Properties

Label 819.2.s.e.289.1
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(289,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(-1.27528 + 2.20885i\) of defining polynomial
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.e.802.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.55056 q^{2} +4.50537 q^{4} +(1.39351 - 2.41363i) q^{5} +(-2.46231 - 0.968004i) q^{7} -6.39011 q^{8} +(-3.55423 + 6.15611i) q^{10} +(-1.38373 + 2.39670i) q^{11} +(2.99297 + 2.01050i) q^{13} +(6.28028 + 2.46895i) q^{14} +7.28763 q^{16} +5.88680 q^{17} +(-1.70037 - 2.94513i) q^{19} +(6.27828 - 10.8743i) q^{20} +(3.52930 - 6.11292i) q^{22} +7.34492 q^{23} +(-1.38373 - 2.39670i) q^{25} +(-7.63376 - 5.12791i) q^{26} +(-11.0936 - 4.36122i) q^{28} +(-1.56328 - 2.70768i) q^{29} +(1.93352 + 3.34896i) q^{31} -5.80735 q^{32} -15.0147 q^{34} +(-5.76765 + 4.59418i) q^{35} +5.84347 q^{37} +(4.33691 + 7.51175i) q^{38} +(-8.90467 + 15.4233i) q^{40} +(-3.24124 - 5.61400i) q^{41} +(2.99197 - 5.18224i) q^{43} +(-6.23423 + 10.7980i) q^{44} -18.7337 q^{46} +(-3.95673 + 6.85325i) q^{47} +(5.12594 + 4.76705i) q^{49} +(3.52930 + 6.11292i) q^{50} +(13.4845 + 9.05806i) q^{52} +(-6.34471 - 10.9894i) q^{53} +(3.85649 + 6.67963i) q^{55} +(15.7344 + 6.18565i) q^{56} +(3.98724 + 6.90611i) q^{58} -2.73648 q^{59} +(-4.77631 - 8.27282i) q^{61} +(-4.93157 - 8.54173i) q^{62} +0.236742 q^{64} +(9.02334 - 4.42227i) q^{65} +(4.34033 - 7.51767i) q^{67} +26.5222 q^{68} +(14.7108 - 11.7177i) q^{70} +(1.57062 - 2.72039i) q^{71} +(-4.80291 - 8.31889i) q^{73} -14.9041 q^{74} +(-7.66082 - 13.2689i) q^{76} +(5.72719 - 4.56195i) q^{77} +(-1.88112 + 3.25819i) q^{79} +(10.1554 - 17.5896i) q^{80} +(8.26699 + 14.3189i) q^{82} -4.82088 q^{83} +(8.20331 - 14.2086i) q^{85} +(-7.63120 + 13.2176i) q^{86} +(8.84221 - 15.3151i) q^{88} -1.75557 q^{89} +(-5.42345 - 7.84769i) q^{91} +33.0916 q^{92} +(10.0919 - 17.4797i) q^{94} -9.47794 q^{95} +(8.48637 - 14.6988i) q^{97} +(-13.0740 - 12.1587i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} + q^{7} - 12 q^{8} - 4 q^{10} + 2 q^{11} + 5 q^{13} + 7 q^{14} + 12 q^{16} - 4 q^{17} - 11 q^{19} + 20 q^{20} + 7 q^{22} + 8 q^{23} + 2 q^{25} - 33 q^{26} - q^{28} - 15 q^{29} + 3 q^{31}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.55056 −1.80352 −0.901760 0.432237i \(-0.857725\pi\)
−0.901760 + 0.432237i \(0.857725\pi\)
\(3\) 0 0
\(4\) 4.50537 2.25269
\(5\) 1.39351 2.41363i 0.623196 1.07941i −0.365691 0.930736i \(-0.619167\pi\)
0.988887 0.148671i \(-0.0474995\pi\)
\(6\) 0 0
\(7\) −2.46231 0.968004i −0.930666 0.365871i
\(8\) −6.39011 −2.25924
\(9\) 0 0
\(10\) −3.55423 + 6.15611i −1.12395 + 1.94673i
\(11\) −1.38373 + 2.39670i −0.417211 + 0.722631i −0.995658 0.0930893i \(-0.970326\pi\)
0.578447 + 0.815720i \(0.303659\pi\)
\(12\) 0 0
\(13\) 2.99297 + 2.01050i 0.830101 + 0.557613i
\(14\) 6.28028 + 2.46895i 1.67847 + 0.659856i
\(15\) 0 0
\(16\) 7.28763 1.82191
\(17\) 5.88680 1.42776 0.713880 0.700268i \(-0.246936\pi\)
0.713880 + 0.700268i \(0.246936\pi\)
\(18\) 0 0
\(19\) −1.70037 2.94513i −0.390093 0.675660i 0.602369 0.798218i \(-0.294224\pi\)
−0.992461 + 0.122558i \(0.960890\pi\)
\(20\) 6.27828 10.8743i 1.40386 2.43157i
\(21\) 0 0
\(22\) 3.52930 6.11292i 0.752449 1.30328i
\(23\) 7.34492 1.53152 0.765761 0.643126i \(-0.222363\pi\)
0.765761 + 0.643126i \(0.222363\pi\)
\(24\) 0 0
\(25\) −1.38373 2.39670i −0.276747 0.479339i
\(26\) −7.63376 5.12791i −1.49710 1.00567i
\(27\) 0 0
\(28\) −11.0936 4.36122i −2.09650 0.824193i
\(29\) −1.56328 2.70768i −0.290294 0.502803i 0.683585 0.729871i \(-0.260420\pi\)
−0.973879 + 0.227067i \(0.927086\pi\)
\(30\) 0 0
\(31\) 1.93352 + 3.34896i 0.347271 + 0.601491i 0.985764 0.168137i \(-0.0537751\pi\)
−0.638493 + 0.769628i \(0.720442\pi\)
\(32\) −5.80735 −1.02660
\(33\) 0 0
\(34\) −15.0147 −2.57499
\(35\) −5.76765 + 4.59418i −0.974911 + 0.776558i
\(36\) 0 0
\(37\) 5.84347 0.960660 0.480330 0.877088i \(-0.340517\pi\)
0.480330 + 0.877088i \(0.340517\pi\)
\(38\) 4.33691 + 7.51175i 0.703540 + 1.21857i
\(39\) 0 0
\(40\) −8.90467 + 15.4233i −1.40795 + 2.43865i
\(41\) −3.24124 5.61400i −0.506197 0.876759i −0.999974 0.00717054i \(-0.997718\pi\)
0.493777 0.869588i \(-0.335616\pi\)
\(42\) 0 0
\(43\) 2.99197 5.18224i 0.456271 0.790284i −0.542489 0.840063i \(-0.682518\pi\)
0.998760 + 0.0497783i \(0.0158515\pi\)
\(44\) −6.23423 + 10.7980i −0.939846 + 1.62786i
\(45\) 0 0
\(46\) −18.7337 −2.76213
\(47\) −3.95673 + 6.85325i −0.577148 + 0.999650i 0.418656 + 0.908145i \(0.362501\pi\)
−0.995805 + 0.0915053i \(0.970832\pi\)
\(48\) 0 0
\(49\) 5.12594 + 4.76705i 0.732277 + 0.681007i
\(50\) 3.52930 + 6.11292i 0.499118 + 0.864498i
\(51\) 0 0
\(52\) 13.4845 + 9.05806i 1.86996 + 1.25613i
\(53\) −6.34471 10.9894i −0.871513 1.50951i −0.860431 0.509567i \(-0.829806\pi\)
−0.0110819 0.999939i \(-0.503528\pi\)
\(54\) 0 0
\(55\) 3.85649 + 6.67963i 0.520009 + 0.900682i
\(56\) 15.7344 + 6.18565i 2.10260 + 0.826592i
\(57\) 0 0
\(58\) 3.98724 + 6.90611i 0.523551 + 0.906816i
\(59\) −2.73648 −0.356260 −0.178130 0.984007i \(-0.557005\pi\)
−0.178130 + 0.984007i \(0.557005\pi\)
\(60\) 0 0
\(61\) −4.77631 8.27282i −0.611544 1.05923i −0.990980 0.134008i \(-0.957215\pi\)
0.379436 0.925218i \(-0.376118\pi\)
\(62\) −4.93157 8.54173i −0.626310 1.08480i
\(63\) 0 0
\(64\) 0.236742 0.0295928
\(65\) 9.02334 4.42227i 1.11921 0.548515i
\(66\) 0 0
\(67\) 4.34033 7.51767i 0.530255 0.918429i −0.469121 0.883134i \(-0.655429\pi\)
0.999377 0.0352957i \(-0.0112373\pi\)
\(68\) 26.5222 3.21629
\(69\) 0 0
\(70\) 14.7108 11.7177i 1.75827 1.40054i
\(71\) 1.57062 2.72039i 0.186398 0.322851i −0.757649 0.652663i \(-0.773652\pi\)
0.944047 + 0.329812i \(0.106985\pi\)
\(72\) 0 0
\(73\) −4.80291 8.31889i −0.562138 0.973652i −0.997310 0.0733045i \(-0.976646\pi\)
0.435171 0.900348i \(-0.356688\pi\)
\(74\) −14.9041 −1.73257
\(75\) 0 0
\(76\) −7.66082 13.2689i −0.878756 1.52205i
\(77\) 5.72719 4.56195i 0.652674 0.519882i
\(78\) 0 0
\(79\) −1.88112 + 3.25819i −0.211642 + 0.366575i −0.952229 0.305386i \(-0.901215\pi\)
0.740586 + 0.671961i \(0.234548\pi\)
\(80\) 10.1554 17.5896i 1.13541 1.96658i
\(81\) 0 0
\(82\) 8.26699 + 14.3189i 0.912937 + 1.58125i
\(83\) −4.82088 −0.529161 −0.264580 0.964364i \(-0.585233\pi\)
−0.264580 + 0.964364i \(0.585233\pi\)
\(84\) 0 0
\(85\) 8.20331 14.2086i 0.889774 1.54113i
\(86\) −7.63120 + 13.2176i −0.822894 + 1.42529i
\(87\) 0 0
\(88\) 8.84221 15.3151i 0.942582 1.63260i
\(89\) −1.75557 −0.186091 −0.0930453 0.995662i \(-0.529660\pi\)
−0.0930453 + 0.995662i \(0.529660\pi\)
\(90\) 0 0
\(91\) −5.42345 7.84769i −0.568532 0.822661i
\(92\) 33.0916 3.45004
\(93\) 0 0
\(94\) 10.0919 17.4797i 1.04090 1.80289i
\(95\) −9.47794 −0.972416
\(96\) 0 0
\(97\) 8.48637 14.6988i 0.861660 1.49244i −0.00866511 0.999962i \(-0.502758\pi\)
0.870325 0.492477i \(-0.163908\pi\)
\(98\) −13.0740 12.1587i −1.32068 1.22821i
\(99\) 0 0
\(100\) −6.23423 10.7980i −0.623423 1.07980i
\(101\) −0.921364 + 1.59585i −0.0916791 + 0.158793i −0.908218 0.418498i \(-0.862557\pi\)
0.816539 + 0.577291i \(0.195890\pi\)
\(102\) 0 0
\(103\) −2.38506 + 4.13105i −0.235007 + 0.407045i −0.959275 0.282474i \(-0.908845\pi\)
0.724267 + 0.689519i \(0.242178\pi\)
\(104\) −19.1254 12.8473i −1.87540 1.25978i
\(105\) 0 0
\(106\) 16.1826 + 28.0291i 1.57179 + 2.72242i
\(107\) 12.0754 1.16738 0.583688 0.811978i \(-0.301609\pi\)
0.583688 + 0.811978i \(0.301609\pi\)
\(108\) 0 0
\(109\) 3.40885 + 5.90430i 0.326508 + 0.565529i 0.981816 0.189832i \(-0.0607945\pi\)
−0.655308 + 0.755362i \(0.727461\pi\)
\(110\) −9.83622 17.0368i −0.937846 1.62440i
\(111\) 0 0
\(112\) −17.9444 7.05446i −1.69559 0.666583i
\(113\) 2.72463 4.71920i 0.256312 0.443945i −0.708939 0.705270i \(-0.750826\pi\)
0.965251 + 0.261325i \(0.0841593\pi\)
\(114\) 0 0
\(115\) 10.2352 17.7279i 0.954438 1.65314i
\(116\) −7.04316 12.1991i −0.653941 1.13266i
\(117\) 0 0
\(118\) 6.97958 0.642522
\(119\) −14.4951 5.69845i −1.32877 0.522376i
\(120\) 0 0
\(121\) 1.67057 + 2.89350i 0.151870 + 0.263046i
\(122\) 12.1823 + 21.1003i 1.10293 + 1.91034i
\(123\) 0 0
\(124\) 8.71124 + 15.0883i 0.782292 + 1.35497i
\(125\) 6.22211 0.556523
\(126\) 0 0
\(127\) −0.886520 1.53550i −0.0786660 0.136253i 0.824009 0.566577i \(-0.191733\pi\)
−0.902675 + 0.430324i \(0.858399\pi\)
\(128\) 11.0109 0.973233
\(129\) 0 0
\(130\) −23.0146 + 11.2793i −2.01851 + 0.989258i
\(131\) 3.50734 6.07490i 0.306438 0.530766i −0.671143 0.741328i \(-0.734196\pi\)
0.977580 + 0.210562i \(0.0675295\pi\)
\(132\) 0 0
\(133\) 1.33595 + 8.89780i 0.115841 + 0.771537i
\(134\) −11.0703 + 19.1743i −0.956326 + 1.65641i
\(135\) 0 0
\(136\) −37.6173 −3.22566
\(137\) 19.6574 1.67945 0.839725 0.543013i \(-0.182716\pi\)
0.839725 + 0.543013i \(0.182716\pi\)
\(138\) 0 0
\(139\) −9.17342 + 15.8888i −0.778079 + 1.34767i 0.154968 + 0.987919i \(0.450472\pi\)
−0.933048 + 0.359753i \(0.882861\pi\)
\(140\) −25.9854 + 20.6985i −2.19617 + 1.74934i
\(141\) 0 0
\(142\) −4.00596 + 6.93852i −0.336173 + 0.582268i
\(143\) −8.96004 + 4.39125i −0.749276 + 0.367215i
\(144\) 0 0
\(145\) −8.71377 −0.723640
\(146\) 12.2501 + 21.2178i 1.01383 + 1.75600i
\(147\) 0 0
\(148\) 26.3270 2.16407
\(149\) −4.40145 7.62354i −0.360581 0.624545i 0.627476 0.778636i \(-0.284088\pi\)
−0.988057 + 0.154092i \(0.950755\pi\)
\(150\) 0 0
\(151\) −4.83567 8.37562i −0.393521 0.681598i 0.599390 0.800457i \(-0.295410\pi\)
−0.992911 + 0.118859i \(0.962076\pi\)
\(152\) 10.8656 + 18.8197i 0.881314 + 1.52648i
\(153\) 0 0
\(154\) −14.6076 + 11.6355i −1.17711 + 0.937618i
\(155\) 10.7775 0.865672
\(156\) 0 0
\(157\) −5.76601 9.98702i −0.460177 0.797051i 0.538792 0.842439i \(-0.318881\pi\)
−0.998969 + 0.0453882i \(0.985548\pi\)
\(158\) 4.79791 8.31023i 0.381701 0.661126i
\(159\) 0 0
\(160\) −8.09259 + 14.0168i −0.639775 + 1.10812i
\(161\) −18.0855 7.10991i −1.42533 0.560339i
\(162\) 0 0
\(163\) 6.08521 + 10.5399i 0.476631 + 0.825548i 0.999641 0.0267776i \(-0.00852461\pi\)
−0.523011 + 0.852326i \(0.675191\pi\)
\(164\) −14.6030 25.2931i −1.14030 1.97506i
\(165\) 0 0
\(166\) 12.2960 0.954352
\(167\) −4.54697 7.87559i −0.351855 0.609431i 0.634719 0.772743i \(-0.281116\pi\)
−0.986575 + 0.163311i \(0.947782\pi\)
\(168\) 0 0
\(169\) 4.91577 + 12.0348i 0.378136 + 0.925750i
\(170\) −20.9231 + 36.2398i −1.60473 + 2.77947i
\(171\) 0 0
\(172\) 13.4799 23.3479i 1.02783 1.78026i
\(173\) −0.673648 1.16679i −0.0512165 0.0887096i 0.839281 0.543699i \(-0.182977\pi\)
−0.890497 + 0.454989i \(0.849643\pi\)
\(174\) 0 0
\(175\) 1.08717 + 7.24087i 0.0821822 + 0.547358i
\(176\) −10.0841 + 17.4662i −0.760121 + 1.31657i
\(177\) 0 0
\(178\) 4.47770 0.335618
\(179\) −2.97996 + 5.16145i −0.222733 + 0.385785i −0.955637 0.294547i \(-0.904831\pi\)
0.732904 + 0.680332i \(0.238164\pi\)
\(180\) 0 0
\(181\) 10.4495 0.776707 0.388354 0.921510i \(-0.373044\pi\)
0.388354 + 0.921510i \(0.373044\pi\)
\(182\) 13.8329 + 20.0160i 1.02536 + 1.48369i
\(183\) 0 0
\(184\) −46.9348 −3.46008
\(185\) 8.14292 14.1040i 0.598680 1.03694i
\(186\) 0 0
\(187\) −8.14577 + 14.1089i −0.595677 + 1.03174i
\(188\) −17.8265 + 30.8765i −1.30013 + 2.25190i
\(189\) 0 0
\(190\) 24.1741 1.75377
\(191\) −0.329057 0.569943i −0.0238097 0.0412396i 0.853875 0.520478i \(-0.174246\pi\)
−0.877685 + 0.479238i \(0.840913\pi\)
\(192\) 0 0
\(193\) −4.39278 + 7.60853i −0.316200 + 0.547674i −0.979692 0.200510i \(-0.935740\pi\)
0.663492 + 0.748183i \(0.269074\pi\)
\(194\) −21.6450 + 37.4903i −1.55402 + 2.69165i
\(195\) 0 0
\(196\) 23.0943 + 21.4773i 1.64959 + 1.53410i
\(197\) 9.29781 + 16.1043i 0.662442 + 1.14738i 0.979972 + 0.199135i \(0.0638131\pi\)
−0.317530 + 0.948248i \(0.602854\pi\)
\(198\) 0 0
\(199\) 15.2257 1.07932 0.539659 0.841884i \(-0.318553\pi\)
0.539659 + 0.841884i \(0.318553\pi\)
\(200\) 8.84221 + 15.3151i 0.625238 + 1.08294i
\(201\) 0 0
\(202\) 2.35000 4.07031i 0.165345 0.286386i
\(203\) 1.22823 + 8.18041i 0.0862051 + 0.574152i
\(204\) 0 0
\(205\) −18.0668 −1.26184
\(206\) 6.08326 10.5365i 0.423841 0.734113i
\(207\) 0 0
\(208\) 21.8117 + 14.6518i 1.51237 + 1.01592i
\(209\) 9.41145 0.651004
\(210\) 0 0
\(211\) −10.5945 18.3503i −0.729357 1.26328i −0.957155 0.289575i \(-0.906486\pi\)
0.227798 0.973708i \(-0.426847\pi\)
\(212\) −28.5853 49.5112i −1.96325 3.40044i
\(213\) 0 0
\(214\) −30.7991 −2.10539
\(215\) −8.33867 14.4430i −0.568692 0.985004i
\(216\) 0 0
\(217\) −1.51913 10.1178i −0.103125 0.686843i
\(218\) −8.69448 15.0593i −0.588865 1.01994i
\(219\) 0 0
\(220\) 17.3749 + 30.0942i 1.17142 + 2.02895i
\(221\) 17.6190 + 11.8354i 1.18518 + 0.796137i
\(222\) 0 0
\(223\) −0.453274 0.785093i −0.0303534 0.0525737i 0.850450 0.526056i \(-0.176330\pi\)
−0.880803 + 0.473483i \(0.842997\pi\)
\(224\) 14.2995 + 5.62154i 0.955425 + 0.375605i
\(225\) 0 0
\(226\) −6.94935 + 12.0366i −0.462264 + 0.800664i
\(227\) −1.92809 −0.127972 −0.0639859 0.997951i \(-0.520381\pi\)
−0.0639859 + 0.997951i \(0.520381\pi\)
\(228\) 0 0
\(229\) 5.05578 8.75686i 0.334095 0.578670i −0.649216 0.760604i \(-0.724903\pi\)
0.983311 + 0.181935i \(0.0582360\pi\)
\(230\) −26.1055 + 45.2161i −1.72135 + 2.98146i
\(231\) 0 0
\(232\) 9.98953 + 17.3024i 0.655845 + 1.13596i
\(233\) −13.1134 + 22.7130i −0.859085 + 1.48798i 0.0137178 + 0.999906i \(0.495633\pi\)
−0.872803 + 0.488073i \(0.837700\pi\)
\(234\) 0 0
\(235\) 11.0275 + 19.1001i 0.719353 + 1.24596i
\(236\) −12.3289 −0.802542
\(237\) 0 0
\(238\) 36.9708 + 14.5343i 2.39646 + 0.942116i
\(239\) −28.0556 −1.81476 −0.907382 0.420306i \(-0.861923\pi\)
−0.907382 + 0.420306i \(0.861923\pi\)
\(240\) 0 0
\(241\) −4.45249 −0.286810 −0.143405 0.989664i \(-0.545805\pi\)
−0.143405 + 0.989664i \(0.545805\pi\)
\(242\) −4.26088 7.38007i −0.273900 0.474409i
\(243\) 0 0
\(244\) −21.5191 37.2721i −1.37762 2.38610i
\(245\) 18.6489 5.72918i 1.19144 0.366024i
\(246\) 0 0
\(247\) 0.832025 12.2333i 0.0529405 0.778387i
\(248\) −12.3554 21.4002i −0.784570 1.35892i
\(249\) 0 0
\(250\) −15.8699 −1.00370
\(251\) −1.55413 + 2.69183i −0.0980956 + 0.169907i −0.910896 0.412635i \(-0.864608\pi\)
0.812801 + 0.582542i \(0.197942\pi\)
\(252\) 0 0
\(253\) −10.1634 + 17.6035i −0.638968 + 1.10672i
\(254\) 2.26113 + 3.91638i 0.141876 + 0.245736i
\(255\) 0 0
\(256\) −28.5574 −1.78484
\(257\) 25.9854 1.62092 0.810461 0.585793i \(-0.199217\pi\)
0.810461 + 0.585793i \(0.199217\pi\)
\(258\) 0 0
\(259\) −14.3884 5.65650i −0.894053 0.351478i
\(260\) 40.6535 19.9240i 2.52122 1.23563i
\(261\) 0 0
\(262\) −8.94570 + 15.4944i −0.552667 + 0.957247i
\(263\) 6.39028 11.0683i 0.394042 0.682500i −0.598937 0.800796i \(-0.704410\pi\)
0.992978 + 0.118296i \(0.0377432\pi\)
\(264\) 0 0
\(265\) −35.3656 −2.17249
\(266\) −3.40741 22.6944i −0.208922 1.39148i
\(267\) 0 0
\(268\) 19.5548 33.8699i 1.19450 2.06893i
\(269\) −1.95749 −0.119350 −0.0596751 0.998218i \(-0.519006\pi\)
−0.0596751 + 0.998218i \(0.519006\pi\)
\(270\) 0 0
\(271\) 26.9218 1.63538 0.817692 0.575656i \(-0.195253\pi\)
0.817692 + 0.575656i \(0.195253\pi\)
\(272\) 42.9009 2.60125
\(273\) 0 0
\(274\) −50.1376 −3.02892
\(275\) 7.65887 0.461847
\(276\) 0 0
\(277\) −23.1556 −1.39129 −0.695643 0.718388i \(-0.744880\pi\)
−0.695643 + 0.718388i \(0.744880\pi\)
\(278\) 23.3974 40.5254i 1.40328 2.43055i
\(279\) 0 0
\(280\) 36.8559 29.3573i 2.20256 1.75443i
\(281\) 26.9347 1.60679 0.803396 0.595446i \(-0.203024\pi\)
0.803396 + 0.595446i \(0.203024\pi\)
\(282\) 0 0
\(283\) −7.62216 + 13.2020i −0.453091 + 0.784776i −0.998576 0.0533442i \(-0.983012\pi\)
0.545486 + 0.838120i \(0.316345\pi\)
\(284\) 7.07621 12.2564i 0.419896 0.727281i
\(285\) 0 0
\(286\) 22.8531 11.2002i 1.35133 0.662279i
\(287\) 2.54657 + 16.9609i 0.150319 + 1.00117i
\(288\) 0 0
\(289\) 17.6545 1.03850
\(290\) 22.2250 1.30510
\(291\) 0 0
\(292\) −21.6389 37.4797i −1.26632 2.19333i
\(293\) 2.04388 3.54010i 0.119405 0.206815i −0.800127 0.599830i \(-0.795235\pi\)
0.919532 + 0.393015i \(0.128568\pi\)
\(294\) 0 0
\(295\) −3.81332 + 6.60486i −0.222020 + 0.384550i
\(296\) −37.3404 −2.17037
\(297\) 0 0
\(298\) 11.2262 + 19.4443i 0.650315 + 1.12638i
\(299\) 21.9831 + 14.7670i 1.27132 + 0.853996i
\(300\) 0 0
\(301\) −12.3836 + 9.86404i −0.713778 + 0.568554i
\(302\) 12.3337 + 21.3625i 0.709723 + 1.22928i
\(303\) 0 0
\(304\) −12.3917 21.4631i −0.710713 1.23099i
\(305\) −26.6233 −1.52445
\(306\) 0 0
\(307\) 1.04296 0.0595250 0.0297625 0.999557i \(-0.490525\pi\)
0.0297625 + 0.999557i \(0.490525\pi\)
\(308\) 25.8031 20.5533i 1.47027 1.17113i
\(309\) 0 0
\(310\) −27.4888 −1.56126
\(311\) 3.88724 + 6.73290i 0.220425 + 0.381788i 0.954937 0.296808i \(-0.0959221\pi\)
−0.734512 + 0.678596i \(0.762589\pi\)
\(312\) 0 0
\(313\) −12.1950 + 21.1224i −0.689304 + 1.19391i 0.282759 + 0.959191i \(0.408750\pi\)
−0.972063 + 0.234719i \(0.924583\pi\)
\(314\) 14.7066 + 25.4725i 0.829939 + 1.43750i
\(315\) 0 0
\(316\) −8.47514 + 14.6794i −0.476764 + 0.825779i
\(317\) 5.38045 9.31922i 0.302196 0.523419i −0.674437 0.738333i \(-0.735614\pi\)
0.976633 + 0.214913i \(0.0689468\pi\)
\(318\) 0 0
\(319\) 8.65265 0.484455
\(320\) 0.329903 0.571408i 0.0184421 0.0319427i
\(321\) 0 0
\(322\) 46.1281 + 18.1343i 2.57062 + 1.01058i
\(323\) −10.0098 17.3374i −0.556958 0.964680i
\(324\) 0 0
\(325\) 0.677087 9.95524i 0.0375580 0.552217i
\(326\) −15.5207 26.8827i −0.859613 1.48889i
\(327\) 0 0
\(328\) 20.7119 + 35.8741i 1.14362 + 1.98081i
\(329\) 16.3767 13.0447i 0.902875 0.719178i
\(330\) 0 0
\(331\) 11.4845 + 19.8918i 0.631248 + 1.09335i 0.987297 + 0.158886i \(0.0507902\pi\)
−0.356049 + 0.934467i \(0.615876\pi\)
\(332\) −21.7199 −1.19203
\(333\) 0 0
\(334\) 11.5973 + 20.0872i 0.634578 + 1.09912i
\(335\) −12.0966 20.9519i −0.660906 1.14472i
\(336\) 0 0
\(337\) 6.99034 0.380788 0.190394 0.981708i \(-0.439023\pi\)
0.190394 + 0.981708i \(0.439023\pi\)
\(338\) −12.5380 30.6954i −0.681976 1.66961i
\(339\) 0 0
\(340\) 36.9590 64.0148i 2.00438 3.47169i
\(341\) −10.7019 −0.579541
\(342\) 0 0
\(343\) −8.00712 16.6999i −0.432344 0.901709i
\(344\) −19.1190 + 33.1151i −1.03083 + 1.78545i
\(345\) 0 0
\(346\) 1.71818 + 2.97598i 0.0923701 + 0.159990i
\(347\) 2.15384 0.115624 0.0578120 0.998327i \(-0.481588\pi\)
0.0578120 + 0.998327i \(0.481588\pi\)
\(348\) 0 0
\(349\) −0.756384 1.31010i −0.0404883 0.0701278i 0.845071 0.534654i \(-0.179558\pi\)
−0.885559 + 0.464526i \(0.846225\pi\)
\(350\) −2.77289 18.4683i −0.148217 0.987171i
\(351\) 0 0
\(352\) 8.03582 13.9184i 0.428311 0.741856i
\(353\) −16.1969 + 28.0538i −0.862073 + 1.49315i 0.00785109 + 0.999969i \(0.497501\pi\)
−0.869924 + 0.493185i \(0.835832\pi\)
\(354\) 0 0
\(355\) −4.37734 7.58177i −0.232325 0.402399i
\(356\) −7.90952 −0.419204
\(357\) 0 0
\(358\) 7.60058 13.1646i 0.401703 0.695771i
\(359\) 7.93156 13.7379i 0.418612 0.725057i −0.577188 0.816611i \(-0.695850\pi\)
0.995800 + 0.0915543i \(0.0291835\pi\)
\(360\) 0 0
\(361\) 3.71746 6.43883i 0.195656 0.338886i
\(362\) −26.6522 −1.40081
\(363\) 0 0
\(364\) −24.4347 35.3567i −1.28072 1.85320i
\(365\) −26.7716 −1.40129
\(366\) 0 0
\(367\) −6.29687 + 10.9065i −0.328694 + 0.569315i −0.982253 0.187561i \(-0.939942\pi\)
0.653559 + 0.756876i \(0.273275\pi\)
\(368\) 53.5271 2.79029
\(369\) 0 0
\(370\) −20.7690 + 35.9730i −1.07973 + 1.87015i
\(371\) 4.98490 + 33.2009i 0.258803 + 1.72371i
\(372\) 0 0
\(373\) 5.85178 + 10.1356i 0.302994 + 0.524800i 0.976813 0.214096i \(-0.0686806\pi\)
−0.673819 + 0.738896i \(0.735347\pi\)
\(374\) 20.7763 35.9856i 1.07432 1.86077i
\(375\) 0 0
\(376\) 25.2839 43.7930i 1.30392 2.25845i
\(377\) 0.764942 11.2470i 0.0393965 0.579249i
\(378\) 0 0
\(379\) −16.4778 28.5403i −0.846406 1.46602i −0.884395 0.466740i \(-0.845428\pi\)
0.0379888 0.999278i \(-0.487905\pi\)
\(380\) −42.7017 −2.19055
\(381\) 0 0
\(382\) 0.839280 + 1.45368i 0.0429413 + 0.0743765i
\(383\) 6.31803 + 10.9431i 0.322836 + 0.559169i 0.981072 0.193643i \(-0.0620304\pi\)
−0.658236 + 0.752812i \(0.728697\pi\)
\(384\) 0 0
\(385\) −3.02996 20.1804i −0.154421 1.02849i
\(386\) 11.2041 19.4060i 0.570272 0.987741i
\(387\) 0 0
\(388\) 38.2343 66.2237i 1.94105 3.36200i
\(389\) 0.0593906 + 0.102868i 0.00301122 + 0.00521559i 0.867527 0.497390i \(-0.165708\pi\)
−0.864516 + 0.502606i \(0.832375\pi\)
\(390\) 0 0
\(391\) 43.2381 2.18664
\(392\) −32.7553 30.4620i −1.65439 1.53856i
\(393\) 0 0
\(394\) −23.7147 41.0750i −1.19473 2.06933i
\(395\) 5.24271 + 9.08064i 0.263789 + 0.456897i
\(396\) 0 0
\(397\) −3.49151 6.04747i −0.175234 0.303514i 0.765008 0.644020i \(-0.222735\pi\)
−0.940242 + 0.340506i \(0.889401\pi\)
\(398\) −38.8340 −1.94657
\(399\) 0 0
\(400\) −10.0841 17.4662i −0.504207 0.873312i
\(401\) 19.1517 0.956389 0.478194 0.878254i \(-0.341291\pi\)
0.478194 + 0.878254i \(0.341291\pi\)
\(402\) 0 0
\(403\) −0.946109 + 13.9107i −0.0471291 + 0.692941i
\(404\) −4.15109 + 7.18989i −0.206524 + 0.357711i
\(405\) 0 0
\(406\) −3.13269 20.8646i −0.155473 1.03549i
\(407\) −8.08580 + 14.0050i −0.400798 + 0.694203i
\(408\) 0 0
\(409\) 11.6901 0.578039 0.289019 0.957323i \(-0.406671\pi\)
0.289019 + 0.957323i \(0.406671\pi\)
\(410\) 46.0805 2.27575
\(411\) 0 0
\(412\) −10.7456 + 18.6119i −0.529398 + 0.916944i
\(413\) 6.73807 + 2.64893i 0.331559 + 0.130345i
\(414\) 0 0
\(415\) −6.71794 + 11.6358i −0.329771 + 0.571180i
\(416\) −17.3812 11.6757i −0.852185 0.572447i
\(417\) 0 0
\(418\) −24.0045 −1.17410
\(419\) −7.89905 13.6816i −0.385894 0.668388i 0.605999 0.795465i \(-0.292774\pi\)
−0.991893 + 0.127078i \(0.959440\pi\)
\(420\) 0 0
\(421\) 8.58170 0.418247 0.209123 0.977889i \(-0.432939\pi\)
0.209123 + 0.977889i \(0.432939\pi\)
\(422\) 27.0220 + 46.8035i 1.31541 + 2.27836i
\(423\) 0 0
\(424\) 40.5434 + 70.2232i 1.96896 + 3.41034i
\(425\) −8.14577 14.1089i −0.395128 0.684381i
\(426\) 0 0
\(427\) 3.75264 + 24.9937i 0.181603 + 1.20953i
\(428\) 54.4043 2.62973
\(429\) 0 0
\(430\) 21.2683 + 36.8378i 1.02565 + 1.77648i
\(431\) −9.72232 + 16.8396i −0.468308 + 0.811133i −0.999344 0.0362164i \(-0.988469\pi\)
0.531036 + 0.847349i \(0.321803\pi\)
\(432\) 0 0
\(433\) 2.35409 4.07740i 0.113130 0.195948i −0.803900 0.594764i \(-0.797246\pi\)
0.917031 + 0.398816i \(0.130579\pi\)
\(434\) 3.87463 + 25.8062i 0.185988 + 1.23874i
\(435\) 0 0
\(436\) 15.3581 + 26.6011i 0.735521 + 1.27396i
\(437\) −12.4891 21.6318i −0.597435 1.03479i
\(438\) 0 0
\(439\) −20.6623 −0.986157 −0.493078 0.869985i \(-0.664128\pi\)
−0.493078 + 0.869985i \(0.664128\pi\)
\(440\) −24.6434 42.6836i −1.17483 2.03486i
\(441\) 0 0
\(442\) −44.9385 30.1870i −2.13751 1.43585i
\(443\) −6.14100 + 10.6365i −0.291768 + 0.505357i −0.974228 0.225566i \(-0.927577\pi\)
0.682460 + 0.730923i \(0.260910\pi\)
\(444\) 0 0
\(445\) −2.44641 + 4.23730i −0.115971 + 0.200867i
\(446\) 1.15610 + 2.00243i 0.0547430 + 0.0948177i
\(447\) 0 0
\(448\) −0.582933 0.229168i −0.0275410 0.0108272i
\(449\) −13.7884 + 23.8822i −0.650714 + 1.12707i 0.332235 + 0.943196i \(0.392197\pi\)
−0.982950 + 0.183874i \(0.941136\pi\)
\(450\) 0 0
\(451\) 17.9401 0.844764
\(452\) 12.2755 21.2618i 0.577390 1.00007i
\(453\) 0 0
\(454\) 4.91771 0.230800
\(455\) −26.4990 + 2.15437i −1.24229 + 0.100999i
\(456\) 0 0
\(457\) 13.8786 0.649214 0.324607 0.945849i \(-0.394768\pi\)
0.324607 + 0.945849i \(0.394768\pi\)
\(458\) −12.8951 + 22.3349i −0.602547 + 1.04364i
\(459\) 0 0
\(460\) 46.1134 79.8708i 2.15005 3.72399i
\(461\) 12.2050 21.1396i 0.568441 0.984569i −0.428279 0.903647i \(-0.640880\pi\)
0.996720 0.0809228i \(-0.0257867\pi\)
\(462\) 0 0
\(463\) −11.6449 −0.541185 −0.270593 0.962694i \(-0.587220\pi\)
−0.270593 + 0.962694i \(0.587220\pi\)
\(464\) −11.3926 19.7326i −0.528888 0.916062i
\(465\) 0 0
\(466\) 33.4465 57.9310i 1.54938 2.68360i
\(467\) −2.09483 + 3.62835i −0.0969370 + 0.167900i −0.910415 0.413695i \(-0.864238\pi\)
0.813478 + 0.581595i \(0.197571\pi\)
\(468\) 0 0
\(469\) −17.9644 + 14.3094i −0.829517 + 0.660745i
\(470\) −28.1263 48.7161i −1.29737 2.24711i
\(471\) 0 0
\(472\) 17.4864 0.804879
\(473\) 8.28017 + 14.3417i 0.380723 + 0.659431i
\(474\) 0 0
\(475\) −4.70573 + 8.15056i −0.215914 + 0.373973i
\(476\) −65.3060 25.6736i −2.99329 1.17675i
\(477\) 0 0
\(478\) 71.5575 3.27297
\(479\) −7.50423 + 12.9977i −0.342877 + 0.593880i −0.984966 0.172750i \(-0.944735\pi\)
0.642089 + 0.766630i \(0.278068\pi\)
\(480\) 0 0
\(481\) 17.4893 + 11.7483i 0.797445 + 0.535676i
\(482\) 11.3564 0.517268
\(483\) 0 0
\(484\) 7.52652 + 13.0363i 0.342115 + 0.592560i
\(485\) −23.6517 40.9659i −1.07397 1.86016i
\(486\) 0 0
\(487\) 6.60817 0.299445 0.149722 0.988728i \(-0.452162\pi\)
0.149722 + 0.988728i \(0.452162\pi\)
\(488\) 30.5212 + 52.8642i 1.38163 + 2.39305i
\(489\) 0 0
\(490\) −47.5653 + 14.6126i −2.14878 + 0.660131i
\(491\) 16.4555 + 28.5018i 0.742628 + 1.28627i 0.951295 + 0.308283i \(0.0997544\pi\)
−0.208666 + 0.977987i \(0.566912\pi\)
\(492\) 0 0
\(493\) −9.20272 15.9396i −0.414470 0.717883i
\(494\) −2.12213 + 31.2018i −0.0954792 + 1.40384i
\(495\) 0 0
\(496\) 14.0908 + 24.4060i 0.632696 + 1.09586i
\(497\) −6.50069 + 5.17808i −0.291596 + 0.232268i
\(498\) 0 0
\(499\) −17.9199 + 31.0381i −0.802204 + 1.38946i 0.115959 + 0.993254i \(0.463006\pi\)
−0.918163 + 0.396203i \(0.870328\pi\)
\(500\) 28.0329 1.25367
\(501\) 0 0
\(502\) 3.96390 6.86567i 0.176917 0.306430i
\(503\) 9.67700 16.7610i 0.431476 0.747338i −0.565525 0.824731i \(-0.691326\pi\)
0.997001 + 0.0773931i \(0.0246596\pi\)
\(504\) 0 0
\(505\) 2.56786 + 4.44766i 0.114268 + 0.197918i
\(506\) 25.9224 44.8989i 1.15239 1.99600i
\(507\) 0 0
\(508\) −3.99410 6.91799i −0.177210 0.306936i
\(509\) −10.4975 −0.465292 −0.232646 0.972561i \(-0.574738\pi\)
−0.232646 + 0.972561i \(0.574738\pi\)
\(510\) 0 0
\(511\) 3.77354 + 25.1329i 0.166932 + 1.11181i
\(512\) 50.8157 2.24576
\(513\) 0 0
\(514\) −66.2773 −2.92337
\(515\) 6.64721 + 11.5133i 0.292911 + 0.507337i
\(516\) 0 0
\(517\) −10.9501 18.9662i −0.481585 0.834130i
\(518\) 36.6986 + 14.4273i 1.61244 + 0.633897i
\(519\) 0 0
\(520\) −57.6601 + 28.2588i −2.52856 + 1.23923i
\(521\) −10.7923 18.6928i −0.472818 0.818945i 0.526698 0.850053i \(-0.323430\pi\)
−0.999516 + 0.0311074i \(0.990097\pi\)
\(522\) 0 0
\(523\) 3.46379 0.151461 0.0757304 0.997128i \(-0.475871\pi\)
0.0757304 + 0.997128i \(0.475871\pi\)
\(524\) 15.8019 27.3697i 0.690308 1.19565i
\(525\) 0 0
\(526\) −16.2988 + 28.2304i −0.710662 + 1.23090i
\(527\) 11.3823 + 19.7147i 0.495819 + 0.858784i
\(528\) 0 0
\(529\) 30.9478 1.34556
\(530\) 90.2023 3.91814
\(531\) 0 0
\(532\) 6.01893 + 40.0879i 0.260954 + 1.73803i
\(533\) 1.58600 23.3191i 0.0686973 1.01006i
\(534\) 0 0
\(535\) 16.8272 29.1456i 0.727504 1.26007i
\(536\) −27.7352 + 48.0387i −1.19798 + 2.07496i
\(537\) 0 0
\(538\) 4.99270 0.215250
\(539\) −18.5181 + 5.68899i −0.797631 + 0.245042i
\(540\) 0 0
\(541\) 4.46427 7.73234i 0.191934 0.332439i −0.753957 0.656924i \(-0.771857\pi\)
0.945891 + 0.324484i \(0.105191\pi\)
\(542\) −68.6658 −2.94945
\(543\) 0 0
\(544\) −34.1867 −1.46574
\(545\) 19.0010 0.813915
\(546\) 0 0
\(547\) −3.62704 −0.155081 −0.0775405 0.996989i \(-0.524707\pi\)
−0.0775405 + 0.996989i \(0.524707\pi\)
\(548\) 88.5641 3.78327
\(549\) 0 0
\(550\) −19.5344 −0.832951
\(551\) −5.31632 + 9.20813i −0.226483 + 0.392280i
\(552\) 0 0
\(553\) 7.78584 6.20175i 0.331088 0.263725i
\(554\) 59.0598 2.50921
\(555\) 0 0
\(556\) −41.3297 + 71.5851i −1.75277 + 3.03588i
\(557\) −10.0223 + 17.3592i −0.424660 + 0.735533i −0.996389 0.0849101i \(-0.972940\pi\)
0.571729 + 0.820443i \(0.306273\pi\)
\(558\) 0 0
\(559\) 19.3738 9.49495i 0.819424 0.401593i
\(560\) −42.0325 + 33.4807i −1.77620 + 1.41482i
\(561\) 0 0
\(562\) −68.6987 −2.89788
\(563\) 7.55430 0.318376 0.159188 0.987248i \(-0.449112\pi\)
0.159188 + 0.987248i \(0.449112\pi\)
\(564\) 0 0
\(565\) −7.59360 13.1525i −0.319465 0.553330i
\(566\) 19.4408 33.6725i 0.817158 1.41536i
\(567\) 0 0
\(568\) −10.0364 + 17.3836i −0.421119 + 0.729399i
\(569\) −28.1656 −1.18076 −0.590381 0.807125i \(-0.701023\pi\)
−0.590381 + 0.807125i \(0.701023\pi\)
\(570\) 0 0
\(571\) 9.03604 + 15.6509i 0.378146 + 0.654969i 0.990793 0.135389i \(-0.0432283\pi\)
−0.612646 + 0.790357i \(0.709895\pi\)
\(572\) −40.3683 + 19.7842i −1.68788 + 0.827219i
\(573\) 0 0
\(574\) −6.49519 43.2599i −0.271104 1.80563i
\(575\) −10.1634 17.6035i −0.423843 0.734118i
\(576\) 0 0
\(577\) 21.5383 + 37.3054i 0.896651 + 1.55305i 0.831747 + 0.555154i \(0.187341\pi\)
0.0649040 + 0.997892i \(0.479326\pi\)
\(578\) −45.0288 −1.87295
\(579\) 0 0
\(580\) −39.2588 −1.63013
\(581\) 11.8705 + 4.66663i 0.492472 + 0.193605i
\(582\) 0 0
\(583\) 35.1175 1.45442
\(584\) 30.6911 + 53.1586i 1.27001 + 2.19972i
\(585\) 0 0
\(586\) −5.21304 + 9.02925i −0.215349 + 0.372995i
\(587\) −2.26101 3.91619i −0.0933220 0.161638i 0.815585 0.578637i \(-0.196415\pi\)
−0.908907 + 0.416999i \(0.863082\pi\)
\(588\) 0 0
\(589\) 6.57542 11.3890i 0.270936 0.469274i
\(590\) 9.72610 16.8461i 0.400417 0.693543i
\(591\) 0 0
\(592\) 42.5850 1.75023
\(593\) −1.43449 + 2.48460i −0.0589073 + 0.102030i −0.893975 0.448117i \(-0.852095\pi\)
0.835068 + 0.550147i \(0.185428\pi\)
\(594\) 0 0
\(595\) −33.9530 + 27.0450i −1.39194 + 1.10874i
\(596\) −19.8302 34.3469i −0.812276 1.40690i
\(597\) 0 0
\(598\) −56.0694 37.6641i −2.29285 1.54020i
\(599\) 2.94653 + 5.10354i 0.120392 + 0.208525i 0.919922 0.392101i \(-0.128252\pi\)
−0.799530 + 0.600626i \(0.794918\pi\)
\(600\) 0 0
\(601\) −9.46284 16.3901i −0.385997 0.668567i 0.605910 0.795533i \(-0.292809\pi\)
−0.991907 + 0.126967i \(0.959476\pi\)
\(602\) 31.5851 25.1589i 1.28731 1.02540i
\(603\) 0 0
\(604\) −21.7865 37.7353i −0.886479 1.53543i
\(605\) 9.31179 0.378578
\(606\) 0 0
\(607\) −21.9391 37.9997i −0.890482 1.54236i −0.839299 0.543671i \(-0.817034\pi\)
−0.0511833 0.998689i \(-0.516299\pi\)
\(608\) 9.87466 + 17.1034i 0.400470 + 0.693635i
\(609\) 0 0
\(610\) 67.9045 2.74937
\(611\) −25.6209 + 12.5566i −1.03651 + 0.507985i
\(612\) 0 0
\(613\) −15.2913 + 26.4853i −0.617610 + 1.06973i 0.372310 + 0.928108i \(0.378566\pi\)
−0.989921 + 0.141624i \(0.954768\pi\)
\(614\) −2.66014 −0.107355
\(615\) 0 0
\(616\) −36.5974 + 29.1513i −1.47455 + 1.17454i
\(617\) −22.1042 + 38.2856i −0.889881 + 1.54132i −0.0498659 + 0.998756i \(0.515879\pi\)
−0.840015 + 0.542563i \(0.817454\pi\)
\(618\) 0 0
\(619\) 0.184678 + 0.319871i 0.00742283 + 0.0128567i 0.869713 0.493558i \(-0.164304\pi\)
−0.862290 + 0.506415i \(0.830971\pi\)
\(620\) 48.5568 1.95009
\(621\) 0 0
\(622\) −9.91466 17.1727i −0.397542 0.688562i
\(623\) 4.32277 + 1.69940i 0.173188 + 0.0680851i
\(624\) 0 0
\(625\) 15.5892 27.0013i 0.623569 1.08005i
\(626\) 31.1042 53.8741i 1.24317 2.15324i
\(627\) 0 0
\(628\) −25.9780 44.9952i −1.03664 1.79550i
\(629\) 34.3993 1.37159
\(630\) 0 0
\(631\) 6.70906 11.6204i 0.267083 0.462602i −0.701024 0.713138i \(-0.747273\pi\)
0.968107 + 0.250536i \(0.0806067\pi\)
\(632\) 12.0206 20.8202i 0.478152 0.828184i
\(633\) 0 0
\(634\) −13.7232 + 23.7693i −0.545017 + 0.943998i
\(635\) −4.94149 −0.196097
\(636\) 0 0
\(637\) 5.75762 + 24.5734i 0.228125 + 0.973632i
\(638\) −22.0691 −0.873725
\(639\) 0 0
\(640\) 15.3437 26.5761i 0.606515 1.05051i
\(641\) −43.0337 −1.69973 −0.849865 0.527000i \(-0.823317\pi\)
−0.849865 + 0.527000i \(0.823317\pi\)
\(642\) 0 0
\(643\) 14.6688 25.4071i 0.578482 1.00196i −0.417172 0.908828i \(-0.636979\pi\)
0.995654 0.0931324i \(-0.0296880\pi\)
\(644\) −81.4817 32.0328i −3.21083 1.26227i
\(645\) 0 0
\(646\) 25.5305 + 44.2202i 1.00449 + 1.73982i
\(647\) −9.00352 + 15.5945i −0.353965 + 0.613085i −0.986940 0.161087i \(-0.948500\pi\)
0.632975 + 0.774172i \(0.281833\pi\)
\(648\) 0 0
\(649\) 3.78656 6.55852i 0.148636 0.257445i
\(650\) −1.72695 + 25.3915i −0.0677366 + 0.995936i
\(651\) 0 0
\(652\) 27.4161 + 47.4862i 1.07370 + 1.85970i
\(653\) −34.6541 −1.35612 −0.678059 0.735007i \(-0.737179\pi\)
−0.678059 + 0.735007i \(0.737179\pi\)
\(654\) 0 0
\(655\) −9.77502 16.9308i −0.381942 0.661543i
\(656\) −23.6210 40.9127i −0.922244 1.59737i
\(657\) 0 0
\(658\) −41.7697 + 33.2713i −1.62835 + 1.29705i
\(659\) 2.68796 4.65569i 0.104708 0.181360i −0.808911 0.587931i \(-0.799942\pi\)
0.913619 + 0.406572i \(0.133276\pi\)
\(660\) 0 0
\(661\) −20.2356 + 35.0490i −0.787072 + 1.36325i 0.140681 + 0.990055i \(0.455071\pi\)
−0.927753 + 0.373194i \(0.878263\pi\)
\(662\) −29.2921 50.7353i −1.13847 1.97188i
\(663\) 0 0
\(664\) 30.8060 1.19550
\(665\) 23.3376 + 9.17469i 0.904994 + 0.355779i
\(666\) 0 0
\(667\) −11.4822 19.8877i −0.444591 0.770054i
\(668\) −20.4858 35.4825i −0.792620 1.37286i
\(669\) 0 0
\(670\) 30.8531 + 53.4391i 1.19196 + 2.06453i
\(671\) 26.4366 1.02057
\(672\) 0 0
\(673\) 13.1634 + 22.7996i 0.507411 + 0.878861i 0.999963 + 0.00857837i \(0.00273061\pi\)
−0.492553 + 0.870283i \(0.663936\pi\)
\(674\) −17.8293 −0.686759
\(675\) 0 0
\(676\) 22.1474 + 54.2210i 0.851821 + 2.08542i
\(677\) 1.90262 3.29544i 0.0731236 0.126654i −0.827145 0.561988i \(-0.810037\pi\)
0.900269 + 0.435335i \(0.143370\pi\)
\(678\) 0 0
\(679\) −35.1246 + 27.9782i −1.34796 + 1.07371i
\(680\) −52.4201 + 90.7942i −2.01022 + 3.48180i
\(681\) 0 0
\(682\) 27.2959 1.04521
\(683\) −10.3953 −0.397765 −0.198882 0.980023i \(-0.563731\pi\)
−0.198882 + 0.980023i \(0.563731\pi\)
\(684\) 0 0
\(685\) 27.3928 47.4458i 1.04663 1.81281i
\(686\) 20.4227 + 42.5941i 0.779741 + 1.62625i
\(687\) 0 0
\(688\) 21.8044 37.7663i 0.831284 1.43983i
\(689\) 3.10459 45.6469i 0.118275 1.73901i
\(690\) 0 0
\(691\) −8.19915 −0.311910 −0.155955 0.987764i \(-0.549846\pi\)
−0.155955 + 0.987764i \(0.549846\pi\)
\(692\) −3.03504 5.25684i −0.115375 0.199835i
\(693\) 0 0
\(694\) −5.49350 −0.208530
\(695\) 25.5665 + 44.2824i 0.969792 + 1.67973i
\(696\) 0 0
\(697\) −19.0806 33.0485i −0.722728 1.25180i
\(698\) 1.92921 + 3.34148i 0.0730215 + 0.126477i
\(699\) 0 0
\(700\) 4.89810 + 32.6228i 0.185131 + 1.23303i
\(701\) −4.64503 −0.175440 −0.0877201 0.996145i \(-0.527958\pi\)
−0.0877201 + 0.996145i \(0.527958\pi\)
\(702\) 0 0
\(703\) −9.93608 17.2098i −0.374746 0.649080i
\(704\) −0.327588 + 0.567400i −0.0123464 + 0.0213847i
\(705\) 0 0
\(706\) 41.3112 71.5531i 1.55477 2.69293i
\(707\) 3.81347 3.03759i 0.143420 0.114240i
\(708\) 0 0
\(709\) 22.1987 + 38.4494i 0.833691 + 1.44400i 0.895091 + 0.445883i \(0.147110\pi\)
−0.0614001 + 0.998113i \(0.519557\pi\)
\(710\) 11.1647 + 19.3378i 0.419003 + 0.725734i
\(711\) 0 0
\(712\) 11.2183 0.420424
\(713\) 14.2016 + 24.5978i 0.531853 + 0.921196i
\(714\) 0 0
\(715\) −1.88705 + 27.7454i −0.0705718 + 1.03762i
\(716\) −13.4258 + 23.2542i −0.501747 + 0.869052i
\(717\) 0 0
\(718\) −20.2299 + 35.0393i −0.754975 + 1.30765i
\(719\) −22.4689 38.9173i −0.837949 1.45137i −0.891606 0.452812i \(-0.850421\pi\)
0.0536569 0.998559i \(-0.482912\pi\)
\(720\) 0 0
\(721\) 9.87164 7.86318i 0.367639 0.292840i
\(722\) −9.48161 + 16.4226i −0.352869 + 0.611187i
\(723\) 0 0
\(724\) 47.0790 1.74968
\(725\) −4.32632 + 7.49341i −0.160676 + 0.278298i
\(726\) 0 0
\(727\) −49.7876 −1.84652 −0.923260 0.384177i \(-0.874485\pi\)
−0.923260 + 0.384177i \(0.874485\pi\)
\(728\) 34.6564 + 50.1476i 1.28445 + 1.85859i
\(729\) 0 0
\(730\) 68.2827 2.52725
\(731\) 17.6131 30.5068i 0.651445 1.12834i
\(732\) 0 0
\(733\) 9.96819 17.2654i 0.368184 0.637713i −0.621098 0.783733i \(-0.713313\pi\)
0.989282 + 0.146020i \(0.0466465\pi\)
\(734\) 16.0606 27.8177i 0.592807 1.02677i
\(735\) 0 0
\(736\) −42.6545 −1.57227
\(737\) 12.0117 + 20.8049i 0.442457 + 0.766358i
\(738\) 0 0
\(739\) −24.0236 + 41.6100i −0.883721 + 1.53065i −0.0365482 + 0.999332i \(0.511636\pi\)
−0.847173 + 0.531318i \(0.821697\pi\)
\(740\) 36.6869 63.5436i 1.34864 2.33591i
\(741\) 0 0
\(742\) −12.7143 84.6810i −0.466757 3.10874i
\(743\) 0.250266 + 0.433473i 0.00918137 + 0.0159026i 0.870580 0.492028i \(-0.163744\pi\)
−0.861398 + 0.507930i \(0.830411\pi\)
\(744\) 0 0
\(745\) −24.5338 −0.898850
\(746\) −14.9253 25.8514i −0.546455 0.946488i
\(747\) 0 0
\(748\) −36.6997 + 63.5657i −1.34187 + 2.32419i
\(749\) −29.7334 11.6891i −1.08644 0.427109i
\(750\) 0 0
\(751\) 43.8051 1.59847 0.799235 0.601019i \(-0.205238\pi\)
0.799235 + 0.601019i \(0.205238\pi\)
\(752\) −28.8352 + 49.9440i −1.05151 + 1.82127i
\(753\) 0 0
\(754\) −1.95103 + 28.6861i −0.0710524 + 1.04469i
\(755\) −26.9542 −0.980963
\(756\) 0 0
\(757\) 1.91271 + 3.31291i 0.0695186 + 0.120410i 0.898689 0.438585i \(-0.144520\pi\)
−0.829171 + 0.558995i \(0.811187\pi\)
\(758\) 42.0276 + 72.7939i 1.52651 + 2.64399i
\(759\) 0 0
\(760\) 60.5651 2.19693
\(761\) −2.86572 4.96357i −0.103882 0.179929i 0.809399 0.587259i \(-0.199793\pi\)
−0.913281 + 0.407330i \(0.866460\pi\)
\(762\) 0 0
\(763\) −2.67826 17.8380i −0.0969594 0.645779i
\(764\) −1.48252 2.56781i −0.0536358 0.0928999i
\(765\) 0 0
\(766\) −16.1145 27.9112i −0.582242 1.00847i
\(767\) −8.19022 5.50171i −0.295732 0.198655i
\(768\) 0 0
\(769\) 8.50053 + 14.7234i 0.306537 + 0.530938i 0.977602 0.210461i \(-0.0674964\pi\)
−0.671065 + 0.741398i \(0.734163\pi\)
\(770\) 7.72810 + 51.4714i 0.278501 + 1.85490i
\(771\) 0 0
\(772\) −19.7911 + 34.2792i −0.712298 + 1.23374i
\(773\) 12.1864 0.438314 0.219157 0.975690i \(-0.429669\pi\)
0.219157 + 0.975690i \(0.429669\pi\)
\(774\) 0 0
\(775\) 5.35096 9.26813i 0.192212 0.332921i
\(776\) −54.2288 + 93.9271i −1.94670 + 3.37179i
\(777\) 0 0
\(778\) −0.151480 0.262370i −0.00543080 0.00940643i
\(779\) −11.0226 + 19.0918i −0.394927 + 0.684034i
\(780\) 0 0
\(781\) 4.34663 + 7.52858i 0.155535 + 0.269394i
\(782\) −110.281 −3.94366
\(783\) 0 0
\(784\) 37.3559 + 34.7405i 1.33414 + 1.24073i
\(785\) −32.1399 −1.14712
\(786\) 0 0
\(787\) −4.62042 −0.164700 −0.0823501 0.996603i \(-0.526243\pi\)
−0.0823501 + 0.996603i \(0.526243\pi\)
\(788\) 41.8901 + 72.5558i 1.49227 + 2.58469i
\(789\) 0 0
\(790\) −13.3719 23.1608i −0.475750 0.824023i
\(791\) −11.2771 + 8.98268i −0.400967 + 0.319387i
\(792\) 0 0
\(793\) 2.33714 34.3631i 0.0829943 1.22027i
\(794\) 8.90531 + 15.4245i 0.316038 + 0.547393i
\(795\) 0 0
\(796\) 68.5972 2.43136
\(797\) 9.12087 15.7978i 0.323078 0.559587i −0.658044 0.752980i \(-0.728616\pi\)
0.981121 + 0.193393i \(0.0619491\pi\)
\(798\) 0 0
\(799\) −23.2925 + 40.3438i −0.824029 + 1.42726i
\(800\) 8.03582 + 13.9184i 0.284109 + 0.492091i
\(801\) 0 0
\(802\) −48.8475 −1.72487
\(803\) 26.5838 0.938122
\(804\) 0 0
\(805\) −42.3629 + 33.7439i −1.49310 + 1.18931i
\(806\) 2.41311 35.4801i 0.0849982 1.24973i
\(807\) 0 0
\(808\) 5.88762 10.1976i 0.207126 0.358752i
\(809\) −17.2960 + 29.9576i −0.608096 + 1.05325i 0.383457 + 0.923559i \(0.374733\pi\)
−0.991554 + 0.129695i \(0.958600\pi\)
\(810\) 0 0
\(811\) −11.9774 −0.420582 −0.210291 0.977639i \(-0.567441\pi\)
−0.210291 + 0.977639i \(0.567441\pi\)
\(812\) 5.53365 + 36.8558i 0.194193 + 1.29338i
\(813\) 0 0
\(814\) 20.6233 35.7207i 0.722848 1.25201i
\(815\) 33.9192 1.18814
\(816\) 0 0
\(817\) −20.3499 −0.711951
\(818\) −29.8164 −1.04250
\(819\) 0 0
\(820\) −81.3976 −2.84253
\(821\) −21.1872 −0.739438 −0.369719 0.929144i \(-0.620546\pi\)
−0.369719 + 0.929144i \(0.620546\pi\)
\(822\) 0 0
\(823\) 19.9361 0.694930 0.347465 0.937693i \(-0.387043\pi\)
0.347465 + 0.937693i \(0.387043\pi\)
\(824\) 15.2408 26.3979i 0.530939 0.919614i
\(825\) 0 0
\(826\) −17.1859 6.75626i −0.597973 0.235080i
\(827\) 15.0299 0.522639 0.261320 0.965252i \(-0.415842\pi\)
0.261320 + 0.965252i \(0.415842\pi\)
\(828\) 0 0
\(829\) −8.03587 + 13.9185i −0.279097 + 0.483411i −0.971161 0.238426i \(-0.923369\pi\)
0.692063 + 0.721837i \(0.256702\pi\)
\(830\) 17.1345 29.6779i 0.594749 1.03013i
\(831\) 0 0
\(832\) 0.708563 + 0.475971i 0.0245650 + 0.0165013i
\(833\) 30.1754 + 28.0627i 1.04552 + 0.972315i
\(834\) 0 0
\(835\) −25.3450 −0.877100
\(836\) 42.4021 1.46651
\(837\) 0 0
\(838\) 20.1470 + 34.8957i 0.695967 + 1.20545i
\(839\) −2.50930 + 4.34624i −0.0866307 + 0.150049i −0.906085 0.423096i \(-0.860943\pi\)
0.819454 + 0.573145i \(0.194277\pi\)
\(840\) 0 0
\(841\) 9.61231 16.6490i 0.331459 0.574104i
\(842\) −21.8882 −0.754316
\(843\) 0 0
\(844\) −47.7323 82.6747i −1.64301 2.84578i
\(845\) 35.8976 + 4.90570i 1.23491 + 0.168761i
\(846\) 0 0
\(847\) −1.31253 8.74182i −0.0450989 0.300372i
\(848\) −46.2379 80.0864i −1.58782 2.75018i
\(849\) 0 0
\(850\) 20.7763 + 35.9856i 0.712621 + 1.23430i
\(851\) 42.9198 1.47127
\(852\) 0 0
\(853\) −4.22423 −0.144635 −0.0723175 0.997382i \(-0.523039\pi\)
−0.0723175 + 0.997382i \(0.523039\pi\)
\(854\) −9.57136 63.7481i −0.327525 2.18141i
\(855\) 0 0
\(856\) −77.1633 −2.63739
\(857\) −4.48428 7.76700i −0.153180 0.265316i 0.779215 0.626757i \(-0.215618\pi\)
−0.932395 + 0.361441i \(0.882285\pi\)
\(858\) 0 0
\(859\) 18.3400 31.7658i 0.625753 1.08384i −0.362642 0.931928i \(-0.618125\pi\)
0.988395 0.151907i \(-0.0485414\pi\)
\(860\) −37.5688 65.0711i −1.28109 2.21890i
\(861\) 0 0
\(862\) 24.7974 42.9503i 0.844602 1.46289i
\(863\) 10.4237 18.0544i 0.354828 0.614580i −0.632261 0.774756i \(-0.717873\pi\)
0.987088 + 0.160176i \(0.0512062\pi\)
\(864\) 0 0
\(865\) −3.75494 −0.127672
\(866\) −6.00426 + 10.3997i −0.204033 + 0.353395i
\(867\) 0 0
\(868\) −6.84423 45.5846i −0.232308 1.54724i
\(869\) −5.20593 9.01694i −0.176599 0.305879i
\(870\) 0 0
\(871\) 28.1048 13.7739i 0.952294 0.466712i
\(872\) −21.7829 37.7291i −0.737663 1.27767i
\(873\) 0 0
\(874\) 31.8543 + 55.1732i 1.07749 + 1.86626i
\(875\) −15.3208 6.02303i −0.517936 0.203615i
\(876\) 0 0
\(877\) 13.8100 + 23.9197i 0.466331 + 0.807709i 0.999261 0.0384504i \(-0.0122422\pi\)
−0.532929 + 0.846160i \(0.678909\pi\)
\(878\) 52.7004 1.77855
\(879\) 0 0
\(880\) 28.1047 + 48.6787i 0.947408 + 1.64096i
\(881\) 12.7092 + 22.0130i 0.428183 + 0.741635i 0.996712 0.0810283i \(-0.0258204\pi\)
−0.568528 + 0.822664i \(0.692487\pi\)
\(882\) 0 0
\(883\) 32.7921 1.10354 0.551771 0.833995i \(-0.313952\pi\)
0.551771 + 0.833995i \(0.313952\pi\)
\(884\) 79.3803 + 53.3230i 2.66985 + 1.79345i
\(885\) 0 0
\(886\) 15.6630 27.1291i 0.526209 0.911421i
\(887\) 7.93320 0.266371 0.133185 0.991091i \(-0.457479\pi\)
0.133185 + 0.991091i \(0.457479\pi\)
\(888\) 0 0
\(889\) 0.696519 + 4.63903i 0.0233605 + 0.155588i
\(890\) 6.23972 10.8075i 0.209156 0.362269i
\(891\) 0 0
\(892\) −2.04217 3.53713i −0.0683768 0.118432i
\(893\) 26.9117 0.900565
\(894\) 0 0
\(895\) 8.30521 + 14.3850i 0.277613 + 0.480839i
\(896\) −27.1122 10.6586i −0.905754 0.356078i
\(897\) 0 0
\(898\) 35.1682 60.9130i 1.17358 2.03269i
\(899\) 6.04527 10.4707i 0.201621 0.349218i
\(900\) 0 0
\(901\) −37.3501 64.6922i −1.24431 2.15521i
\(902\) −45.7572 −1.52355
\(903\) 0 0
\(904\) −17.4107 + 30.1562i −0.579071 + 1.00298i
\(905\) 14.5615 25.2213i 0.484041 0.838384i
\(906\) 0 0
\(907\) 23.1186 40.0426i 0.767640 1.32959i −0.171200 0.985236i \(-0.554764\pi\)
0.938840 0.344355i \(-0.111902\pi\)
\(908\) −8.68676 −0.288280
\(909\) 0 0
\(910\) 67.5874 5.49486i 2.24050 0.182153i
\(911\) 21.5838 0.715102 0.357551 0.933894i \(-0.383612\pi\)
0.357551 + 0.933894i \(0.383612\pi\)
\(912\) 0 0
\(913\) 6.67082 11.5542i 0.220772 0.382388i
\(914\) −35.3983 −1.17087
\(915\) 0 0
\(916\) 22.7781 39.4529i 0.752611 1.30356i
\(917\) −14.5167 + 11.5632i −0.479383 + 0.381849i
\(918\) 0 0
\(919\) 4.40489 + 7.62950i 0.145304 + 0.251674i 0.929486 0.368857i \(-0.120251\pi\)
−0.784182 + 0.620530i \(0.786917\pi\)
\(920\) −65.4041 + 113.283i −2.15631 + 3.73484i
\(921\) 0 0
\(922\) −31.1295 + 53.9179i −1.02520 + 1.77569i
\(923\) 10.1702 4.98432i 0.334755 0.164061i
\(924\) 0 0
\(925\) −8.08580 14.0050i −0.265859 0.460482i
\(926\) 29.7011 0.976039
\(927\) 0 0
\(928\) 9.07851 + 15.7244i 0.298017 + 0.516180i
\(929\) −26.2347 45.4398i −0.860733 1.49083i −0.871223 0.490888i \(-0.836672\pi\)
0.0104899 0.999945i \(-0.496661\pi\)
\(930\) 0 0
\(931\) 5.32359 23.2023i 0.174474 0.760426i
\(932\) −59.0806 + 102.331i −1.93525 + 3.35195i
\(933\) 0 0
\(934\) 5.34299 9.25433i 0.174828 0.302811i
\(935\) 22.7024 + 39.3217i 0.742448 + 1.28596i
\(936\) 0 0
\(937\) −19.3131 −0.630932 −0.315466 0.948937i \(-0.602161\pi\)
−0.315466 + 0.948937i \(0.602161\pi\)
\(938\) 45.8192 36.4970i 1.49605 1.19167i
\(939\) 0 0
\(940\) 49.6829 + 86.0532i 1.62048 + 2.80675i
\(941\) 8.45918 + 14.6517i 0.275761 + 0.477633i 0.970327 0.241797i \(-0.0777367\pi\)
−0.694566 + 0.719429i \(0.744403\pi\)
\(942\) 0 0
\(943\) −23.8067 41.2343i −0.775251 1.34277i
\(944\) −19.9425 −0.649073
\(945\) 0 0
\(946\) −21.1191 36.5793i −0.686641 1.18930i
\(947\) 44.7022 1.45263 0.726313 0.687365i \(-0.241232\pi\)
0.726313 + 0.687365i \(0.241232\pi\)
\(948\) 0 0
\(949\) 2.35016 34.5545i 0.0762893 1.12169i
\(950\) 12.0023 20.7885i 0.389405 0.674468i
\(951\) 0 0
\(952\) 92.6255 + 36.4137i 3.00201 + 1.18018i
\(953\) 24.8774 43.0888i 0.805857 1.39578i −0.109855 0.993948i \(-0.535038\pi\)
0.915711 0.401837i \(-0.131628\pi\)
\(954\) 0 0
\(955\) −1.83417 −0.0593525
\(956\) −126.401 −4.08809
\(957\) 0 0
\(958\) 19.1400 33.1515i 0.618386 1.07108i
\(959\) −48.4027 19.0285i −1.56301 0.614462i
\(960\) 0 0
\(961\) 8.02298 13.8962i 0.258806 0.448265i
\(962\) −44.6076 29.9648i −1.43821 0.966103i
\(963\) 0 0
\(964\) −20.0601 −0.646094
\(965\) 12.2428 + 21.2051i 0.394109 + 0.682616i
\(966\) 0 0
\(967\) 1.92897 0.0620315 0.0310158 0.999519i \(-0.490126\pi\)
0.0310158 + 0.999519i \(0.490126\pi\)
\(968\) −10.6751 18.4898i −0.343111 0.594285i
\(969\) 0 0
\(970\) 60.3251 + 104.486i 1.93692 + 3.35485i
\(971\) −18.0616 31.2836i −0.579624 1.00394i −0.995522 0.0945270i \(-0.969866\pi\)
0.415898 0.909411i \(-0.363467\pi\)
\(972\) 0 0
\(973\) 37.9682 30.2433i 1.21721 0.969556i
\(974\) −16.8546 −0.540055
\(975\) 0 0
\(976\) −34.8080 60.2893i −1.11418 1.92981i
\(977\) 16.4841 28.5513i 0.527373 0.913436i −0.472118 0.881535i \(-0.656510\pi\)
0.999491 0.0319012i \(-0.0101562\pi\)
\(978\) 0 0
\(979\) 2.42925 4.20758i 0.0776391 0.134475i
\(980\) 84.0203 25.8121i 2.68393 0.824537i
\(981\) 0 0
\(982\) −41.9709 72.6957i −1.33935 2.31981i
\(983\) −7.52903 13.0407i −0.240139 0.415933i 0.720615 0.693336i \(-0.243860\pi\)
−0.960754 + 0.277403i \(0.910526\pi\)
\(984\) 0 0
\(985\) 51.8263 1.65132
\(986\) 23.4721 + 40.6549i 0.747504 + 1.29472i
\(987\) 0 0
\(988\) 3.74858 55.1156i 0.119258 1.75346i
\(989\) 21.9758 38.0631i 0.698789 1.21034i
\(990\) 0 0
\(991\) −18.0676 + 31.2939i −0.573935 + 0.994085i 0.422221 + 0.906493i \(0.361251\pi\)
−0.996156 + 0.0875921i \(0.972083\pi\)
\(992\) −11.2286 19.4486i −0.356510 0.617493i
\(993\) 0 0
\(994\) 16.5804 13.2070i 0.525899 0.418901i
\(995\) 21.2171 36.7491i 0.672627 1.16502i
\(996\) 0 0
\(997\) 3.81524 0.120830 0.0604149 0.998173i \(-0.480758\pi\)
0.0604149 + 0.998173i \(0.480758\pi\)
\(998\) 45.7058 79.1647i 1.44679 2.50591i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.e.289.1 16
3.2 odd 2 273.2.l.b.16.8 yes 16
7.4 even 3 819.2.n.e.172.8 16
13.9 even 3 819.2.n.e.100.8 16
21.11 odd 6 273.2.j.b.172.1 yes 16
39.35 odd 6 273.2.j.b.100.1 16
91.74 even 3 inner 819.2.s.e.802.1 16
273.74 odd 6 273.2.l.b.256.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.b.100.1 16 39.35 odd 6
273.2.j.b.172.1 yes 16 21.11 odd 6
273.2.l.b.16.8 yes 16 3.2 odd 2
273.2.l.b.256.8 yes 16 273.74 odd 6
819.2.n.e.100.8 16 13.9 even 3
819.2.n.e.172.8 16 7.4 even 3
819.2.s.e.289.1 16 1.1 even 1 trivial
819.2.s.e.802.1 16 91.74 even 3 inner