 9.73665i −0.302211 0.523445i
\(347\) 10.1027 + 17.4984i 0.542342 + 0.939363i 0.998769 + 0.0496025i \(0.0157954\pi\)
−0.456428 + 0.889761i \(0.650871\pi\)
\(348\) 0 0
\(349\) −18.4434 −0.987252 −0.493626 0.869674i \(-0.664329\pi\)
−0.493626 + 0.869674i \(0.664329\pi\)
\(350\) −1.29532 + 0.868789i −0.0692378 + 0.0464387i
\(351\) 0 0
\(352\) 11.0607 19.1576i 0.589536 1.02111i
\(353\) −4.07218 7.05322i −0.216740 0.375405i 0.737069 0.675817i \(-0.236209\pi\)
−0.953810 + 0.300412i \(0.902876\pi\)
\(354\) 0 0
\(355\) 7.22064 12.5065i 0.383232 0.663777i
\(356\) 31.3016 1.65898
\(357\) 0 0
\(358\) 39.2806 2.07604
\(359\) −16.3050 + 28.2411i −0.860545 + 1.49051i 0.0108595 + 0.999941i \(0.496543\pi\)
−0.871404 + 0.490566i \(0.836790\pi\)
\(360\) 0 0
\(361\) 9.21355 + 15.9583i 0.484923 + 0.839912i
\(362\) 24.6654 42.7218i 1.29639 2.24541i
\(363\) 0 0
\(364\) 12.8888 + 6.32803i 0.675557 + 0.331679i
\(365\) 18.1173 0.948304
\(366\) 0 0
\(367\) 1.58006 + 2.73675i 0.0824786 + 0.142857i 0.904314 0.426868i \(-0.140383\pi\)
−0.821835 + 0.569725i \(0.807050\pi\)
\(368\) 4.77059 + 8.26290i 0.248684 + 0.430733i
\(369\) 0 0
\(370\) −64.9298 −3.37554
\(371\) −11.6091 5.69972i −0.602713 0.295915i
\(372\) 0 0
\(373\) 0.738849 1.27972i 0.0382561 0.0662616i −0.846263 0.532765i \(-0.821153\pi\)
0.884520 + 0.466503i \(0.154486\pi\)
\(374\) 7.55718 + 13.0894i 0.390773 + 0.676838i
\(375\) 0 0
\(376\) −10.9155 + 18.9061i −0.562922 + 0.975010i
\(377\) 3.10408 0.159868
\(378\) 0 0
\(379\) 10.7254 0.550927 0.275463 0.961312i \(-0.411169\pi\)
0.275463 + 0.961312i \(0.411169\pi\)
\(380\) 4.49213 7.78060i 0.230441 0.399136i
\(381\) 0 0
\(382\) −7.55079 13.0784i −0.386332 0.669147i
\(383\) −10.7054 + 18.5424i −0.547023 + 0.947471i 0.451454 + 0.892294i \(0.350906\pi\)
−0.998477 + 0.0551766i \(0.982428\pi\)
\(384\) 0 0
\(385\) 5.03725 3.37855i 0.256722 0.172187i
\(386\) 23.8211 1.21246
\(387\) 0 0
\(388\) 7.83595 + 13.5723i 0.397810 + 0.689027i
\(389\) 17.3909 + 30.1220i 0.881755 + 1.52725i 0.849388 + 0.527769i \(0.176971\pi\)
0.0323675 + 0.999476i \(0.489695\pi\)
\(390\) 0 0
\(391\) −3.45828 −0.174893
\(392\) −24.8066 + 60.4866i −1.25292 + 3.05503i
\(393\) 0 0
\(394\) 7.45185 12.9070i 0.375419 0.650244i
\(395\) 2.34042 + 4.05373i 0.117759 + 0.203965i
\(396\) 0 0
\(397\) −2.22605 + 3.85564i −0.111722 + 0.193509i −0.916465 0.400115i \(-0.868970\pi\)
0.804742 + 0.593624i \(0.202303\pi\)
\(398\) −53.2426 −2.66881
\(399\) 0 0
\(400\) −3.15780 −0.157890
\(401\) −6.87687 + 11.9111i −0.343415 + 0.594811i −0.985064 0.172186i \(-0.944917\pi\)
0.641650 + 0.766998i \(0.278250\pi\)
\(402\) 0 0
\(403\) −0.513956 0.890198i −0.0256020 0.0443439i
\(404\) −30.5385 + 52.8943i −1.51935 + 2.63159i
\(405\) 0 0
\(406\) 1.50291 + 22.3310i 0.0745882 + 1.10827i
\(407\) −11.4178 −0.565959
\(408\) 0 0
\(409\) 1.74603 + 3.02422i 0.0863358 + 0.149538i 0.905960 0.423364i \(-0.139151\pi\)
−0.819624 + 0.572902i \(0.805818\pi\)
\(410\) 21.8169 + 37.7879i 1.07746 + 1.86621i
\(411\) 0 0
\(412\) 109.806 5.40977
\(413\) 2.48931 + 1.22218i 0.122491 + 0.0601396i
\(414\) 0 0
\(415\) 7.28935 12.6255i 0.357820 0.619763i
\(416\) 10.5525 + 18.2775i 0.517380 + 0.896128i
\(417\) 0 0
\(418\) 1.08105 1.87243i 0.0528757 0.0915834i
\(419\) 3.56737 0.174278 0.0871388 0.996196i \(-0.472228\pi\)
0.0871388 + 0.996196i \(0.472228\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 22.7429 39.3919i 1.10711 1.91757i
\(423\) 0 0
\(424\) −22.8262 39.5361i −1.10854 1.92004i
\(425\) 0.572285 0.991227i 0.0277599 0.0480816i
\(426\) 0 0
\(427\) 2.22073 + 32.9967i 0.107469 + 1.59682i
\(428\) −49.1423 −2.37538
\(429\) 0 0
\(430\) −2.64581 4.58268i −0.127592 0.220996i
\(431\) −5.68211 9.84171i −0.273698 0.474059i 0.696108 0.717937i \(-0.254913\pi\)
−0.969806 + 0.243879i \(0.921580\pi\)
\(432\) 0 0
\(433\) −21.2136 −1.01946 −0.509731 0.860334i \(-0.670255\pi\)
−0.509731 + 0.860334i \(0.670255\pi\)
\(434\) 6.15529 4.12844i 0.295464 0.198171i
\(435\) 0 0
\(436\) −40.9776 + 70.9752i −1.96247 + 3.39910i
\(437\) 0.247351 + 0.428424i 0.0118324 + 0.0204943i
\(438\) 0 0
\(439\) 12.2503 21.2182i 0.584676 1.01269i −0.410239 0.911978i \(-0.634555\pi\)
0.994916 0.100711i \(-0.0321118\pi\)
\(440\) 21.4105 1.02070
\(441\) 0 0
\(442\) −14.4200 −0.685888
\(443\) 20.2344 35.0470i 0.961366 1.66513i 0.242288 0.970204i \(-0.422102\pi\)
0.719077 0.694930i \(-0.244565\pi\)
\(444\) 0 0
\(445\) 6.30753 + 10.9250i 0.299005 + 0.517893i
\(446\) −7.27937 + 12.6082i −0.344688 + 0.597017i
\(447\) 0 0
\(448\) −62.2272 + 41.7366i −2.93996 + 1.97187i
\(449\) 27.7638 1.31025 0.655127 0.755519i \(-0.272615\pi\)
0.655127 + 0.755519i \(0.272615\pi\)
\(450\) 0 0
\(451\) 3.83646 + 6.64494i 0.180652 + 0.312898i
\(452\) 8.42292 + 14.5889i 0.396181 + 0.686205i
\(453\) 0 0
\(454\) 54.8362 2.57359
\(455\) 0.388575 + 5.77363i 0.0182167 + 0.270672i
\(456\) 0 0
\(457\) 5.59696 9.69422i 0.261815 0.453476i −0.704910 0.709297i \(-0.749012\pi\)
0.966724 + 0.255821i \(0.0823457\pi\)
\(458\) 34.4059 + 59.5928i 1.60768 + 2.78459i
\(459\) 0 0
\(460\) −3.87893 + 6.71850i −0.180856 + 0.313252i
\(461\) 9.29773 0.433038 0.216519 0.976278i \(-0.430530\pi\)
0.216519 + 0.976278i \(0.430530\pi\)
\(462\) 0 0
\(463\) 28.2439 1.31260 0.656302 0.754499i \(-0.272120\pi\)
0.656302 + 0.754499i \(0.272120\pi\)
\(464\) −22.6571 + 39.2432i −1.05183 + 1.82182i
\(465\) 0 0
\(466\) 1.08105 + 1.87243i 0.0500785 + 0.0867385i
\(467\) 11.1303 19.2783i 0.515050 0.892093i −0.484797 0.874626i \(-0.661107\pi\)
0.999847 0.0174663i \(-0.00555997\pi\)
\(468\) 0 0
\(469\) 10.6371 + 5.22252i 0.491177 + 0.241154i
\(470\) −13.9329 −0.642676
\(471\) 0 0
\(472\) 4.89457 + 8.47765i 0.225291 + 0.390215i
\(473\) −0.465261 0.805855i −0.0213927 0.0370533i
\(474\) 0 0
\(475\) −0.163729 −0.00751242
\(476\) −5.10165 75.8027i −0.233834 3.47441i
\(477\) 0 0
\(478\) −27.3190 + 47.3179i −1.24954 + 2.16427i
\(479\) −16.4382 28.4718i −0.751081 1.30091i −0.947299 0.320350i \(-0.896200\pi\)
0.196219 0.980560i \(-0.437134\pi\)
\(480\) 0 0
\(481\) 5.44661 9.43381i 0.248344 0.430145i
\(482\) −37.6413 −1.71451
\(483\) 0 0
\(484\) −53.7346 −2.44248
\(485\) −3.15801 + 5.46984i −0.143398 + 0.248373i
\(486\) 0 0
\(487\) 13.9462 + 24.1555i 0.631962 + 1.09459i 0.987150 + 0.159796i \(0.0510836\pi\)
−0.355188 + 0.934795i \(0.615583\pi\)
\(488\) −58.3703 + 101.100i −2.64230 + 4.57660i
\(489\) 0 0
\(490\) −41.3477 + 5.59086i −1.86790 + 0.252569i
\(491\) −10.6571 −0.480948 −0.240474 0.970656i \(-0.577303\pi\)
−0.240474 + 0.970656i \(0.577303\pi\)
\(492\) 0 0
\(493\) −8.21224 14.2240i −0.369861 0.640618i
\(494\) 1.03138 + 1.78640i 0.0464040 + 0.0803740i
\(495\) 0 0
\(496\) 15.0057 0.673776
\(497\) −14.5081 + 9.73078i −0.650777 + 0.436485i
\(498\) 0 0
\(499\) 12.2557 21.2275i 0.548641 0.950274i −0.449727 0.893166i \(-0.648479\pi\)
0.998368 0.0571077i \(-0.0181878\pi\)
\(500\) −30.9581 53.6210i −1.38449 2.39800i
\(501\) 0 0
\(502\) 35.5775 61.6221i 1.58790 2.75033i
\(503\) 38.0054 1.69458 0.847288 0.531134i \(-0.178234\pi\)
0.847288 + 0.531134i \(0.178234\pi\)
\(504\) 0 0
\(505\) −24.6151 −1.09536
\(506\) −0.933476 + 1.61683i −0.0414981 + 0.0718768i
\(507\) 0 0
\(508\) −23.8493 41.3082i −1.05814 1.83275i
\(509\) 19.9250 34.5112i 0.883161 1.52968i 0.0353545 0.999375i \(-0.488744\pi\)
0.847807 0.530305i \(-0.177923\pi\)
\(510\) 0 0
\(511\) −19.6728 9.65878i −0.870274 0.427279i
\(512\) −35.4186 −1.56530
\(513\) 0 0
\(514\) −14.4708 25.0642i −0.638279 1.10553i
\(515\) 22.1269 + 38.3249i 0.975027 + 1.68880i
\(516\) 0 0
\(517\) −2.45007 −0.107754
\(518\) 70.5045 + 34.6157i 3.09779 + 1.52093i
\(519\) 0 0
\(520\) −10.2134 + 17.6901i −0.447887 + 0.775764i
\(521\) −9.81670 17.0030i −0.430077 0.744916i 0.566802 0.823854i \(-0.308180\pi\)
−0.996880 + 0.0789382i \(0.974847\pi\)
\(522\) 0 0
\(523\) −11.4162 + 19.7734i −0.499195 + 0.864632i −1.00000 0.000928862i \(-0.999704\pi\)
0.500804 + 0.865561i \(0.333038\pi\)
\(524\) 57.0619 2.49276
\(525\) 0 0
\(526\) 28.2275 1.23078
\(527\) −2.71947 + 4.71026i −0.118462 + 0.205182i
\(528\) 0 0
\(529\) 11.2864 + 19.5486i 0.490714 + 0.849941i
\(530\) 14.5681 25.2326i 0.632796 1.09603i
\(531\) 0 0
\(532\) −9.02584 + 6.05375i −0.391320 + 0.262463i
\(533\) −7.32040 −0.317082
\(534\) 0 0
\(535\) −9.90257 17.1518i −0.428125 0.741535i
\(536\) 20.9151 + 36.2260i 0.903394 + 1.56472i
\(537\) 0 0
\(538\) 32.6214 1.40641
\(539\) −7.27092 + 0.983142i −0.313181 + 0.0423469i
\(540\) 0 0
\(541\) 4.82334 8.35427i 0.207372 0.359178i −0.743514 0.668720i \(-0.766842\pi\)
0.950886 + 0.309542i \(0.100176\pi\)
\(542\) −3.75663 6.50667i −0.161361 0.279486i
\(543\) 0 0
\(544\) 55.8360 96.7108i 2.39395 4.14644i
\(545\) −33.0292 −1.41482
\(546\) 0 0
\(547\) −43.8570 −1.87519 −0.937596 0.347728i \(-0.886953\pi\)
−0.937596 + 0.347728i \(0.886953\pi\)
\(548\) 23.6933 41.0380i 1.01213 1.75306i
\(549\) 0 0
\(550\) −0.308949 0.535115i −0.0131736 0.0228174i
\(551\) −1.17475 + 2.03473i −0.0500461 + 0.0866823i
\(552\) 0 0
\(553\) −0.380221 5.64950i −0.0161686 0.240241i
\(554\) 65.2083 2.77044
\(555\) 0 0
\(556\) 10.8540 + 18.7996i 0.460311 + 0.797282i
\(557\) 7.45977 + 12.9207i 0.316080 + 0.547467i 0.979667 0.200633i \(-0.0642997\pi\)
−0.663586 + 0.748100i \(0.730966\pi\)
\(558\) 0 0
\(559\) 0.887771 0.0375487
\(560\) −75.8290 37.2299i −3.20436 1.57325i
\(561\) 0 0
\(562\) 5.28521 9.15426i 0.222943 0.386149i
\(563\) −8.63486 14.9560i −0.363916 0.630321i 0.624686 0.780876i \(-0.285227\pi\)
−0.988602 + 0.150555i \(0.951894\pi\)
\(564\) 0 0
\(565\) −3.39457 + 5.87957i −0.142811 + 0.247355i
\(566\) 16.9238 0.711359
\(567\) 0 0
\(568\) −61.6657 −2.58743
\(569\) 13.2662 22.9777i 0.556148 0.963277i −0.441665 0.897180i \(-0.645612\pi\)
0.997813 0.0660972i \(-0.0210547\pi\)
\(570\) 0 0
\(571\) 0.992844 + 1.71966i 0.0415492 + 0.0719654i 0.886052 0.463586i \(-0.153437\pi\)
−0.844503 + 0.535551i \(0.820104\pi\)
\(572\) −2.84416 + 4.92623i −0.118920 + 0.205976i
\(573\) 0 0
\(574\) −3.54433 52.6634i −0.147938 2.19813i
\(575\) 0.141379 0.00589593
\(576\) 0 0
\(577\) −5.94915 10.3042i −0.247666 0.428971i 0.715212 0.698908i \(-0.246330\pi\)
−0.962878 + 0.269937i \(0.912997\pi\)
\(578\) 14.9852 + 25.9551i 0.623303 + 1.07959i
\(579\) 0 0
\(580\) −36.8446 −1.52989
\(581\) −14.6462 + 9.82339i −0.607626 + 0.407543i
\(582\) 0 0
\(583\) 2.56176 4.43711i 0.106097 0.183766i
\(584\) −38.6814 66.9981i −1.60065 2.77240i
\(585\) 0 0
\(586\) −22.5861 + 39.1203i −0.933024 + 1.61604i
\(587\) −33.5122 −1.38320 −0.691598 0.722283i \(-0.743093\pi\)
−0.691598 + 0.722283i \(0.743093\pi\)
\(588\) 0 0
\(589\) 0.778033 0.0320583
\(590\) −3.12380 + 5.41058i −0.128605 + 0.222750i
\(591\) 0 0
\(592\) 79.5109 + 137.717i 3.26788 + 5.66013i
\(593\) 17.6408 30.5547i 0.724419 1.25473i −0.234793 0.972045i \(-0.575441\pi\)
0.959213 0.282686i \(-0.0912253\pi\)
\(594\) 0 0
\(595\) 25.4288 17.0554i 1.04248 0.699205i
\(596\) −83.5357 −3.42176
\(597\) 0 0
\(598\) −0.890590 1.54255i −0.0364189 0.0630794i
\(599\) −12.5034 21.6565i −0.510876 0.884863i −0.999921 0.0126040i \(-0.995988\pi\)
0.489045 0.872259i \(-0.337345\pi\)
\(600\) 0 0
\(601\) −28.4688 −1.16127 −0.580634 0.814165i \(-0.697195\pi\)
−0.580634 + 0.814165i \(0.697195\pi\)
\(602\) 0.429834 + 6.38668i 0.0175187 + 0.260301i
\(603\) 0 0
\(604\) 37.1090 64.2747i 1.50994 2.61530i
\(605\) −10.8280 18.7546i −0.440219 0.762482i
\(606\) 0 0
\(607\) −18.0234 + 31.2175i −0.731549 + 1.26708i 0.224672 + 0.974434i \(0.427869\pi\)
−0.956221 + 0.292646i \(0.905464\pi\)
\(608\) −15.9745 −0.647853
\(609\) 0 0
\(610\) −74.5058 −3.01665
\(611\) 1.16875 2.02434i 0.0472827 0.0818961i
\(612\) 0 0
\(613\) −9.16264 15.8702i −0.370075 0.640989i 0.619501 0.784996i \(-0.287335\pi\)
−0.989577 + 0.144006i \(0.954001\pi\)
\(614\) −9.61725 + 16.6576i −0.388121 + 0.672245i
\(615\) 0 0
\(616\) −23.2487 11.4144i −0.936717 0.459901i
\(617\) −44.3782 −1.78660 −0.893299 0.449463i \(-0.851615\pi\)
−0.893299 + 0.449463i \(0.851615\pi\)
\(618\) 0 0
\(619\) 12.5043 + 21.6580i 0.502588 + 0.870509i 0.999996 + 0.00299144i \(0.000952205\pi\)
−0.497407 + 0.867517i \(0.665714\pi\)
\(620\) 6.10051 + 10.5664i 0.245002 + 0.424357i
\(621\) 0 0
\(622\) 57.5306 2.30677
\(623\) −1.02471 15.2256i −0.0410541 0.610002i
\(624\) 0 0
\(625\) 11.9358 20.6734i 0.477433 0.826938i
\(626\) 2.69871 + 4.67429i 0.107862 + 0.186822i
\(627\) 0 0
\(628\) −9.19212 + 15.9212i −0.366806 + 0.635326i
\(629\) −57.6388 −2.29821
\(630\) 0 0
\(631\) −18.4638 −0.735032 −0.367516 0.930017i \(-0.619792\pi\)
−0.367516 + 0.930017i \(0.619792\pi\)
\(632\) 9.99382 17.3098i 0.397533 0.688547i
\(633\) 0 0
\(634\) 24.5899 + 42.5909i 0.976588 + 1.69150i
\(635\) 9.61165 16.6479i 0.381427 0.660650i
\(636\) 0 0
\(637\) 2.65613 6.47650i 0.105240 0.256608i
\(638\) −8.86677 −0.351039
\(639\) 0 0
\(640\) −38.2416 66.2364i −1.51163 2.61822i
\(641\) −10.6284 18.4088i −0.419795 0.727106i 0.576124 0.817362i \(-0.304565\pi\)
−0.995919 + 0.0902567i \(0.971231\pi\)
\(642\) 0 0
\(643\) −36.0554 −1.42188 −0.710942 0.703251i \(-0.751731\pi\)
−0.710942 + 0.703251i \(0.751731\pi\)
\(644\) 7.79376 5.22738i 0.307117 0.205988i
\(645\) 0 0
\(646\) 5.45729 9.45230i 0.214714 0.371896i
\(647\) 19.9117 + 34.4881i 0.782809 + 1.35587i 0.930299 + 0.366802i \(0.119547\pi\)
−0.147490 + 0.989064i \(0.547119\pi\)
\(648\) 0 0
\(649\) −0.549314 + 0.951440i −0.0215625 + 0.0373473i
\(650\) 0.589510 0.0231225
\(651\) 0 0
\(652\) −74.9469 −2.93515
\(653\) −16.2335 + 28.1172i −0.635265 + 1.10031i 0.351195 + 0.936303i \(0.385776\pi\)
−0.986459 + 0.164008i \(0.947558\pi\)
\(654\) 0 0
\(655\) 11.4984 + 19.9159i 0.449281 + 0.778177i
\(656\) 53.4324 92.5477i 2.08619 3.61338i
\(657\) 0 0
\(658\) 15.1291 + 7.42796i 0.589794 + 0.289572i
\(659\) −23.5230 −0.916327 −0.458164 0.888868i \(-0.651493\pi\)
−0.458164 + 0.888868i \(0.651493\pi\)
\(660\) 0 0
\(661\) −7.01944 12.1580i −0.273025 0.472893i 0.696610 0.717450i \(-0.254691\pi\)
−0.969635 + 0.244557i \(0.921357\pi\)
\(662\) −19.9949 34.6321i −0.777122 1.34602i
\(663\) 0 0
\(664\) −62.2525 −2.41587
\(665\) −3.93167 1.93034i −0.152464 0.0748553i
\(666\) 0 0
\(667\) 1.01439 1.75698i 0.0392773 0.0680303i
\(668\) 44.4424 + 76.9765i 1.71953 + 2.97831i
\(669\) 0 0
\(670\) −13.3484 + 23.1200i −0.515692 + 0.893205i
\(671\) −13.1017 −0.505786
\(672\) 0 0
\(673\) −47.1937 −1.81918 −0.909592 0.415502i \(-0.863606\pi\)
−0.909592 + 0.415502i \(0.863606\pi\)
\(674\) 17.4526 30.2287i 0.672247 1.16437i
\(675\) 0 0
\(676\) −2.71349 4.69991i −0.104365 0.180766i
\(677\) −4.79438 + 8.30411i −0.184263 + 0.319153i −0.943328 0.331862i \(-0.892323\pi\)
0.759065 + 0.651015i \(0.225656\pi\)
\(678\) 0 0
\(679\) 6.34526 4.25585i 0.243509 0.163325i
\(680\) 108.083 4.14481
\(681\) 0 0
\(682\) 1.46811 + 2.54284i 0.0562167 + 0.0973702i
\(683\) 23.6581 + 40.9769i 0.905250 + 1.56794i 0.820581 + 0.571530i \(0.193650\pi\)
0.0846691 + 0.996409i \(0.473017\pi\)
\(684\) 0 0
\(685\) 19.0976 0.729680
\(686\) 47.8783 + 15.9726i 1.82800 + 0.609837i
\(687\) 0 0
\(688\) −6.47994 + 11.2236i −0.247045 + 0.427895i
\(689\) 2.44407 + 4.23325i 0.0931117 + 0.161274i
\(690\) 0 0
\(691\) 13.5559 23.4796i 0.515692 0.893205i −0.484142 0.874990i \(-0.660868\pi\)
0.999834 0.0182158i \(-0.00579859\pi\)
\(692\) −22.3888 −0.851095
\(693\) 0 0
\(694\) 55.0648 2.09023
\(695\) −4.37433 + 7.57656i −0.165928 + 0.287395i
\(696\) 0 0
\(697\) 19.3670 + 33.5447i 0.733578 + 1.27059i
\(698\) −25.1314 + 43.5289i −0.951238 + 1.64759i
\(699\) 0 0
\(700\) 0.208563 + 3.09893i 0.00788293 + 0.117128i
\(701\) 1.79821 0.0679176 0.0339588 0.999423i \(-0.489189\pi\)
0.0339588 + 0.999423i \(0.489189\pi\)
\(702\) 0 0
\(703\) 4.12258 + 7.14051i 0.155486 + 0.269310i
\(704\) −14.8419 25.7069i −0.559375 0.968866i
\(705\) 0 0
\(706\) −22.1954 −0.835336
\(707\) 26.7284 + 13.1229i 1.00523 + 0.493537i
\(708\) 0 0
\(709\) 14.1615 24.5284i 0.531846 0.921185i −0.467462 0.884013i \(-0.654832\pi\)
0.999309 0.0371721i \(-0.0118350\pi\)
\(710\) −19.6780 34.0834i −0.738504 1.27913i
\(711\) 0 0
\(712\) 26.9337 46.6506i 1.00938 1.74831i
\(713\) −0.671827 −0.0251601
\(714\) 0 0
\(715\) −2.29249 −0.0857341
\(716\) 39.1112 67.7425i 1.46165 2.53166i
\(717\) 0 0
\(718\) 44.4352 + 76.9640i 1.65831 + 2.87227i
\(719\) −20.9485 + 36.2839i −0.781249 + 1.35316i 0.149966 + 0.988691i \(0.452084\pi\)
−0.931215 + 0.364471i \(0.881250\pi\)
\(720\) 0 0
\(721\) −3.59469 53.4117i −0.133873 1.98916i
\(722\) 50.2184 1.86894
\(723\) 0 0
\(724\) −49.1180 85.0749i −1.82546 3.16179i
\(725\) 0.335728 + 0.581499i 0.0124686 + 0.0215963i
\(726\) 0 0
\(727\) 19.5123 0.723670 0.361835 0.932242i \(-0.382150\pi\)
0.361835 + 0.932242i \(0.382150\pi\)
\(728\) 20.5213 13.7639i 0.760571 0.510125i
\(729\) 0 0
\(730\) 24.6871 42.7593i 0.913711 1.58259i
\(731\) −2.34871 4.06808i −0.0868701 0.150463i
\(732\) 0 0
\(733\) −8.87698 + 15.3754i −0.327879 + 0.567902i −0.982091 0.188409i \(-0.939667\pi\)
0.654212 + 0.756311i \(0.273000\pi\)
\(734\) 8.61213 0.317880
\(735\) 0 0
\(736\) 13.7939 0.508450
\(737\) −2.34728 + 4.06562i −0.0864633 + 0.149759i
\(738\) 0 0
\(739\) −22.1571 38.3772i −0.815061 1.41173i −0.909284 0.416176i \(-0.863370\pi\)
0.0942227 0.995551i \(-0.469963\pi\)
\(740\) −64.6497 + 111.977i −2.37657 + 4.11634i
\(741\) 0 0
\(742\) −29.2709 + 19.6324i −1.07457 + 0.720729i
\(743\) 7.16727 0.262941 0.131471 0.991320i \(-0.458030\pi\)
0.131471 + 0.991320i \(0.458030\pi\)
\(744\) 0 0
\(745\) −16.8331 29.1558i −0.616718 1.06819i
\(746\) −2.01355 3.48757i −0.0737212 0.127689i
\(747\) 0 0
\(748\) 30.0983 1.10050
\(749\) 1.60875 + 23.9036i 0.0587826 + 0.873420i
\(750\) 0 0
\(751\) 16.9532 29.3639i 0.618632 1.07150i −0.371103 0.928592i \(-0.621020\pi\)
0.989736 0.142911i \(-0.0456462\pi\)
\(752\) 17.0618 + 29.5518i 0.622178 + 1.07764i
\(753\) 0 0
\(754\) 4.22970 7.32606i 0.154037 0.266799i
\(755\) 29.9110 1.08857
\(756\) 0 0
\(757\) −0.906670 −0.0329535 −0.0164767 0.999864i \(-0.505245\pi\)
−0.0164767 + 0.999864i \(0.505245\pi\)
\(758\) 14.6147 25.3134i 0.530830 0.919424i
\(759\) 0 0
\(760\) −7.73059 13.3898i −0.280418 0.485698i
\(761\) 10.1247 17.5365i 0.367020 0.635697i −0.622079 0.782955i \(-0.713712\pi\)
0.989098 + 0.147258i \(0.0470449\pi\)
\(762\) 0 0
\(763\) 35.8650 + 17.6087i 1.29840 + 0.637477i
\(764\) −30.0729 −1.08800
\(765\) 0 0
\(766\) 29.1750 + 50.5326i 1.05414 + 1.82582i
\(767\) −0.524077 0.907729i −0.0189233 0.0327762i
\(768\) 0 0
\(769\) −36.9094 −1.33099 −0.665494 0.746403i \(-0.731779\pi\)
−0.665494 + 0.746403i \(0.731779\pi\)
\(770\) −1.10996 16.4923i −0.0400001 0.594341i
\(771\) 0 0
\(772\) 23.7183 41.0814i 0.853642 1.47855i
\(773\) −4.94018 8.55665i −0.177686 0.307761i 0.763402 0.645924i \(-0.223528\pi\)
−0.941088 + 0.338163i \(0.890194\pi\)
\(774\) 0 0
\(775\) 0.111176 0.192562i 0.00399355 0.00691704i
\(776\) 26.9701 0.968169
\(777\) 0 0
\(778\) 94.7893 3.39836
\(779\) 2.77043 4.79852i 0.0992609 0.171925i
\(780\) 0 0
\(781\) −3.46035 5.99350i −0.123821 0.214464i
\(782\) −4.71233 + 8.16200i −0.168513 + 0.291873i
\(783\) 0 0
\(784\) 62.4913 + 80.8526i 2.23183 + 2.88759i
\(785\) −7.40915 −0.264444
\(786\) 0 0
\(787\) −18.8411 32.6337i −0.671611 1.16326i −0.977447 0.211180i \(-0.932269\pi\)
0.305836 0.952084i \(-0.401064\pi\)
\(788\) −14.8394 25.7026i −0.528632 0.915617i
\(789\) 0 0
\(790\) 12.7565 0.453854
\(791\) 6.82056 4.57464i 0.242511 0.162656i
\(792\) 0 0
\(793\) 6.24989 10.8251i 0.221940 0.384412i
\(794\) 6.06656 + 10.5076i 0.215294 + 0.372900i
\(795\) 0 0
\(796\) −53.0129 + 91.8211i −1.87899 + 3.25451i
\(797\) −28.3837 −1.00540 −0.502701 0.864460i \(-0.667660\pi\)
−0.502701 + 0.864460i \(0.667660\pi\)
\(798\) 0 0
\(799\) −12.3683 −0.437560
\(800\) −2.28266 + 3.95368i −0.0807041 + 0.139784i
\(801\) 0 0
\(802\) 18.7412 + 32.4607i 0.661775 + 1.14623i
\(803\) 4.34118 7.51915i 0.153197 0.265345i
\(804\) 0 0
\(805\) 3.39498 + 1.66684i 0.119657 + 0.0587482i
\(806\) −2.80132 −0.0986722
\(807\) 0 0
\(808\) 52.5543 + 91.0268i 1.84886 + 3.20231i
\(809\) −5.87327 10.1728i −0.206493 0.357657i 0.744114 0.668052i \(-0.232872\pi\)
−0.950607 + 0.310396i \(0.899539\pi\)
\(810\) 0 0
\(811\) 2.01940 0.0709108 0.0354554 0.999371i \(-0.488712\pi\)
0.0354554 + 0.999371i \(0.488712\pi\)
\(812\) 40.0080 + 19.6428i 1.40400 + 0.689326i
\(813\) 0 0
\(814\) −15.5582 + 26.9475i −0.545313 + 0.944511i
\(815\) −15.1024 26.1581i −0.529014 0.916280i
\(816\) 0 0
\(817\) −0.335980 + 0.581934i −0.0117544 + 0.0203593i
\(818\) 9.51676 0.332746
\(819\) 0 0
\(820\) 86.8910 3.03437
\(821\) −7.54208 + 13.0633i −0.263220 + 0.455911i −0.967096 0.254412i \(-0.918118\pi\)
0.703875 + 0.710323i \(0.251451\pi\)
\(822\) 0 0
\(823\) 7.38828 + 12.7969i 0.257539 + 0.446071i 0.965582 0.260098i \(-0.0837550\pi\)
−0.708043 + 0.706170i \(0.750422\pi\)
\(824\) 94.4839 163.651i 3.29150 5.70105i
\(825\) 0 0
\(826\) 6.27651 4.20974i 0.218388 0.146476i
\(827\) −13.0407 −0.453471 −0.226736 0.973956i \(-0.572805\pi\)
−0.226736 + 0.973956i \(0.572805\pi\)
\(828\) 0 0
\(829\) 12.7291 + 22.0474i 0.442099 + 0.765738i 0.997845 0.0656144i \(-0.0209007\pi\)
−0.555746 + 0.831352i \(0.687567\pi\)
\(830\) −19.8653 34.4077i −0.689535 1.19431i
\(831\) 0 0
\(832\) 28.3200 0.981820
\(833\) −36.7047 + 4.96305i −1.27174 + 0.171960i
\(834\) 0 0
\(835\) −17.9110 + 31.0228i −0.619835 + 1.07359i
\(836\) −2.15277 3.72870i −0.0744549 0.128960i
\(837\) 0 0
\(838\) 4.86099 8.41948i 0.167920 0.290846i
\(839\) −32.1703 −1.11064 −0.555321 0.831636i \(-0.687404\pi\)
−0.555321 + 0.831636i \(0.687404\pi\)
\(840\) 0 0
\(841\) −19.3647 −0.667747
\(842\) −13.6263 + 23.6014i −0.469592 + 0.813357i
\(843\) 0 0
\(844\) −45.2896 78.4439i −1.55893 2.70015i
\(845\) 1.09358 1.89414i 0.0376204 0.0651604i
\(846\) 0 0
\(847\) 1.75909 + 26.1374i 0.0604431 + 0.898093i
\(848\) −71.3582 −2.45045
\(849\) 0 0
\(850\) −1.55962 2.70134i −0.0534946 0.0926553i
\(851\) −3.55982 6.16579i −0.122029 0.211360i
\(852\) 0 0
\(853\) −19.3910 −0.663934 −0.331967 0.943291i \(-0.607712\pi\)
−0.331967 + 0.943291i \(0.607712\pi\)
\(854\) 80.9027 + 39.7209i 2.76843 + 1.35922i
\(855\) 0 0
\(856\) −42.2849 + 73.2396i −1.44527 + 2.50328i
\(857\) 8.71210 + 15.0898i 0.297600 + 0.515458i 0.975586 0.219616i \(-0.0704806\pi\)
−0.677987 + 0.735074i \(0.737147\pi\)
\(858\) 0 0
\(859\) 17.7459 30.7367i 0.605481 1.04872i −0.386495 0.922292i \(-0.626314\pi\)
0.991975 0.126432i \(-0.0403524\pi\)
\(860\) −10.5376 −0.359329
\(861\) 0 0
\(862\) −30.9704 −1.05486
\(863\) 28.0010 48.4991i 0.953164 1.65093i 0.214648 0.976691i \(-0.431140\pi\)
0.738516 0.674236i \(-0.235527\pi\)
\(864\) 0 0
\(865\) −4.51153 7.81420i −0.153397 0.265691i
\(866\) −28.9062 + 50.0670i −0.982273 + 1.70135i
\(867\) 0 0
\(868\) −0.991079 14.7259i −0.0336394 0.499830i
\(869\) 2.24320 0.0760953
\(870\) 0 0
\(871\) −2.23944 3.87883i −0.0758807 0.131429i
\(872\) 70.5190 + 122.143i 2.38808 + 4.13627i
\(873\) 0 0
\(874\) 1.34819 0.0456031
\(875\) −25.0687 + 16.8139i −0.847476 + 0.568414i
\(876\) 0 0
\(877\) −12.6031 + 21.8292i −0.425577 + 0.737120i −0.996474 0.0839011i \(-0.973262\pi\)
0.570898 + 0.821021i \(0.306595\pi\)
\(878\) −33.3852 57.8249i −1.12670 1.95150i
\(879\) 0 0
\(880\) 16.7331 28.9826i 0.564074 0.977004i
\(881\) 18.6082 0.626925 0.313463 0.949601i \(-0.398511\pi\)
0.313463 + 0.949601i \(0.398511\pi\)
\(882\) 0 0
\(883\) −11.2552 −0.378768 −0.189384 0.981903i \(-0.560649\pi\)
−0.189384 + 0.981903i \(0.560649\pi\)
\(884\) −14.3578 + 24.8684i −0.482904 + 0.836415i
\(885\) 0 0
\(886\) −55.1438 95.5119i −1.85259 3.20879i
\(887\) −19.6056 + 33.9579i −0.658292 + 1.14020i 0.322765 + 0.946479i \(0.395388\pi\)
−0.981057 + 0.193717i \(0.937946\pi\)
\(888\) 0 0
\(889\) −19.3123 + 12.9530i −0.647712 + 0.434429i
\(890\) 34.3792 1.15239
\(891\) 0 0
\(892\) 14.4959 + 25.1077i 0.485360 + 0.840668i
\(893\) 0.884638 + 1.53224i 0.0296033 + 0.0512744i
\(894\) 0 0
\(895\) 31.5249 1.05376
\(896\) 6.21266 + 92.3107i 0.207551 + 3.08389i
\(897\) 0 0
\(898\) 37.8316 65.5263i 1.26246 2.18664i
\(899\) −1.59536 2.76325i −0.0532083 0.0921595i
\(900\) 0 0
\(901\) 12.9322 22.3992i 0.430834 0.746226i
\(902\) 20.9106 0.696247
\(903\) 0 0
\(904\) 28.9903 0.964203
\(905\) 19.7954 34.2866i 0.658020 1.13972i
\(906\) 0 0
\(907\) −10.7985 18.7035i −0.358558 0.621040i 0.629162 0.777274i \(-0.283398\pi\)
−0.987720 + 0.156234i \(0.950065\pi\)
\(908\) 54.5997 94.5694i 1.81195 3.13840i
\(909\) 0 0
\(910\) 14.1560 + 6.95021i 0.469268 + 0.230397i
\(911\) 32.4434 1.07490 0.537449 0.843297i \(-0.319388\pi\)
0.537449 + 0.843297i \(0.319388\pi\)
\(912\) 0 0
\(913\) −3.49328 6.05054i −0.115611 0.200244i
\(914\) −15.2531 26.4192i −0.504528 0.873868i
\(915\) 0 0
\(916\) 137.030 4.52760
\(917\) −1.86802 27.7559i −0.0616873 0.916580i
\(918\) 0 0
\(919\) −17.8686 + 30.9493i −0.589430 + 1.02092i 0.404877 + 0.914371i \(0.367314\pi\)
−0.994307 + 0.106552i \(0.966019\pi\)
\(920\) 6.67532 + 11.5620i 0.220079 + 0.381187i
\(921\) 0 0
\(922\) 12.6693 21.9439i 0.417242 0.722684i
\(923\) 6.60274 0.217332
\(924\) 0 0
\(925\) 2.35636 0.0774765
\(926\) 38.4858 66.6594i 1.26472 2.19056i
\(927\) 0 0
\(928\) 32.7559 + 56.7349i 1.07527 + 1.86241i
\(929\) 5.88847 10.1991i 0.193194 0.334622i −0.753113 0.657891i \(-0.771449\pi\)
0.946307 + 0.323269i \(0.104782\pi\)
\(930\) 0 0
\(931\) 3.24012 + 4.19214i 0.106191 + 0.137392i
\(932\) 4.30553 0.141032
\(933\) 0 0
\(934\) −30.3329 52.5382i −0.992523 1.71910i
\(935\) 6.06506 + 10.5050i 0.198349 + 0.343550i
\(936\) 0 0
\(937\) 18.9937 0.620497 0.310248 0.950655i \(-0.399588\pi\)
0.310248 + 0.950655i \(0.399588\pi\)
\(938\) 26.8203 17.9887i 0.875713 0.587352i
\(939\) 0 0
\(940\) −13.8728 + 24.0284i −0.452480 + 0.783719i
\(941\) 3.40932 + 5.90511i 0.111141 + 0.192501i 0.916230 0.400652i \(-0.131216\pi\)
−0.805090 + 0.593153i \(0.797883\pi\)
\(942\) 0 0
\(943\) −2.39225 + 4.14349i −0.0779023 + 0.134931i
\(944\) 15.3012 0.498012
\(945\) 0 0
\(946\) −2.53590 −0.0824493
\(947\) 0.529958 0.917914i 0.0172213 0.0298282i −0.857286 0.514840i \(-0.827851\pi\)
0.874508 + 0.485012i \(0.161185\pi\)
\(948\) 0 0
\(949\) 4.14174 + 7.17370i 0.134446 + 0.232868i
\(950\) −0.223102 + 0.386424i −0.00723838 + 0.0125372i
\(951\) 0 0
\(952\) −117.363 57.6219i −3.80376 1.86753i
\(953\) 40.4127 1.30910 0.654548 0.756020i \(-0.272859\pi\)
0.654548 + 0.756020i \(0.272859\pi\)
\(954\) 0 0
\(955\) −6.05993 10.4961i −0.196095 0.339646i
\(956\) 54.4023 + 94.2276i 1.75950 + 3.04754i
\(957\) 0 0
\(958\) −89.5964 −2.89473
\(959\) −20.7372 10.1814i −0.669639 0.328774i
\(960\) 0 0
\(961\) 14.9717 25.9317i 0.482958 0.836508i
\(962\) −14.8434 25.7095i −0.478570 0.828907i
\(963\) 0 0
\(964\) −37.4789 + 64.9154i −1.20711 + 2.09078i
\(965\) 19.1177 0.615422
\(966\) 0 0
\(967\) −36.2949 −1.16717 −0.583583 0.812053i \(-0.698350\pi\)
−0.583583 + 0.812053i \(0.698350\pi\)
\(968\) −46.2365 + 80.0839i −1.48610 + 2.57399i
\(969\) 0 0
\(970\) 8.60638 + 14.9067i 0.276334 + 0.478625i
\(971\) −10.7218 + 18.5708i −0.344080 + 0.595964i −0.985186 0.171488i \(-0.945142\pi\)
0.641106 + 0.767452i \(0.278476\pi\)
\(972\) 0 0
\(973\) 8.78914 5.89500i 0.281767 0.188985i
\(974\) 76.0137 2.43564
\(975\) 0 0
\(976\) 91.2374 + 158.028i 2.92044 + 5.05835i
\(977\) −19.9138 34.4918i −0.637100 1.10349i −0.986066 0.166354i \(-0.946801\pi\)
0.348966 0.937135i \(-0.386533\pi\)
\(978\) 0 0
\(979\) 6.04551 0.193215
\(980\) −31.5275 + 76.8742i −1.00711 + 2.45565i
\(981\) 0 0
\(982\) −14.5216 + 25.1522i −0.463403 + 0.802638i
\(983\) 7.94071 + 13.7537i 0.253269 + 0.438675i 0.964424 0.264360i \(-0.0851608\pi\)
−0.711155 + 0.703036i \(0.751827\pi\)
\(984\) 0 0
\(985\) 5.98052 10.3586i 0.190555 0.330051i
\(986\) −44.7608 −1.42548
\(987\) 0 0
\(988\) 4.10772 0.130684
\(989\) 0.290116 0.502496i 0.00922516 0.0159785i
\(990\) 0 0
\(991\) 8.83435 + 15.3016i 0.280633 + 0.486070i 0.971541 0.236873i \(-0.0761225\pi\)
−0.690908 + 0.722943i \(0.742789\pi\)
\(992\) 10.8471 18.7877i 0.344394 0.596509i
\(993\) 0 0
\(994\) 3.19686 + 47.5005i 0.101398 + 1.50662i
\(995\) −42.7301 −1.35464
\(996\) 0 0
\(997\) 12.4304 + 21.5301i 0.393675 + 0.681865i 0.992931 0.118692i \(-0.0378701\pi\)
−0.599256 + 0.800558i \(0.704537\pi\)
\(998\) −33.3999 57.8503i −1.05725 1.83122i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.j.h.352.5 10
3.2 odd 2 91.2.e.c.79.1 yes 10
7.2 even 3 5733.2.a.bl.1.1 5
7.4 even 3 inner 819.2.j.h.235.5 10
7.5 odd 6 5733.2.a.bm.1.1 5
12.11 even 2 1456.2.r.p.625.2 10
21.2 odd 6 637.2.a.l.1.5 5
21.5 even 6 637.2.a.k.1.5 5
21.11 odd 6 91.2.e.c.53.1 10
21.17 even 6 637.2.e.m.508.1 10
21.20 even 2 637.2.e.m.79.1 10
39.38 odd 2 1183.2.e.f.170.5 10
84.11 even 6 1456.2.r.p.417.2 10
273.116 odd 6 1183.2.e.f.508.5 10
273.194 even 6 8281.2.a.bx.1.1 5
273.233 odd 6 8281.2.a.bw.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.e.c.53.1 10 21.11 odd 6
91.2.e.c.79.1 yes 10 3.2 odd 2
637.2.a.k.1.5 5 21.5 even 6
637.2.a.l.1.5 5 21.2 odd 6
637.2.e.m.79.1 10 21.20 even 2
637.2.e.m.508.1 10 21.17 even 6
819.2.j.h.235.5 10 7.4 even 3 inner
819.2.j.h.352.5 10 1.1 even 1 trivial
1183.2.e.f.170.5 10 39.38 odd 2
1183.2.e.f.508.5 10 273.116 odd 6
1456.2.r.p.417.2 10 84.11 even 6
1456.2.r.p.625.2 10 12.11 even 2
5733.2.a.bl.1.1 5 7.2 even 3
5733.2.a.bm.1.1 5 7.5 odd 6
8281.2.a.bw.1.1 5 273.233 odd 6
8281.2.a.bx.1.1 5 273.194 even 6