Properties

Label 819.2.s.e.289.6
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(289,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.6
Root \(0.415625 - 0.719884i\) of defining polynomial
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.e.802.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.831251 q^{2} -1.30902 q^{4} +(1.30847 - 2.26634i) q^{5} +(1.78280 - 1.95490i) q^{7} -2.75063 q^{8} +(1.08767 - 1.88389i) q^{10} +(-0.924183 + 1.60073i) q^{11} +(2.74506 - 2.33765i) q^{13} +(1.48195 - 1.62501i) q^{14} +0.331582 q^{16} -6.83128 q^{17} +(-2.53494 - 4.39065i) q^{19} +(-1.71281 + 2.96668i) q^{20} +(-0.768228 + 1.33061i) q^{22} +1.27286 q^{23} +(-0.924183 - 1.60073i) q^{25} +(2.28184 - 1.94318i) q^{26} +(-2.33372 + 2.55900i) q^{28} +(-0.724496 - 1.25486i) q^{29} +(-3.09878 - 5.36725i) q^{31} +5.77688 q^{32} -5.67851 q^{34} +(-2.09772 - 6.59834i) q^{35} +7.87843 q^{37} +(-2.10717 - 3.64973i) q^{38} +(-3.59911 + 6.23384i) q^{40} +(-4.41239 - 7.64248i) q^{41} +(0.109598 - 0.189830i) q^{43} +(1.20978 - 2.09539i) q^{44} +1.05806 q^{46} +(-0.624016 + 1.08083i) q^{47} +(-0.643251 - 6.97038i) q^{49} +(-0.768228 - 1.33061i) q^{50} +(-3.59335 + 3.06004i) q^{52} +(-1.33947 - 2.32004i) q^{53} +(2.41853 + 4.18902i) q^{55} +(-4.90382 + 5.37720i) q^{56} +(-0.602238 - 1.04311i) q^{58} +12.0361 q^{59} +(4.36109 + 7.55363i) q^{61} +(-2.57586 - 4.46153i) q^{62} +4.13888 q^{64} +(-1.70607 - 9.27998i) q^{65} +(-6.91656 + 11.9798i) q^{67} +8.94230 q^{68} +(-1.74373 - 5.48488i) q^{70} +(-1.78833 + 3.09749i) q^{71} +(-3.26733 - 5.65918i) q^{73} +6.54896 q^{74} +(3.31829 + 5.74745i) q^{76} +(1.48163 + 4.66047i) q^{77} +(3.08084 - 5.33616i) q^{79} +(0.433865 - 0.751475i) q^{80} +(-3.66780 - 6.35282i) q^{82} +8.67738 q^{83} +(-8.93852 + 15.4820i) q^{85} +(0.0911037 - 0.157796i) q^{86} +(2.54208 - 4.40302i) q^{88} +15.1550 q^{89} +(0.324029 - 9.53389i) q^{91} -1.66620 q^{92} +(-0.518714 + 0.898438i) q^{94} -13.2676 q^{95} +(6.08221 - 10.5347i) q^{97} +(-0.534703 - 5.79414i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} + q^{7} - 12 q^{8} - 4 q^{10} + 2 q^{11} + 5 q^{13} + 7 q^{14} + 12 q^{16} - 4 q^{17} - 11 q^{19} + 20 q^{20} + 7 q^{22} + 8 q^{23} + 2 q^{25} - 33 q^{26} - q^{28} - 15 q^{29} + 3 q^{31}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.831251 0.587783 0.293892 0.955839i \(-0.405050\pi\)
0.293892 + 0.955839i \(0.405050\pi\)
\(3\) 0 0
\(4\) −1.30902 −0.654511
\(5\) 1.30847 2.26634i 0.585165 1.01354i −0.409690 0.912225i \(-0.634363\pi\)
0.994855 0.101311i \(-0.0323037\pi\)
\(6\) 0 0
\(7\) 1.78280 1.95490i 0.673835 0.738882i
\(8\) −2.75063 −0.972494
\(9\) 0 0
\(10\) 1.08767 1.88389i 0.343950 0.595739i
\(11\) −0.924183 + 1.60073i −0.278652 + 0.482639i −0.971050 0.238877i \(-0.923221\pi\)
0.692398 + 0.721516i \(0.256554\pi\)
\(12\) 0 0
\(13\) 2.74506 2.33765i 0.761344 0.648348i
\(14\) 1.48195 1.62501i 0.396069 0.434302i
\(15\) 0 0
\(16\) 0.331582 0.0828954
\(17\) −6.83128 −1.65683 −0.828415 0.560115i \(-0.810757\pi\)
−0.828415 + 0.560115i \(0.810757\pi\)
\(18\) 0 0
\(19\) −2.53494 4.39065i −0.581556 1.00728i −0.995295 0.0968885i \(-0.969111\pi\)
0.413740 0.910395i \(-0.364222\pi\)
\(20\) −1.71281 + 2.96668i −0.382997 + 0.663370i
\(21\) 0 0
\(22\) −0.768228 + 1.33061i −0.163787 + 0.283687i
\(23\) 1.27286 0.265409 0.132704 0.991156i \(-0.457634\pi\)
0.132704 + 0.991156i \(0.457634\pi\)
\(24\) 0 0
\(25\) −0.924183 1.60073i −0.184837 0.320146i
\(26\) 2.28184 1.94318i 0.447505 0.381088i
\(27\) 0 0
\(28\) −2.33372 + 2.55900i −0.441032 + 0.483606i
\(29\) −0.724496 1.25486i −0.134536 0.233022i 0.790884 0.611966i \(-0.209621\pi\)
−0.925420 + 0.378943i \(0.876288\pi\)
\(30\) 0 0
\(31\) −3.09878 5.36725i −0.556557 0.963986i −0.997781 0.0665883i \(-0.978789\pi\)
0.441223 0.897397i \(-0.354545\pi\)
\(32\) 5.77688 1.02122
\(33\) 0 0
\(34\) −5.67851 −0.973857
\(35\) −2.09772 6.59834i −0.354579 1.11532i
\(36\) 0 0
\(37\) 7.87843 1.29521 0.647603 0.761978i \(-0.275771\pi\)
0.647603 + 0.761978i \(0.275771\pi\)
\(38\) −2.10717 3.64973i −0.341829 0.592064i
\(39\) 0 0
\(40\) −3.59911 + 6.23384i −0.569069 + 0.985657i
\(41\) −4.41239 7.64248i −0.689099 1.19355i −0.972130 0.234444i \(-0.924673\pi\)
0.283031 0.959111i \(-0.408660\pi\)
\(42\) 0 0
\(43\) 0.109598 0.189830i 0.0167136 0.0289488i −0.857548 0.514405i \(-0.828013\pi\)
0.874261 + 0.485456i \(0.161346\pi\)
\(44\) 1.20978 2.09539i 0.182381 0.315892i
\(45\) 0 0
\(46\) 1.05806 0.156003
\(47\) −0.624016 + 1.08083i −0.0910220 + 0.157655i −0.907941 0.419097i \(-0.862347\pi\)
0.816919 + 0.576752i \(0.195680\pi\)
\(48\) 0 0
\(49\) −0.643251 6.97038i −0.0918930 0.995769i
\(50\) −0.768228 1.33061i −0.108644 0.188177i
\(51\) 0 0
\(52\) −3.59335 + 3.06004i −0.498308 + 0.424351i
\(53\) −1.33947 2.32004i −0.183991 0.318682i 0.759245 0.650805i \(-0.225568\pi\)
−0.943236 + 0.332123i \(0.892235\pi\)
\(54\) 0 0
\(55\) 2.41853 + 4.18902i 0.326114 + 0.564847i
\(56\) −4.90382 + 5.37720i −0.655300 + 0.718558i
\(57\) 0 0
\(58\) −0.602238 1.04311i −0.0790777 0.136967i
\(59\) 12.0361 1.56697 0.783483 0.621414i \(-0.213441\pi\)
0.783483 + 0.621414i \(0.213441\pi\)
\(60\) 0 0
\(61\) 4.36109 + 7.55363i 0.558381 + 0.967144i 0.997632 + 0.0687794i \(0.0219105\pi\)
−0.439251 + 0.898364i \(0.644756\pi\)
\(62\) −2.57586 4.46153i −0.327135 0.566615i
\(63\) 0 0
\(64\) 4.13888 0.517359
\(65\) −1.70607 9.27998i −0.211612 1.15104i
\(66\) 0 0
\(67\) −6.91656 + 11.9798i −0.844992 + 1.46357i 0.0406360 + 0.999174i \(0.487062\pi\)
−0.885628 + 0.464395i \(0.846272\pi\)
\(68\) 8.94230 1.08441
\(69\) 0 0
\(70\) −1.74373 5.48488i −0.208415 0.655569i
\(71\) −1.78833 + 3.09749i −0.212236 + 0.367604i −0.952414 0.304807i \(-0.901408\pi\)
0.740178 + 0.672411i \(0.234741\pi\)
\(72\) 0 0
\(73\) −3.26733 5.65918i −0.382412 0.662357i 0.608994 0.793175i \(-0.291573\pi\)
−0.991406 + 0.130817i \(0.958240\pi\)
\(74\) 6.54896 0.761301
\(75\) 0 0
\(76\) 3.31829 + 5.74745i 0.380634 + 0.659278i
\(77\) 1.48163 + 4.66047i 0.168848 + 0.531110i
\(78\) 0 0
\(79\) 3.08084 5.33616i 0.346621 0.600365i −0.639026 0.769185i \(-0.720662\pi\)
0.985647 + 0.168820i \(0.0539956\pi\)
\(80\) 0.433865 0.751475i 0.0485075 0.0840175i
\(81\) 0 0
\(82\) −3.66780 6.35282i −0.405041 0.701551i
\(83\) 8.67738 0.952467 0.476233 0.879319i \(-0.342002\pi\)
0.476233 + 0.879319i \(0.342002\pi\)
\(84\) 0 0
\(85\) −8.93852 + 15.4820i −0.969519 + 1.67926i
\(86\) 0.0911037 0.157796i 0.00982396 0.0170156i
\(87\) 0 0
\(88\) 2.54208 4.40302i 0.270987 0.469363i
\(89\) 15.1550 1.60643 0.803215 0.595690i \(-0.203121\pi\)
0.803215 + 0.595690i \(0.203121\pi\)
\(90\) 0 0
\(91\) 0.324029 9.53389i 0.0339674 0.999423i
\(92\) −1.66620 −0.173713
\(93\) 0 0
\(94\) −0.518714 + 0.898438i −0.0535012 + 0.0926668i
\(95\) −13.2676 −1.36122
\(96\) 0 0
\(97\) 6.08221 10.5347i 0.617554 1.06964i −0.372376 0.928082i \(-0.621457\pi\)
0.989931 0.141554i \(-0.0452098\pi\)
\(98\) −0.534703 5.79414i −0.0540132 0.585296i
\(99\) 0 0
\(100\) 1.20978 + 2.09539i 0.120978 + 0.209539i
\(101\) −2.29803 + 3.98031i −0.228663 + 0.396056i −0.957412 0.288725i \(-0.906769\pi\)
0.728749 + 0.684781i \(0.240102\pi\)
\(102\) 0 0
\(103\) −2.22609 + 3.85570i −0.219343 + 0.379914i −0.954607 0.297867i \(-0.903725\pi\)
0.735264 + 0.677781i \(0.237058\pi\)
\(104\) −7.55065 + 6.43001i −0.740402 + 0.630515i
\(105\) 0 0
\(106\) −1.11344 1.92853i −0.108147 0.187316i
\(107\) −7.21387 −0.697391 −0.348696 0.937236i \(-0.613375\pi\)
−0.348696 + 0.937236i \(0.613375\pi\)
\(108\) 0 0
\(109\) 4.34979 + 7.53406i 0.416635 + 0.721632i 0.995599 0.0937209i \(-0.0298761\pi\)
−0.578964 + 0.815353i \(0.696543\pi\)
\(110\) 2.01041 + 3.48212i 0.191685 + 0.332007i
\(111\) 0 0
\(112\) 0.591144 0.648208i 0.0558578 0.0612499i
\(113\) −1.82527 + 3.16146i −0.171707 + 0.297405i −0.939017 0.343871i \(-0.888262\pi\)
0.767310 + 0.641277i \(0.221595\pi\)
\(114\) 0 0
\(115\) 1.66549 2.88472i 0.155308 0.269002i
\(116\) 0.948381 + 1.64264i 0.0880550 + 0.152516i
\(117\) 0 0
\(118\) 10.0050 0.921036
\(119\) −12.1788 + 13.3545i −1.11643 + 1.22420i
\(120\) 0 0
\(121\) 3.79177 + 6.56754i 0.344707 + 0.597049i
\(122\) 3.62516 + 6.27896i 0.328207 + 0.568471i
\(123\) 0 0
\(124\) 4.05637 + 7.02584i 0.364273 + 0.630939i
\(125\) 8.24763 0.737691
\(126\) 0 0
\(127\) 4.80639 + 8.32491i 0.426498 + 0.738716i 0.996559 0.0828862i \(-0.0264138\pi\)
−0.570061 + 0.821602i \(0.693080\pi\)
\(128\) −8.11332 −0.717123
\(129\) 0 0
\(130\) −1.41817 7.71399i −0.124382 0.676562i
\(131\) −8.28016 + 14.3417i −0.723441 + 1.25304i 0.236172 + 0.971711i \(0.424107\pi\)
−0.959613 + 0.281325i \(0.909226\pi\)
\(132\) 0 0
\(133\) −13.1026 2.87209i −1.13614 0.249042i
\(134\) −5.74940 + 9.95825i −0.496672 + 0.860261i
\(135\) 0 0
\(136\) 18.7903 1.61126
\(137\) 10.5569 0.901934 0.450967 0.892541i \(-0.351079\pi\)
0.450967 + 0.892541i \(0.351079\pi\)
\(138\) 0 0
\(139\) −4.57749 + 7.92845i −0.388258 + 0.672482i −0.992215 0.124534i \(-0.960256\pi\)
0.603958 + 0.797016i \(0.293590\pi\)
\(140\) 2.74595 + 8.63738i 0.232076 + 0.729992i
\(141\) 0 0
\(142\) −1.48655 + 2.57479i −0.124749 + 0.216071i
\(143\) 1.20501 + 6.55453i 0.100768 + 0.548117i
\(144\) 0 0
\(145\) −3.79192 −0.314902
\(146\) −2.71597 4.70420i −0.224775 0.389322i
\(147\) 0 0
\(148\) −10.3130 −0.847727
\(149\) −5.45367 9.44604i −0.446782 0.773850i 0.551392 0.834246i \(-0.314097\pi\)
−0.998174 + 0.0603965i \(0.980763\pi\)
\(150\) 0 0
\(151\) 11.1702 + 19.3474i 0.909018 + 1.57447i 0.815430 + 0.578855i \(0.196500\pi\)
0.0935880 + 0.995611i \(0.470166\pi\)
\(152\) 6.97268 + 12.0770i 0.565559 + 0.979577i
\(153\) 0 0
\(154\) 1.23161 + 3.87402i 0.0992459 + 0.312177i
\(155\) −16.2186 −1.30271
\(156\) 0 0
\(157\) −0.329586 0.570859i −0.0263038 0.0455595i 0.852574 0.522607i \(-0.175040\pi\)
−0.878878 + 0.477047i \(0.841707\pi\)
\(158\) 2.56095 4.43569i 0.203738 0.352885i
\(159\) 0 0
\(160\) 7.55887 13.0924i 0.597581 1.03504i
\(161\) 2.26925 2.48830i 0.178842 0.196106i
\(162\) 0 0
\(163\) −9.09253 15.7487i −0.712182 1.23354i −0.964036 0.265771i \(-0.914374\pi\)
0.251854 0.967765i \(-0.418960\pi\)
\(164\) 5.77591 + 10.0042i 0.451023 + 0.781194i
\(165\) 0 0
\(166\) 7.21308 0.559844
\(167\) 2.21154 + 3.83050i 0.171134 + 0.296413i 0.938817 0.344417i \(-0.111924\pi\)
−0.767683 + 0.640830i \(0.778590\pi\)
\(168\) 0 0
\(169\) 2.07076 12.8340i 0.159289 0.987232i
\(170\) −7.43016 + 12.8694i −0.569867 + 0.987039i
\(171\) 0 0
\(172\) −0.143467 + 0.248491i −0.0109392 + 0.0189473i
\(173\) 1.76022 + 3.04879i 0.133827 + 0.231795i 0.925149 0.379605i \(-0.123940\pi\)
−0.791322 + 0.611400i \(0.790607\pi\)
\(174\) 0 0
\(175\) −4.77690 1.04710i −0.361100 0.0791534i
\(176\) −0.306442 + 0.530773i −0.0230990 + 0.0400086i
\(177\) 0 0
\(178\) 12.5976 0.944232
\(179\) 5.41014 9.37064i 0.404373 0.700395i −0.589875 0.807494i \(-0.700823\pi\)
0.994248 + 0.107100i \(0.0341564\pi\)
\(180\) 0 0
\(181\) −23.0651 −1.71441 −0.857207 0.514973i \(-0.827802\pi\)
−0.857207 + 0.514973i \(0.827802\pi\)
\(182\) 0.269349 7.92505i 0.0199655 0.587444i
\(183\) 0 0
\(184\) −3.50115 −0.258109
\(185\) 10.3087 17.8552i 0.757910 1.31274i
\(186\) 0 0
\(187\) 6.31336 10.9351i 0.461678 0.799650i
\(188\) 0.816850 1.41483i 0.0595749 0.103187i
\(189\) 0 0
\(190\) −11.0287 −0.800105
\(191\) −0.914829 1.58453i −0.0661947 0.114653i 0.831029 0.556230i \(-0.187753\pi\)
−0.897223 + 0.441577i \(0.854419\pi\)
\(192\) 0 0
\(193\) −1.57976 + 2.73622i −0.113713 + 0.196957i −0.917265 0.398278i \(-0.869608\pi\)
0.803551 + 0.595235i \(0.202941\pi\)
\(194\) 5.05584 8.75697i 0.362988 0.628714i
\(195\) 0 0
\(196\) 0.842029 + 9.12438i 0.0601450 + 0.651742i
\(197\) −5.57597 9.65786i −0.397271 0.688094i 0.596117 0.802898i \(-0.296709\pi\)
−0.993388 + 0.114804i \(0.963376\pi\)
\(198\) 0 0
\(199\) 20.7497 1.47090 0.735452 0.677577i \(-0.236970\pi\)
0.735452 + 0.677577i \(0.236970\pi\)
\(200\) 2.54208 + 4.40302i 0.179752 + 0.311340i
\(201\) 0 0
\(202\) −1.91024 + 3.30864i −0.134404 + 0.232795i
\(203\) −3.74476 0.820855i −0.262831 0.0576127i
\(204\) 0 0
\(205\) −23.0939 −1.61295
\(206\) −1.85044 + 3.20506i −0.128926 + 0.223307i
\(207\) 0 0
\(208\) 0.910213 0.775123i 0.0631119 0.0537451i
\(209\) 9.37100 0.648206
\(210\) 0 0
\(211\) 8.16773 + 14.1469i 0.562289 + 0.973914i 0.997296 + 0.0734866i \(0.0234126\pi\)
−0.435007 + 0.900427i \(0.643254\pi\)
\(212\) 1.75340 + 3.03698i 0.120424 + 0.208581i
\(213\) 0 0
\(214\) −5.99654 −0.409915
\(215\) −0.286812 0.496773i −0.0195604 0.0338796i
\(216\) 0 0
\(217\) −16.0169 3.51092i −1.08730 0.238337i
\(218\) 3.61577 + 6.26270i 0.244891 + 0.424163i
\(219\) 0 0
\(220\) −3.16591 5.48351i −0.213445 0.369698i
\(221\) −18.7523 + 15.9692i −1.26142 + 1.07420i
\(222\) 0 0
\(223\) 9.30867 + 16.1231i 0.623355 + 1.07968i 0.988857 + 0.148871i \(0.0475640\pi\)
−0.365502 + 0.930811i \(0.619103\pi\)
\(224\) 10.2990 11.2932i 0.688133 0.754560i
\(225\) 0 0
\(226\) −1.51726 + 2.62797i −0.100926 + 0.174810i
\(227\) 22.5455 1.49639 0.748197 0.663476i \(-0.230920\pi\)
0.748197 + 0.663476i \(0.230920\pi\)
\(228\) 0 0
\(229\) 9.62713 16.6747i 0.636179 1.10189i −0.350085 0.936718i \(-0.613847\pi\)
0.986264 0.165176i \(-0.0528193\pi\)
\(230\) 1.38444 2.39793i 0.0912875 0.158115i
\(231\) 0 0
\(232\) 1.99282 + 3.45166i 0.130835 + 0.226613i
\(233\) 11.4276 19.7933i 0.748650 1.29670i −0.199820 0.979833i \(-0.564036\pi\)
0.948470 0.316867i \(-0.102631\pi\)
\(234\) 0 0
\(235\) 1.63301 + 2.82846i 0.106526 + 0.184508i
\(236\) −15.7555 −1.02560
\(237\) 0 0
\(238\) −10.1236 + 11.1009i −0.656219 + 0.719565i
\(239\) 11.2501 0.727705 0.363853 0.931457i \(-0.381461\pi\)
0.363853 + 0.931457i \(0.381461\pi\)
\(240\) 0 0
\(241\) 19.4461 1.25263 0.626316 0.779569i \(-0.284562\pi\)
0.626316 + 0.779569i \(0.284562\pi\)
\(242\) 3.15191 + 5.45928i 0.202613 + 0.350936i
\(243\) 0 0
\(244\) −5.70876 9.88787i −0.365466 0.633006i
\(245\) −16.6389 7.66271i −1.06302 0.489552i
\(246\) 0 0
\(247\) −17.2224 6.12680i −1.09583 0.389839i
\(248\) 8.52359 + 14.7633i 0.541249 + 0.937470i
\(249\) 0 0
\(250\) 6.85585 0.433602
\(251\) 8.79293 15.2298i 0.555005 0.961297i −0.442898 0.896572i \(-0.646050\pi\)
0.997903 0.0647248i \(-0.0206170\pi\)
\(252\) 0 0
\(253\) −1.17635 + 2.03750i −0.0739566 + 0.128097i
\(254\) 3.99531 + 6.92009i 0.250688 + 0.434205i
\(255\) 0 0
\(256\) −15.0220 −0.938872
\(257\) −15.1872 −0.947353 −0.473677 0.880699i \(-0.657073\pi\)
−0.473677 + 0.880699i \(0.657073\pi\)
\(258\) 0 0
\(259\) 14.0457 15.4015i 0.872755 0.957005i
\(260\) 2.23328 + 12.1477i 0.138502 + 0.753368i
\(261\) 0 0
\(262\) −6.88289 + 11.9215i −0.425226 + 0.736514i
\(263\) −6.98496 + 12.0983i −0.430711 + 0.746014i −0.996935 0.0782380i \(-0.975071\pi\)
0.566223 + 0.824252i \(0.308404\pi\)
\(264\) 0 0
\(265\) −7.01065 −0.430661
\(266\) −10.8915 2.38743i −0.667802 0.146383i
\(267\) 0 0
\(268\) 9.05393 15.6819i 0.553057 0.957922i
\(269\) 28.9256 1.76363 0.881813 0.471600i \(-0.156323\pi\)
0.881813 + 0.471600i \(0.156323\pi\)
\(270\) 0 0
\(271\) −10.1175 −0.614595 −0.307297 0.951614i \(-0.599425\pi\)
−0.307297 + 0.951614i \(0.599425\pi\)
\(272\) −2.26513 −0.137344
\(273\) 0 0
\(274\) 8.77541 0.530142
\(275\) 3.41646 0.206020
\(276\) 0 0
\(277\) 3.40639 0.204670 0.102335 0.994750i \(-0.467369\pi\)
0.102335 + 0.994750i \(0.467369\pi\)
\(278\) −3.80504 + 6.59053i −0.228211 + 0.395274i
\(279\) 0 0
\(280\) 5.77003 + 18.1496i 0.344825 + 1.08465i
\(281\) −9.40331 −0.560954 −0.280477 0.959861i \(-0.590493\pi\)
−0.280477 + 0.959861i \(0.590493\pi\)
\(282\) 0 0
\(283\) −5.23950 + 9.07507i −0.311456 + 0.539457i −0.978678 0.205402i \(-0.934150\pi\)
0.667222 + 0.744859i \(0.267483\pi\)
\(284\) 2.34097 4.05468i 0.138911 0.240601i
\(285\) 0 0
\(286\) 1.00167 + 5.44846i 0.0592299 + 0.322174i
\(287\) −22.8067 4.99924i −1.34623 0.295096i
\(288\) 0 0
\(289\) 29.6664 1.74508
\(290\) −3.15204 −0.185094
\(291\) 0 0
\(292\) 4.27701 + 7.40799i 0.250293 + 0.433520i
\(293\) 4.61007 7.98488i 0.269323 0.466481i −0.699364 0.714766i \(-0.746533\pi\)
0.968687 + 0.248284i \(0.0798667\pi\)
\(294\) 0 0
\(295\) 15.7489 27.2778i 0.916934 1.58818i
\(296\) −21.6706 −1.25958
\(297\) 0 0
\(298\) −4.53337 7.85203i −0.262611 0.454856i
\(299\) 3.49407 2.97550i 0.202068 0.172077i
\(300\) 0 0
\(301\) −0.175706 0.552682i −0.0101275 0.0318561i
\(302\) 9.28524 + 16.0825i 0.534306 + 0.925445i
\(303\) 0 0
\(304\) −0.840540 1.45586i −0.0482083 0.0834992i
\(305\) 22.8254 1.30698
\(306\) 0 0
\(307\) −16.1499 −0.921726 −0.460863 0.887471i \(-0.652460\pi\)
−0.460863 + 0.887471i \(0.652460\pi\)
\(308\) −1.93949 6.10065i −0.110513 0.347617i
\(309\) 0 0
\(310\) −13.4818 −0.765712
\(311\) −15.2138 26.3510i −0.862694 1.49423i −0.869319 0.494252i \(-0.835442\pi\)
0.00662478 0.999978i \(-0.497891\pi\)
\(312\) 0 0
\(313\) −13.6859 + 23.7047i −0.773574 + 1.33987i 0.162018 + 0.986788i \(0.448200\pi\)
−0.935592 + 0.353082i \(0.885134\pi\)
\(314\) −0.273968 0.474527i −0.0154609 0.0267791i
\(315\) 0 0
\(316\) −4.03288 + 6.98516i −0.226867 + 0.392946i
\(317\) 6.18424 10.7114i 0.347342 0.601613i −0.638435 0.769676i \(-0.720418\pi\)
0.985776 + 0.168063i \(0.0537511\pi\)
\(318\) 0 0
\(319\) 2.67827 0.149954
\(320\) 5.41559 9.38008i 0.302741 0.524362i
\(321\) 0 0
\(322\) 1.88632 2.06841i 0.105120 0.115268i
\(323\) 17.3169 + 29.9938i 0.963538 + 1.66890i
\(324\) 0 0
\(325\) −6.27890 2.23369i −0.348291 0.123903i
\(326\) −7.55818 13.0911i −0.418609 0.725052i
\(327\) 0 0
\(328\) 12.1368 + 21.0216i 0.670144 + 1.16072i
\(329\) 1.00041 + 3.14678i 0.0551544 + 0.173488i
\(330\) 0 0
\(331\) 6.20311 + 10.7441i 0.340954 + 0.590549i 0.984610 0.174766i \(-0.0559168\pi\)
−0.643656 + 0.765315i \(0.722583\pi\)
\(332\) −11.3589 −0.623400
\(333\) 0 0
\(334\) 1.83834 + 3.18411i 0.100590 + 0.174226i
\(335\) 18.1002 + 31.3505i 0.988920 + 1.71286i
\(336\) 0 0
\(337\) −15.8519 −0.863506 −0.431753 0.901992i \(-0.642105\pi\)
−0.431753 + 0.901992i \(0.642105\pi\)
\(338\) 1.72132 10.6683i 0.0936276 0.580278i
\(339\) 0 0
\(340\) 11.7007 20.2662i 0.634561 1.09909i
\(341\) 11.4554 0.620343
\(342\) 0 0
\(343\) −14.7732 11.1693i −0.797676 0.603086i
\(344\) −0.301464 + 0.522151i −0.0162539 + 0.0281525i
\(345\) 0 0
\(346\) 1.46318 + 2.53431i 0.0786613 + 0.136245i
\(347\) 12.9304 0.694142 0.347071 0.937839i \(-0.387176\pi\)
0.347071 + 0.937839i \(0.387176\pi\)
\(348\) 0 0
\(349\) −1.67254 2.89693i −0.0895292 0.155069i 0.817783 0.575527i \(-0.195203\pi\)
−0.907312 + 0.420458i \(0.861870\pi\)
\(350\) −3.97080 0.870404i −0.212248 0.0465250i
\(351\) 0 0
\(352\) −5.33890 + 9.24724i −0.284564 + 0.492880i
\(353\) 3.00732 5.20882i 0.160063 0.277238i −0.774828 0.632172i \(-0.782164\pi\)
0.934891 + 0.354935i \(0.115497\pi\)
\(354\) 0 0
\(355\) 4.67996 + 8.10593i 0.248387 + 0.430218i
\(356\) −19.8383 −1.05143
\(357\) 0 0
\(358\) 4.49719 7.78936i 0.237684 0.411680i
\(359\) −7.44965 + 12.9032i −0.393177 + 0.681003i −0.992867 0.119230i \(-0.961958\pi\)
0.599689 + 0.800233i \(0.295291\pi\)
\(360\) 0 0
\(361\) −3.35186 + 5.80559i −0.176414 + 0.305557i
\(362\) −19.1729 −1.00770
\(363\) 0 0
\(364\) −0.424161 + 12.4801i −0.0222321 + 0.654133i
\(365\) −17.1008 −0.895097
\(366\) 0 0
\(367\) 4.04076 6.99881i 0.210926 0.365335i −0.741078 0.671418i \(-0.765685\pi\)
0.952005 + 0.306084i \(0.0990187\pi\)
\(368\) 0.422056 0.0220012
\(369\) 0 0
\(370\) 8.56911 14.8421i 0.445487 0.771605i
\(371\) −6.92345 1.51763i −0.359448 0.0787913i
\(372\) 0 0
\(373\) 5.63854 + 9.76624i 0.291953 + 0.505677i 0.974271 0.225378i \(-0.0723617\pi\)
−0.682319 + 0.731055i \(0.739028\pi\)
\(374\) 5.24798 9.08977i 0.271367 0.470021i
\(375\) 0 0
\(376\) 1.71643 2.97295i 0.0885184 0.153318i
\(377\) −4.92222 1.75106i −0.253507 0.0901843i
\(378\) 0 0
\(379\) −8.94558 15.4942i −0.459504 0.795884i 0.539431 0.842030i \(-0.318639\pi\)
−0.998935 + 0.0461461i \(0.985306\pi\)
\(380\) 17.3675 0.890936
\(381\) 0 0
\(382\) −0.760453 1.31714i −0.0389081 0.0673909i
\(383\) 0.0190547 + 0.0330037i 0.000973650 + 0.00168641i 0.866512 0.499157i \(-0.166357\pi\)
−0.865538 + 0.500843i \(0.833023\pi\)
\(384\) 0 0
\(385\) 12.5009 + 2.74020i 0.637102 + 0.139653i
\(386\) −1.31317 + 2.27448i −0.0668388 + 0.115768i
\(387\) 0 0
\(388\) −7.96174 + 13.7901i −0.404196 + 0.700088i
\(389\) −19.5855 33.9231i −0.993025 1.71997i −0.598622 0.801032i \(-0.704285\pi\)
−0.394403 0.918938i \(-0.629049\pi\)
\(390\) 0 0
\(391\) −8.69525 −0.439737
\(392\) 1.76934 + 19.1729i 0.0893654 + 0.968379i
\(393\) 0 0
\(394\) −4.63503 8.02811i −0.233509 0.404450i
\(395\) −8.06236 13.9644i −0.405661 0.702626i
\(396\) 0 0
\(397\) −4.36570 7.56162i −0.219108 0.379507i 0.735427 0.677604i \(-0.236981\pi\)
−0.954536 + 0.298097i \(0.903648\pi\)
\(398\) 17.2482 0.864573
\(399\) 0 0
\(400\) −0.306442 0.530773i −0.0153221 0.0265387i
\(401\) −24.2837 −1.21267 −0.606336 0.795208i \(-0.707361\pi\)
−0.606336 + 0.795208i \(0.707361\pi\)
\(402\) 0 0
\(403\) −21.0531 7.48956i −1.04873 0.373082i
\(404\) 3.00818 5.21031i 0.149662 0.259223i
\(405\) 0 0
\(406\) −3.11284 0.682337i −0.154487 0.0338638i
\(407\) −7.28111 + 12.6113i −0.360911 + 0.625117i
\(408\) 0 0
\(409\) −19.7226 −0.975221 −0.487610 0.873061i \(-0.662131\pi\)
−0.487610 + 0.873061i \(0.662131\pi\)
\(410\) −19.1968 −0.948063
\(411\) 0 0
\(412\) 2.91400 5.04720i 0.143563 0.248658i
\(413\) 21.4579 23.5293i 1.05588 1.15780i
\(414\) 0 0
\(415\) 11.3541 19.6659i 0.557350 0.965359i
\(416\) 15.8579 13.5043i 0.777498 0.662105i
\(417\) 0 0
\(418\) 7.78965 0.381004
\(419\) −11.0976 19.2216i −0.542154 0.939039i −0.998780 0.0493798i \(-0.984276\pi\)
0.456626 0.889659i \(-0.349058\pi\)
\(420\) 0 0
\(421\) −1.85475 −0.0903949 −0.0451974 0.998978i \(-0.514392\pi\)
−0.0451974 + 0.998978i \(0.514392\pi\)
\(422\) 6.78943 + 11.7596i 0.330504 + 0.572450i
\(423\) 0 0
\(424\) 3.68440 + 6.38156i 0.178930 + 0.309916i
\(425\) 6.31336 + 10.9351i 0.306243 + 0.530428i
\(426\) 0 0
\(427\) 22.5415 + 4.94112i 1.09086 + 0.239118i
\(428\) 9.44312 0.456450
\(429\) 0 0
\(430\) −0.238413 0.412943i −0.0114973 0.0199139i
\(431\) −18.8935 + 32.7246i −0.910069 + 1.57629i −0.0961051 + 0.995371i \(0.530638\pi\)
−0.813964 + 0.580915i \(0.802695\pi\)
\(432\) 0 0
\(433\) 17.5680 30.4286i 0.844263 1.46231i −0.0419959 0.999118i \(-0.513372\pi\)
0.886259 0.463189i \(-0.153295\pi\)
\(434\) −13.3141 2.91846i −0.639096 0.140091i
\(435\) 0 0
\(436\) −5.69397 9.86225i −0.272692 0.472316i
\(437\) −3.22662 5.58867i −0.154350 0.267342i
\(438\) 0 0
\(439\) 15.3475 0.732496 0.366248 0.930517i \(-0.380642\pi\)
0.366248 + 0.930517i \(0.380642\pi\)
\(440\) −6.65247 11.5224i −0.317144 0.549310i
\(441\) 0 0
\(442\) −15.5879 + 13.2744i −0.741440 + 0.631398i
\(443\) 14.5356 25.1765i 0.690609 1.19617i −0.281030 0.959699i \(-0.590676\pi\)
0.971639 0.236471i \(-0.0759907\pi\)
\(444\) 0 0
\(445\) 19.8299 34.3464i 0.940027 1.62817i
\(446\) 7.73784 + 13.4023i 0.366397 + 0.634619i
\(447\) 0 0
\(448\) 7.37879 8.09108i 0.348615 0.382268i
\(449\) 1.18131 2.04609i 0.0557494 0.0965607i −0.836804 0.547503i \(-0.815579\pi\)
0.892553 + 0.450942i \(0.148912\pi\)
\(450\) 0 0
\(451\) 16.3114 0.768074
\(452\) 2.38932 4.13842i 0.112384 0.194655i
\(453\) 0 0
\(454\) 18.7409 0.879555
\(455\) −21.1830 13.2092i −0.993074 0.619255i
\(456\) 0 0
\(457\) −16.7534 −0.783692 −0.391846 0.920031i \(-0.628163\pi\)
−0.391846 + 0.920031i \(0.628163\pi\)
\(458\) 8.00257 13.8608i 0.373935 0.647675i
\(459\) 0 0
\(460\) −2.18017 + 3.77616i −0.101651 + 0.176064i
\(461\) −12.5469 + 21.7318i −0.584366 + 1.01215i 0.410588 + 0.911821i \(0.365323\pi\)
−0.994954 + 0.100330i \(0.968010\pi\)
\(462\) 0 0
\(463\) −0.254256 −0.0118163 −0.00590815 0.999983i \(-0.501881\pi\)
−0.00590815 + 0.999983i \(0.501881\pi\)
\(464\) −0.240230 0.416090i −0.0111524 0.0193165i
\(465\) 0 0
\(466\) 9.49924 16.4532i 0.440044 0.762178i
\(467\) 5.11155 8.85346i 0.236534 0.409689i −0.723183 0.690656i \(-0.757322\pi\)
0.959717 + 0.280967i \(0.0906551\pi\)
\(468\) 0 0
\(469\) 11.0885 + 34.8788i 0.512020 + 1.61055i
\(470\) 1.35744 + 2.35116i 0.0626141 + 0.108451i
\(471\) 0 0
\(472\) −33.1068 −1.52386
\(473\) 0.202578 + 0.350875i 0.00931453 + 0.0161332i
\(474\) 0 0
\(475\) −4.68550 + 8.11552i −0.214985 + 0.372366i
\(476\) 15.9423 17.4813i 0.730715 0.801253i
\(477\) 0 0
\(478\) 9.35162 0.427733
\(479\) −6.35400 + 11.0055i −0.290322 + 0.502852i −0.973886 0.227039i \(-0.927096\pi\)
0.683564 + 0.729891i \(0.260429\pi\)
\(480\) 0 0
\(481\) 21.6268 18.4170i 0.986098 0.839745i
\(482\) 16.1646 0.736277
\(483\) 0 0
\(484\) −4.96351 8.59706i −0.225614 0.390775i
\(485\) −15.9168 27.5686i −0.722743 1.25183i
\(486\) 0 0
\(487\) 20.4820 0.928126 0.464063 0.885802i \(-0.346391\pi\)
0.464063 + 0.885802i \(0.346391\pi\)
\(488\) −11.9957 20.7772i −0.543022 0.940541i
\(489\) 0 0
\(490\) −13.8311 6.36963i −0.624825 0.287751i
\(491\) 9.92098 + 17.1836i 0.447727 + 0.775487i 0.998238 0.0593417i \(-0.0189002\pi\)
−0.550510 + 0.834828i \(0.685567\pi\)
\(492\) 0 0
\(493\) 4.94924 + 8.57233i 0.222902 + 0.386078i
\(494\) −14.3161 5.09291i −0.644113 0.229141i
\(495\) 0 0
\(496\) −1.02750 1.77968i −0.0461361 0.0799100i
\(497\) 2.86703 + 9.01821i 0.128604 + 0.404522i
\(498\) 0 0
\(499\) −13.9419 + 24.1480i −0.624124 + 1.08101i 0.364585 + 0.931170i \(0.381211\pi\)
−0.988710 + 0.149845i \(0.952123\pi\)
\(500\) −10.7963 −0.482827
\(501\) 0 0
\(502\) 7.30913 12.6598i 0.326223 0.565034i
\(503\) −6.62277 + 11.4710i −0.295295 + 0.511465i −0.975053 0.221970i \(-0.928751\pi\)
0.679759 + 0.733436i \(0.262084\pi\)
\(504\) 0 0
\(505\) 6.01381 + 10.4162i 0.267611 + 0.463516i
\(506\) −0.977844 + 1.69368i −0.0434705 + 0.0752931i
\(507\) 0 0
\(508\) −6.29167 10.8975i −0.279148 0.483498i
\(509\) −27.0750 −1.20008 −0.600040 0.799970i \(-0.704849\pi\)
−0.600040 + 0.799970i \(0.704849\pi\)
\(510\) 0 0
\(511\) −16.8881 3.70189i −0.747086 0.163762i
\(512\) 3.73962 0.165270
\(513\) 0 0
\(514\) −12.6244 −0.556838
\(515\) 5.82554 + 10.0901i 0.256704 + 0.444625i
\(516\) 0 0
\(517\) −1.15341 1.99776i −0.0507269 0.0878615i
\(518\) 11.6755 12.8025i 0.512991 0.562511i
\(519\) 0 0
\(520\) 4.69277 + 25.5258i 0.205791 + 1.11938i
\(521\) 11.6257 + 20.1363i 0.509331 + 0.882187i 0.999942 + 0.0108082i \(0.00344041\pi\)
−0.490611 + 0.871379i \(0.663226\pi\)
\(522\) 0 0
\(523\) 33.5380 1.46651 0.733256 0.679952i \(-0.237999\pi\)
0.733256 + 0.679952i \(0.237999\pi\)
\(524\) 10.8389 18.7735i 0.473500 0.820126i
\(525\) 0 0
\(526\) −5.80626 + 10.0567i −0.253165 + 0.438494i
\(527\) 21.1686 + 36.6652i 0.922121 + 1.59716i
\(528\) 0 0
\(529\) −21.3798 −0.929558
\(530\) −5.82761 −0.253135
\(531\) 0 0
\(532\) 17.1515 + 3.75963i 0.743614 + 0.163001i
\(533\) −29.9777 10.6645i −1.29848 0.461929i
\(534\) 0 0
\(535\) −9.43913 + 16.3491i −0.408089 + 0.706831i
\(536\) 19.0249 32.9521i 0.821750 1.42331i
\(537\) 0 0
\(538\) 24.0444 1.03663
\(539\) 11.7522 + 5.41224i 0.506203 + 0.233122i
\(540\) 0 0
\(541\) −4.65598 + 8.06439i −0.200176 + 0.346715i −0.948585 0.316522i \(-0.897485\pi\)
0.748409 + 0.663238i \(0.230818\pi\)
\(542\) −8.41019 −0.361248
\(543\) 0 0
\(544\) −39.4635 −1.69198
\(545\) 22.7663 0.975200
\(546\) 0 0
\(547\) −31.5111 −1.34732 −0.673658 0.739043i \(-0.735278\pi\)
−0.673658 + 0.739043i \(0.735278\pi\)
\(548\) −13.8192 −0.590326
\(549\) 0 0
\(550\) 2.83993 0.121095
\(551\) −3.67311 + 6.36201i −0.156480 + 0.271031i
\(552\) 0 0
\(553\) −4.93914 15.5360i −0.210034 0.660659i
\(554\) 2.83157 0.120302
\(555\) 0 0
\(556\) 5.99203 10.3785i 0.254119 0.440147i
\(557\) 2.76650 4.79172i 0.117220 0.203032i −0.801445 0.598069i \(-0.795935\pi\)
0.918665 + 0.395037i \(0.129268\pi\)
\(558\) 0 0
\(559\) −0.142902 0.777298i −0.00604410 0.0328762i
\(560\) −0.695564 2.18789i −0.0293929 0.0924553i
\(561\) 0 0
\(562\) −7.81651 −0.329720
\(563\) −12.3688 −0.521281 −0.260641 0.965436i \(-0.583934\pi\)
−0.260641 + 0.965436i \(0.583934\pi\)
\(564\) 0 0
\(565\) 4.77662 + 8.27335i 0.200954 + 0.348062i
\(566\) −4.35534 + 7.54366i −0.183068 + 0.317084i
\(567\) 0 0
\(568\) 4.91904 8.52003i 0.206398 0.357493i
\(569\) −1.99446 −0.0836120 −0.0418060 0.999126i \(-0.513311\pi\)
−0.0418060 + 0.999126i \(0.513311\pi\)
\(570\) 0 0
\(571\) −11.0440 19.1288i −0.462179 0.800517i 0.536891 0.843652i \(-0.319599\pi\)
−0.999069 + 0.0431350i \(0.986265\pi\)
\(572\) −1.57739 8.58002i −0.0659539 0.358749i
\(573\) 0 0
\(574\) −18.9581 4.15562i −0.791294 0.173452i
\(575\) −1.17635 2.03750i −0.0490573 0.0849697i
\(576\) 0 0
\(577\) −4.54321 7.86907i −0.189136 0.327594i 0.755826 0.654772i \(-0.227235\pi\)
−0.944963 + 0.327179i \(0.893902\pi\)
\(578\) 24.6603 1.02573
\(579\) 0 0
\(580\) 4.96371 0.206107
\(581\) 15.4700 16.9634i 0.641805 0.703760i
\(582\) 0 0
\(583\) 4.95168 0.205078
\(584\) 8.98721 + 15.5663i 0.371893 + 0.644138i
\(585\) 0 0
\(586\) 3.83213 6.63744i 0.158304 0.274190i
\(587\) 3.02112 + 5.23273i 0.124695 + 0.215978i 0.921614 0.388109i \(-0.126872\pi\)
−0.796919 + 0.604086i \(0.793538\pi\)
\(588\) 0 0
\(589\) −15.7105 + 27.2113i −0.647338 + 1.12122i
\(590\) 13.0912 22.6747i 0.538958 0.933503i
\(591\) 0 0
\(592\) 2.61234 0.107367
\(593\) 6.67095 11.5544i 0.273943 0.474484i −0.695925 0.718115i \(-0.745005\pi\)
0.969868 + 0.243631i \(0.0783386\pi\)
\(594\) 0 0
\(595\) 14.3301 + 45.0752i 0.587476 + 1.84790i
\(596\) 7.13898 + 12.3651i 0.292424 + 0.506493i
\(597\) 0 0
\(598\) 2.90445 2.47338i 0.118772 0.101144i
\(599\) 15.0725 + 26.1063i 0.615844 + 1.06667i 0.990236 + 0.139402i \(0.0445181\pi\)
−0.374392 + 0.927270i \(0.622149\pi\)
\(600\) 0 0
\(601\) −18.9159 32.7634i −0.771598 1.33645i −0.936687 0.350168i \(-0.886125\pi\)
0.165089 0.986279i \(-0.447209\pi\)
\(602\) −0.146056 0.459417i −0.00595279 0.0187245i
\(603\) 0 0
\(604\) −14.6220 25.3261i −0.594962 1.03051i
\(605\) 19.8457 0.806841
\(606\) 0 0
\(607\) −3.35449 5.81015i −0.136155 0.235827i 0.789883 0.613257i \(-0.210141\pi\)
−0.926038 + 0.377430i \(0.876808\pi\)
\(608\) −14.6441 25.3643i −0.593895 1.02866i
\(609\) 0 0
\(610\) 18.9737 0.768221
\(611\) 0.813634 + 4.42567i 0.0329161 + 0.179043i
\(612\) 0 0
\(613\) 10.0836 17.4653i 0.407272 0.705416i −0.587311 0.809362i \(-0.699813\pi\)
0.994583 + 0.103945i \(0.0331467\pi\)
\(614\) −13.4247 −0.541775
\(615\) 0 0
\(616\) −4.07542 12.8192i −0.164203 0.516501i
\(617\) 2.98249 5.16582i 0.120071 0.207968i −0.799725 0.600367i \(-0.795021\pi\)
0.919795 + 0.392399i \(0.128355\pi\)
\(618\) 0 0
\(619\) 4.31420 + 7.47242i 0.173402 + 0.300342i 0.939607 0.342255i \(-0.111191\pi\)
−0.766205 + 0.642596i \(0.777857\pi\)
\(620\) 21.2305 0.852639
\(621\) 0 0
\(622\) −12.6465 21.9043i −0.507077 0.878283i
\(623\) 27.0184 29.6265i 1.08247 1.18696i
\(624\) 0 0
\(625\) 15.4127 26.6956i 0.616507 1.06782i
\(626\) −11.3764 + 19.7046i −0.454694 + 0.787553i
\(627\) 0 0
\(628\) 0.431435 + 0.747267i 0.0172161 + 0.0298192i
\(629\) −53.8198 −2.14594
\(630\) 0 0
\(631\) −1.02888 + 1.78208i −0.0409592 + 0.0709434i −0.885778 0.464109i \(-0.846375\pi\)
0.844819 + 0.535052i \(0.179708\pi\)
\(632\) −8.47423 + 14.6778i −0.337087 + 0.583852i
\(633\) 0 0
\(634\) 5.14066 8.90388i 0.204162 0.353618i
\(635\) 25.1560 0.998287
\(636\) 0 0
\(637\) −18.0601 17.6305i −0.715567 0.698544i
\(638\) 2.22631 0.0881405
\(639\) 0 0
\(640\) −10.6160 + 18.3875i −0.419635 + 0.726830i
\(641\) 17.6623 0.697618 0.348809 0.937194i \(-0.386586\pi\)
0.348809 + 0.937194i \(0.386586\pi\)
\(642\) 0 0
\(643\) −24.6023 + 42.6124i −0.970219 + 1.68047i −0.275334 + 0.961349i \(0.588788\pi\)
−0.694885 + 0.719121i \(0.744545\pi\)
\(644\) −2.97050 + 3.25725i −0.117054 + 0.128353i
\(645\) 0 0
\(646\) 14.3947 + 24.9323i 0.566352 + 0.980950i
\(647\) −7.74797 + 13.4199i −0.304604 + 0.527590i −0.977173 0.212445i \(-0.931857\pi\)
0.672569 + 0.740034i \(0.265191\pi\)
\(648\) 0 0
\(649\) −11.1235 + 19.2666i −0.436637 + 0.756278i
\(650\) −5.21934 1.85676i −0.204719 0.0728281i
\(651\) 0 0
\(652\) 11.9023 + 20.6154i 0.466131 + 0.807363i
\(653\) 36.7330 1.43748 0.718738 0.695281i \(-0.244720\pi\)
0.718738 + 0.695281i \(0.244720\pi\)
\(654\) 0 0
\(655\) 21.6687 + 37.5312i 0.846665 + 1.46647i
\(656\) −1.46307 2.53411i −0.0571232 0.0989402i
\(657\) 0 0
\(658\) 0.831593 + 2.61577i 0.0324189 + 0.101973i
\(659\) 5.48070 9.49284i 0.213498 0.369789i −0.739309 0.673366i \(-0.764848\pi\)
0.952807 + 0.303577i \(0.0981811\pi\)
\(660\) 0 0
\(661\) −8.03552 + 13.9179i −0.312545 + 0.541344i −0.978913 0.204279i \(-0.934515\pi\)
0.666367 + 0.745624i \(0.267848\pi\)
\(662\) 5.15634 + 8.93104i 0.200407 + 0.347115i
\(663\) 0 0
\(664\) −23.8682 −0.926268
\(665\) −23.6534 + 25.9367i −0.917240 + 1.00578i
\(666\) 0 0
\(667\) −0.922180 1.59726i −0.0357069 0.0618462i
\(668\) −2.89495 5.01421i −0.112009 0.194005i
\(669\) 0 0
\(670\) 15.0458 + 26.0601i 0.581271 + 1.00679i
\(671\) −16.1218 −0.622375
\(672\) 0 0
\(673\) 14.1074 + 24.4348i 0.543802 + 0.941892i 0.998681 + 0.0513390i \(0.0163489\pi\)
−0.454880 + 0.890553i \(0.650318\pi\)
\(674\) −13.1769 −0.507554
\(675\) 0 0
\(676\) −2.71067 + 16.8000i −0.104257 + 0.646154i
\(677\) −17.5358 + 30.3729i −0.673956 + 1.16733i 0.302817 + 0.953049i \(0.402073\pi\)
−0.976773 + 0.214277i \(0.931260\pi\)
\(678\) 0 0
\(679\) −9.75089 30.6713i −0.374205 1.17706i
\(680\) 24.5866 42.5852i 0.942851 1.63307i
\(681\) 0 0
\(682\) 9.52228 0.364627
\(683\) −48.3832 −1.85133 −0.925666 0.378341i \(-0.876495\pi\)
−0.925666 + 0.378341i \(0.876495\pi\)
\(684\) 0 0
\(685\) 13.8133 23.9254i 0.527781 0.914143i
\(686\) −12.2802 9.28450i −0.468861 0.354484i
\(687\) 0 0
\(688\) 0.0363408 0.0629441i 0.00138548 0.00239972i
\(689\) −9.10039 3.23743i −0.346697 0.123336i
\(690\) 0 0
\(691\) −24.1060 −0.917035 −0.458518 0.888685i \(-0.651619\pi\)
−0.458518 + 0.888685i \(0.651619\pi\)
\(692\) −2.30417 3.99093i −0.0875913 0.151713i
\(693\) 0 0
\(694\) 10.7484 0.408005
\(695\) 11.9790 + 20.7483i 0.454390 + 0.787026i
\(696\) 0 0
\(697\) 30.1423 + 52.2079i 1.14172 + 1.97752i
\(698\) −1.39030 2.40808i −0.0526238 0.0911470i
\(699\) 0 0
\(700\) 6.25307 + 1.37068i 0.236344 + 0.0518068i
\(701\) 3.07792 0.116251 0.0581257 0.998309i \(-0.481488\pi\)
0.0581257 + 0.998309i \(0.481488\pi\)
\(702\) 0 0
\(703\) −19.9714 34.5914i −0.753235 1.30464i
\(704\) −3.82508 + 6.62523i −0.144163 + 0.249698i
\(705\) 0 0
\(706\) 2.49983 4.32984i 0.0940825 0.162956i
\(707\) 3.68417 + 11.5885i 0.138557 + 0.435831i
\(708\) 0 0
\(709\) −17.9722 31.1287i −0.674959 1.16906i −0.976481 0.215604i \(-0.930828\pi\)
0.301522 0.953459i \(-0.402505\pi\)
\(710\) 3.89022 + 6.73806i 0.145997 + 0.252875i
\(711\) 0 0
\(712\) −41.6858 −1.56224
\(713\) −3.94430 6.83173i −0.147715 0.255850i
\(714\) 0 0
\(715\) 16.4315 + 5.84544i 0.614503 + 0.218607i
\(716\) −7.08200 + 12.2664i −0.264667 + 0.458416i
\(717\) 0 0
\(718\) −6.19253 + 10.7258i −0.231103 + 0.400282i
\(719\) 5.09760 + 8.82930i 0.190108 + 0.329278i 0.945286 0.326243i \(-0.105783\pi\)
−0.755178 + 0.655520i \(0.772449\pi\)
\(720\) 0 0
\(721\) 3.56883 + 11.2257i 0.132910 + 0.418068i
\(722\) −2.78624 + 4.82590i −0.103693 + 0.179602i
\(723\) 0 0
\(724\) 30.1927 1.12210
\(725\) −1.33913 + 2.31945i −0.0497342 + 0.0861421i
\(726\) 0 0
\(727\) −2.32372 −0.0861821 −0.0430911 0.999071i \(-0.513721\pi\)
−0.0430911 + 0.999071i \(0.513721\pi\)
\(728\) −0.891282 + 26.2242i −0.0330331 + 0.971933i
\(729\) 0 0
\(730\) −14.2151 −0.526123
\(731\) −0.748697 + 1.29678i −0.0276916 + 0.0479632i
\(732\) 0 0
\(733\) 2.91958 5.05685i 0.107837 0.186779i −0.807057 0.590474i \(-0.798941\pi\)
0.914894 + 0.403695i \(0.132274\pi\)
\(734\) 3.35889 5.81777i 0.123979 0.214738i
\(735\) 0 0
\(736\) 7.35314 0.271040
\(737\) −12.7843 22.1431i −0.470917 0.815652i
\(738\) 0 0
\(739\) −0.0105714 + 0.0183102i −0.000388875 + 0.000673551i −0.866220 0.499663i \(-0.833457\pi\)
0.865831 + 0.500337i \(0.166790\pi\)
\(740\) −13.4943 + 23.3728i −0.496060 + 0.859201i
\(741\) 0 0
\(742\) −5.75513 1.26153i −0.211277 0.0463122i
\(743\) 14.8332 + 25.6918i 0.544176 + 0.942541i 0.998658 + 0.0517853i \(0.0164911\pi\)
−0.454482 + 0.890756i \(0.650176\pi\)
\(744\) 0 0
\(745\) −28.5439 −1.04577
\(746\) 4.68704 + 8.11819i 0.171605 + 0.297228i
\(747\) 0 0
\(748\) −8.26432 + 14.3142i −0.302173 + 0.523380i
\(749\) −12.8609 + 14.1024i −0.469927 + 0.515290i
\(750\) 0 0
\(751\) 12.6016 0.459838 0.229919 0.973210i \(-0.426154\pi\)
0.229919 + 0.973210i \(0.426154\pi\)
\(752\) −0.206912 + 0.358382i −0.00754531 + 0.0130689i
\(753\) 0 0
\(754\) −4.09160 1.45557i −0.149007 0.0530088i
\(755\) 58.4635 2.12770
\(756\) 0 0
\(757\) −8.13319 14.0871i −0.295606 0.512004i 0.679520 0.733657i \(-0.262188\pi\)
−0.975126 + 0.221653i \(0.928855\pi\)
\(758\) −7.43602 12.8796i −0.270089 0.467807i
\(759\) 0 0
\(760\) 36.4942 1.32378
\(761\) 23.1276 + 40.0581i 0.838374 + 1.45211i 0.891254 + 0.453505i \(0.149827\pi\)
−0.0528802 + 0.998601i \(0.516840\pi\)
\(762\) 0 0
\(763\) 22.4831 + 4.92832i 0.813944 + 0.178417i
\(764\) 1.19753 + 2.07419i 0.0433252 + 0.0750414i
\(765\) 0 0
\(766\) 0.0158392 + 0.0274344i 0.000572295 + 0.000991244i
\(767\) 33.0398 28.1362i 1.19300 1.01594i
\(768\) 0 0
\(769\) 19.2803 + 33.3944i 0.695264 + 1.20423i 0.970092 + 0.242739i \(0.0780460\pi\)
−0.274827 + 0.961494i \(0.588621\pi\)
\(770\) 10.3913 + 2.27779i 0.374478 + 0.0820859i
\(771\) 0 0
\(772\) 2.06794 3.58177i 0.0744267 0.128911i
\(773\) 10.3545 0.372424 0.186212 0.982510i \(-0.440379\pi\)
0.186212 + 0.982510i \(0.440379\pi\)
\(774\) 0 0
\(775\) −5.72768 + 9.92063i −0.205744 + 0.356360i
\(776\) −16.7299 + 28.9770i −0.600568 + 1.04021i
\(777\) 0 0
\(778\) −16.2805 28.1986i −0.583683 1.01097i
\(779\) −22.3703 + 38.7465i −0.801499 + 1.38824i
\(780\) 0 0
\(781\) −3.30550 5.72529i −0.118280 0.204867i
\(782\) −7.22793 −0.258470
\(783\) 0 0
\(784\) −0.213290 2.31125i −0.00761751 0.0825447i
\(785\) −1.72501 −0.0615683
\(786\) 0 0
\(787\) 34.2879 1.22223 0.611116 0.791541i \(-0.290721\pi\)
0.611116 + 0.791541i \(0.290721\pi\)
\(788\) 7.29906 + 12.6423i 0.260018 + 0.450365i
\(789\) 0 0
\(790\) −6.70184 11.6079i −0.238441 0.412992i
\(791\) 2.92624 + 9.20447i 0.104045 + 0.327273i
\(792\) 0 0
\(793\) 29.6293 + 10.5405i 1.05217 + 0.374304i
\(794\) −3.62899 6.28560i −0.128788 0.223068i
\(795\) 0 0
\(796\) −27.1618 −0.962723
\(797\) −6.60638 + 11.4426i −0.234010 + 0.405317i −0.958984 0.283459i \(-0.908518\pi\)
0.724975 + 0.688776i \(0.241851\pi\)
\(798\) 0 0
\(799\) 4.26283 7.38343i 0.150808 0.261207i
\(800\) −5.33890 9.24724i −0.188758 0.326939i
\(801\) 0 0
\(802\) −20.1859 −0.712788
\(803\) 12.0784 0.426239
\(804\) 0 0
\(805\) −2.67009 8.39875i −0.0941083 0.296017i
\(806\) −17.5004 6.22571i −0.616426 0.219291i
\(807\) 0 0
\(808\) 6.32103 10.9484i 0.222373 0.385162i
\(809\) −25.4875 + 44.1457i −0.896094 + 1.55208i −0.0636484 + 0.997972i \(0.520274\pi\)
−0.832445 + 0.554107i \(0.813060\pi\)
\(810\) 0 0
\(811\) 7.86969 0.276342 0.138171 0.990408i \(-0.455878\pi\)
0.138171 + 0.990408i \(0.455878\pi\)
\(812\) 4.90197 + 1.07452i 0.172026 + 0.0377082i
\(813\) 0 0
\(814\) −6.05243 + 10.4831i −0.212138 + 0.367433i
\(815\) −47.5892 −1.66698
\(816\) 0 0
\(817\) −1.11130 −0.0388795
\(818\) −16.3944 −0.573218
\(819\) 0 0
\(820\) 30.2304 1.05569
\(821\) 41.6714 1.45434 0.727171 0.686457i \(-0.240835\pi\)
0.727171 + 0.686457i \(0.240835\pi\)
\(822\) 0 0
\(823\) −15.7101 −0.547619 −0.273809 0.961784i \(-0.588284\pi\)
−0.273809 + 0.961784i \(0.588284\pi\)
\(824\) 6.12315 10.6056i 0.213310 0.369464i
\(825\) 0 0
\(826\) 17.8369 19.5588i 0.620626 0.680537i
\(827\) −33.6343 −1.16958 −0.584789 0.811185i \(-0.698823\pi\)
−0.584789 + 0.811185i \(0.698823\pi\)
\(828\) 0 0
\(829\) 25.1510 43.5629i 0.873532 1.51300i 0.0152129 0.999884i \(-0.495157\pi\)
0.858319 0.513117i \(-0.171509\pi\)
\(830\) 9.43810 16.3473i 0.327601 0.567422i
\(831\) 0 0
\(832\) 11.3615 9.67525i 0.393889 0.335429i
\(833\) 4.39423 + 47.6167i 0.152251 + 1.64982i
\(834\) 0 0
\(835\) 11.5749 0.400567
\(836\) −12.2668 −0.424258
\(837\) 0 0
\(838\) −9.22491 15.9780i −0.318669 0.551951i
\(839\) 19.2875 33.4069i 0.665877 1.15333i −0.313170 0.949697i \(-0.601391\pi\)
0.979047 0.203635i \(-0.0652757\pi\)
\(840\) 0 0
\(841\) 13.4502 23.2964i 0.463800 0.803326i
\(842\) −1.54176 −0.0531326
\(843\) 0 0
\(844\) −10.6917 18.5186i −0.368025 0.637437i
\(845\) −26.3767 21.4860i −0.907384 0.739139i
\(846\) 0 0
\(847\) 19.5988 + 4.29608i 0.673424 + 0.147615i
\(848\) −0.444145 0.769282i −0.0152520 0.0264173i
\(849\) 0 0
\(850\) 5.24798 + 9.08977i 0.180004 + 0.311777i
\(851\) 10.0281 0.343759
\(852\) 0 0
\(853\) 22.6889 0.776855 0.388427 0.921479i \(-0.373018\pi\)
0.388427 + 0.921479i \(0.373018\pi\)
\(854\) 18.7377 + 4.10731i 0.641190 + 0.140549i
\(855\) 0 0
\(856\) 19.8427 0.678209
\(857\) −10.2901 17.8230i −0.351504 0.608822i 0.635009 0.772504i \(-0.280996\pi\)
−0.986513 + 0.163682i \(0.947663\pi\)
\(858\) 0 0
\(859\) 1.81131 3.13729i 0.0618012 0.107043i −0.833469 0.552566i \(-0.813649\pi\)
0.895271 + 0.445523i \(0.146982\pi\)
\(860\) 0.375443 + 0.650286i 0.0128025 + 0.0221746i
\(861\) 0 0
\(862\) −15.7053 + 27.2023i −0.534923 + 0.926515i
\(863\) 3.99010 6.91105i 0.135824 0.235255i −0.790088 0.612994i \(-0.789965\pi\)
0.925912 + 0.377739i \(0.123298\pi\)
\(864\) 0 0
\(865\) 9.21277 0.313244
\(866\) 14.6034 25.2938i 0.496244 0.859520i
\(867\) 0 0
\(868\) 20.9665 + 4.59588i 0.711649 + 0.155994i
\(869\) 5.69451 + 9.86318i 0.193173 + 0.334586i
\(870\) 0 0
\(871\) 9.01828 + 49.0539i 0.305573 + 1.66213i
\(872\) −11.9647 20.7234i −0.405174 0.701783i
\(873\) 0 0
\(874\) −2.68213 4.64558i −0.0907244 0.157139i
\(875\) 14.7039 16.1233i 0.497082 0.545066i
\(876\) 0 0
\(877\) 6.29998 + 10.9119i 0.212735 + 0.368468i 0.952570 0.304321i \(-0.0984295\pi\)
−0.739834 + 0.672789i \(0.765096\pi\)
\(878\) 12.7576 0.430549
\(879\) 0 0
\(880\) 0.801940 + 1.38900i 0.0270334 + 0.0468232i
\(881\) −0.0834951 0.144618i −0.00281302 0.00487230i 0.864615 0.502434i \(-0.167562\pi\)
−0.867428 + 0.497562i \(0.834229\pi\)
\(882\) 0 0
\(883\) 1.54174 0.0518836 0.0259418 0.999663i \(-0.491742\pi\)
0.0259418 + 0.999663i \(0.491742\pi\)
\(884\) 24.5472 20.9040i 0.825611 0.703077i
\(885\) 0 0
\(886\) 12.0828 20.9280i 0.405928 0.703088i
\(887\) 10.3337 0.346971 0.173485 0.984836i \(-0.444497\pi\)
0.173485 + 0.984836i \(0.444497\pi\)
\(888\) 0 0
\(889\) 24.8432 + 5.44565i 0.833213 + 0.182641i
\(890\) 16.4836 28.5504i 0.552532 0.957013i
\(891\) 0 0
\(892\) −12.1852 21.1055i −0.407992 0.706663i
\(893\) 6.32737 0.211737
\(894\) 0 0
\(895\) −14.1580 24.5224i −0.473250 0.819693i
\(896\) −14.4644 + 15.8607i −0.483223 + 0.529869i
\(897\) 0 0
\(898\) 0.981963 1.70081i 0.0327685 0.0567568i
\(899\) −4.49011 + 7.77709i −0.149753 + 0.259381i
\(900\) 0 0
\(901\) 9.15033 + 15.8488i 0.304842 + 0.528001i
\(902\) 13.5589 0.451461
\(903\) 0 0
\(904\) 5.02064 8.69600i 0.166984 0.289225i
\(905\) −30.1799 + 52.2732i −1.00321 + 1.73762i
\(906\) 0 0
\(907\) −11.9496 + 20.6973i −0.396780 + 0.687242i −0.993327 0.115336i \(-0.963206\pi\)
0.596547 + 0.802578i \(0.296539\pi\)
\(908\) −29.5125 −0.979406
\(909\) 0 0
\(910\) −17.6084 10.9801i −0.583712 0.363988i
\(911\) −14.3304 −0.474786 −0.237393 0.971414i \(-0.576293\pi\)
−0.237393 + 0.971414i \(0.576293\pi\)
\(912\) 0 0
\(913\) −8.01949 + 13.8902i −0.265406 + 0.459697i
\(914\) −13.9263 −0.460641
\(915\) 0 0
\(916\) −12.6021 + 21.8275i −0.416386 + 0.721202i
\(917\) 13.2746 + 41.7552i 0.438366 + 1.37888i
\(918\) 0 0
\(919\) 27.1731 + 47.0652i 0.896359 + 1.55254i 0.832114 + 0.554605i \(0.187131\pi\)
0.0642448 + 0.997934i \(0.479536\pi\)
\(920\) −4.58115 + 7.93479i −0.151036 + 0.261602i
\(921\) 0 0
\(922\) −10.4296 + 18.0646i −0.343480 + 0.594926i
\(923\) 2.33175 + 12.6833i 0.0767506 + 0.417476i
\(924\) 0 0
\(925\) −7.28111 12.6113i −0.239402 0.414656i
\(926\) −0.211351 −0.00694542
\(927\) 0 0
\(928\) −4.18533 7.24920i −0.137390 0.237967i
\(929\) 8.33555 + 14.4376i 0.273480 + 0.473682i 0.969751 0.244098i \(-0.0784918\pi\)
−0.696270 + 0.717780i \(0.745158\pi\)
\(930\) 0 0
\(931\) −28.9739 + 20.4938i −0.949581 + 0.671657i
\(932\) −14.9590 + 25.9098i −0.490000 + 0.848704i
\(933\) 0 0
\(934\) 4.24898 7.35945i 0.139031 0.240808i
\(935\) −16.5217 28.6164i −0.540316 0.935855i
\(936\) 0 0
\(937\) −2.55078 −0.0833303 −0.0416651 0.999132i \(-0.513266\pi\)
−0.0416651 + 0.999132i \(0.513266\pi\)
\(938\) 9.21733 + 28.9930i 0.300957 + 0.946656i
\(939\) 0 0
\(940\) −2.13765 3.70251i −0.0697223 0.120763i
\(941\) −17.3944 30.1280i −0.567041 0.982144i −0.996857 0.0792275i \(-0.974755\pi\)
0.429815 0.902917i \(-0.358579\pi\)
\(942\) 0 0
\(943\) −5.61634 9.72778i −0.182893 0.316780i
\(944\) 3.99095 0.129894
\(945\) 0 0
\(946\) 0.168393 + 0.291665i 0.00547493 + 0.00948285i
\(947\) −14.9857 −0.486969 −0.243485 0.969905i \(-0.578291\pi\)
−0.243485 + 0.969905i \(0.578291\pi\)
\(948\) 0 0
\(949\) −22.1982 7.89694i −0.720585 0.256345i
\(950\) −3.89483 + 6.74604i −0.126365 + 0.218870i
\(951\) 0 0
\(952\) 33.4994 36.7332i 1.08572 1.19053i
\(953\) 6.40858 11.1000i 0.207594 0.359564i −0.743362 0.668889i \(-0.766770\pi\)
0.950956 + 0.309326i \(0.100103\pi\)
\(954\) 0 0
\(955\) −4.78810 −0.154939
\(956\) −14.7266 −0.476291
\(957\) 0 0
\(958\) −5.28177 + 9.14829i −0.170646 + 0.295568i
\(959\) 18.8208 20.6376i 0.607755 0.666423i
\(960\) 0 0
\(961\) −3.70488 + 6.41704i −0.119512 + 0.207001i
\(962\) 17.9773 15.3092i 0.579612 0.493588i
\(963\) 0 0
\(964\) −25.4554 −0.819862
\(965\) 4.13413 + 7.16052i 0.133082 + 0.230505i
\(966\) 0 0
\(967\) 17.8560 0.574209 0.287105 0.957899i \(-0.407307\pi\)
0.287105 + 0.957899i \(0.407307\pi\)
\(968\) −10.4298 18.0649i −0.335225 0.580627i
\(969\) 0 0
\(970\) −13.2308 22.9165i −0.424816 0.735803i
\(971\) 17.6534 + 30.5765i 0.566523 + 0.981247i 0.996906 + 0.0786007i \(0.0250452\pi\)
−0.430383 + 0.902646i \(0.641621\pi\)
\(972\) 0 0
\(973\) 7.33855 + 23.0834i 0.235263 + 0.740018i
\(974\) 17.0256 0.545537
\(975\) 0 0
\(976\) 1.44606 + 2.50465i 0.0462872 + 0.0801718i
\(977\) 9.55272 16.5458i 0.305618 0.529347i −0.671780 0.740750i \(-0.734470\pi\)
0.977399 + 0.211404i \(0.0678035\pi\)
\(978\) 0 0
\(979\) −14.0060 + 24.2591i −0.447634 + 0.775325i
\(980\) 21.7807 + 10.0307i 0.695758 + 0.320417i
\(981\) 0 0
\(982\) 8.24682 + 14.2839i 0.263167 + 0.455818i
\(983\) 18.4765 + 32.0022i 0.589308 + 1.02071i 0.994323 + 0.106402i \(0.0339331\pi\)
−0.405015 + 0.914310i \(0.632734\pi\)
\(984\) 0 0
\(985\) −29.1839 −0.929877
\(986\) 4.11406 + 7.12576i 0.131018 + 0.226930i
\(987\) 0 0
\(988\) 22.5445 + 8.02012i 0.717236 + 0.255154i
\(989\) 0.139503 0.241626i 0.00443593 0.00768326i
\(990\) 0 0
\(991\) −27.9186 + 48.3564i −0.886863 + 1.53609i −0.0433004 + 0.999062i \(0.513787\pi\)
−0.843563 + 0.537030i \(0.819546\pi\)
\(992\) −17.9013 31.0059i −0.568367 0.984440i
\(993\) 0 0
\(994\) 2.38322 + 7.49640i 0.0755911 + 0.237771i
\(995\) 27.1503 47.0257i 0.860722 1.49081i
\(996\) 0 0
\(997\) −22.8782 −0.724560 −0.362280 0.932069i \(-0.618002\pi\)
−0.362280 + 0.932069i \(0.618002\pi\)
\(998\) −11.5892 + 20.0731i −0.366850 + 0.635402i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.e.289.6 16
3.2 odd 2 273.2.l.b.16.3 yes 16
7.4 even 3 819.2.n.e.172.3 16
13.9 even 3 819.2.n.e.100.3 16
21.11 odd 6 273.2.j.b.172.6 yes 16
39.35 odd 6 273.2.j.b.100.6 16
91.74 even 3 inner 819.2.s.e.802.6 16
273.74 odd 6 273.2.l.b.256.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.b.100.6 16 39.35 odd 6
273.2.j.b.172.6 yes 16 21.11 odd 6
273.2.l.b.16.3 yes 16 3.2 odd 2
273.2.l.b.256.3 yes 16 273.74 odd 6
819.2.n.e.100.3 16 13.9 even 3
819.2.n.e.172.3 16 7.4 even 3
819.2.s.e.289.6 16 1.1 even 1 trivial
819.2.s.e.802.6 16 91.74 even 3 inner