Properties

Label 819.2.s.e.802.7
Level $819$
Weight $2$
Character 819.802
Analytic conductor $6.540$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(289,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 802.7
Root \(0.857510 + 1.48525i\) of defining polynomial
Character \(\chi\) \(=\) 819.802
Dual form 819.2.s.e.289.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.71502 q^{2} +0.941295 q^{4} +(-1.22863 - 2.12806i) q^{5} +(-2.38702 + 1.14112i) q^{7} -1.81570 q^{8} +(-2.10713 - 3.64966i) q^{10} +(-0.519081 - 0.899075i) q^{11} +(-3.36305 - 1.29996i) q^{13} +(-4.09378 + 1.95704i) q^{14} -4.99655 q^{16} -3.01950 q^{17} +(-1.59671 + 2.76558i) q^{19} +(-1.15651 - 2.00313i) q^{20} +(-0.890235 - 1.54193i) q^{22} +3.47202 q^{23} +(-0.519081 + 0.899075i) q^{25} +(-5.76770 - 2.22946i) q^{26} +(-2.24689 + 1.07413i) q^{28} +(4.01417 - 6.95275i) q^{29} +(-3.48074 + 6.02882i) q^{31} -4.93779 q^{32} -5.17850 q^{34} +(5.36113 + 3.67769i) q^{35} +2.82664 q^{37} +(-2.73838 + 4.74302i) q^{38} +(2.23083 + 3.86391i) q^{40} +(2.54107 - 4.40125i) q^{41} +(-3.21838 - 5.57439i) q^{43} +(-0.488608 - 0.846294i) q^{44} +5.95458 q^{46} +(-4.88951 - 8.46887i) q^{47} +(4.39569 - 5.44774i) q^{49} +(-0.890235 + 1.54193i) q^{50} +(-3.16562 - 1.22365i) q^{52} +(-5.90947 + 10.2355i) q^{53} +(-1.27552 + 2.20927i) q^{55} +(4.33411 - 2.07193i) q^{56} +(6.88438 - 11.9241i) q^{58} -8.94141 q^{59} +(1.30446 - 2.25940i) q^{61} +(-5.96954 + 10.3396i) q^{62} +1.52470 q^{64} +(1.36557 + 8.75393i) q^{65} +(5.61000 + 9.71681i) q^{67} -2.84224 q^{68} +(9.19445 + 6.30731i) q^{70} +(1.63013 + 2.82347i) q^{71} +(7.50717 - 13.0028i) q^{73} +4.84774 q^{74} +(-1.50297 + 2.60322i) q^{76} +(2.26501 + 1.55377i) q^{77} +(-0.211818 - 0.366880i) q^{79} +(6.13893 + 10.6329i) q^{80} +(4.35798 - 7.54824i) q^{82} +1.34088 q^{83} +(3.70986 + 6.42567i) q^{85} +(-5.51958 - 9.56019i) q^{86} +(0.942496 + 1.63245i) q^{88} -5.30493 q^{89} +(9.51106 - 0.734615i) q^{91} +3.26819 q^{92} +(-8.38560 - 14.5243i) q^{94} +7.84707 q^{95} +(2.92406 + 5.06463i) q^{97} +(7.53871 - 9.34298i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} + q^{7} - 12 q^{8} - 4 q^{10} + 2 q^{11} + 5 q^{13} + 7 q^{14} + 12 q^{16} - 4 q^{17} - 11 q^{19} + 20 q^{20} + 7 q^{22} + 8 q^{23} + 2 q^{25} - 33 q^{26} - q^{28} - 15 q^{29} + 3 q^{31}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71502 1.21270 0.606351 0.795197i \(-0.292633\pi\)
0.606351 + 0.795197i \(0.292633\pi\)
\(3\) 0 0
\(4\) 0.941295 0.470647
\(5\) −1.22863 2.12806i −0.549462 0.951695i −0.998311 0.0580883i \(-0.981500\pi\)
0.448850 0.893607i \(-0.351834\pi\)
\(6\) 0 0
\(7\) −2.38702 + 1.14112i −0.902207 + 0.431302i
\(8\) −1.81570 −0.641947
\(9\) 0 0
\(10\) −2.10713 3.64966i −0.666334 1.15412i
\(11\) −0.519081 0.899075i −0.156509 0.271081i 0.777099 0.629379i \(-0.216691\pi\)
−0.933607 + 0.358298i \(0.883357\pi\)
\(12\) 0 0
\(13\) −3.36305 1.29996i −0.932742 0.360544i
\(14\) −4.09378 + 1.95704i −1.09411 + 0.523042i
\(15\) 0 0
\(16\) −4.99655 −1.24914
\(17\) −3.01950 −0.732336 −0.366168 0.930549i \(-0.619331\pi\)
−0.366168 + 0.930549i \(0.619331\pi\)
\(18\) 0 0
\(19\) −1.59671 + 2.76558i −0.366310 + 0.634467i −0.988985 0.148013i \(-0.952712\pi\)
0.622676 + 0.782480i \(0.286046\pi\)
\(20\) −1.15651 2.00313i −0.258603 0.447913i
\(21\) 0 0
\(22\) −0.890235 1.54193i −0.189799 0.328741i
\(23\) 3.47202 0.723965 0.361983 0.932185i \(-0.382100\pi\)
0.361983 + 0.932185i \(0.382100\pi\)
\(24\) 0 0
\(25\) −0.519081 + 0.899075i −0.103816 + 0.179815i
\(26\) −5.76770 2.22946i −1.13114 0.437233i
\(27\) 0 0
\(28\) −2.24689 + 1.07413i −0.424621 + 0.202991i
\(29\) 4.01417 6.95275i 0.745413 1.29109i −0.204589 0.978848i \(-0.565586\pi\)
0.950002 0.312245i \(-0.101081\pi\)
\(30\) 0 0
\(31\) −3.48074 + 6.02882i −0.625160 + 1.08281i 0.363350 + 0.931653i \(0.381633\pi\)
−0.988510 + 0.151156i \(0.951700\pi\)
\(32\) −4.93779 −0.872886
\(33\) 0 0
\(34\) −5.17850 −0.888106
\(35\) 5.36113 + 3.67769i 0.906197 + 0.621643i
\(36\) 0 0
\(37\) 2.82664 0.464696 0.232348 0.972633i \(-0.425359\pi\)
0.232348 + 0.972633i \(0.425359\pi\)
\(38\) −2.73838 + 4.74302i −0.444225 + 0.769419i
\(39\) 0 0
\(40\) 2.23083 + 3.86391i 0.352725 + 0.610938i
\(41\) 2.54107 4.40125i 0.396848 0.687360i −0.596487 0.802622i \(-0.703437\pi\)
0.993335 + 0.115262i \(0.0367708\pi\)
\(42\) 0 0
\(43\) −3.21838 5.57439i −0.490798 0.850087i 0.509146 0.860680i \(-0.329961\pi\)
−0.999944 + 0.0105935i \(0.996628\pi\)
\(44\) −0.488608 0.846294i −0.0736605 0.127584i
\(45\) 0 0
\(46\) 5.95458 0.877955
\(47\) −4.88951 8.46887i −0.713208 1.23531i −0.963647 0.267180i \(-0.913908\pi\)
0.250439 0.968132i \(-0.419425\pi\)
\(48\) 0 0
\(49\) 4.39569 5.44774i 0.627956 0.778249i
\(50\) −0.890235 + 1.54193i −0.125898 + 0.218062i
\(51\) 0 0
\(52\) −3.16562 1.22365i −0.438993 0.169689i
\(53\) −5.90947 + 10.2355i −0.811728 + 1.40595i 0.0999257 + 0.994995i \(0.468139\pi\)
−0.911654 + 0.410959i \(0.865194\pi\)
\(54\) 0 0
\(55\) −1.27552 + 2.20927i −0.171991 + 0.297898i
\(56\) 4.33411 2.07193i 0.579170 0.276873i
\(57\) 0 0
\(58\) 6.88438 11.9241i 0.903964 1.56571i
\(59\) −8.94141 −1.16407 −0.582036 0.813163i \(-0.697744\pi\)
−0.582036 + 0.813163i \(0.697744\pi\)
\(60\) 0 0
\(61\) 1.30446 2.25940i 0.167019 0.289286i −0.770351 0.637620i \(-0.779919\pi\)
0.937371 + 0.348334i \(0.113252\pi\)
\(62\) −5.96954 + 10.3396i −0.758133 + 1.31312i
\(63\) 0 0
\(64\) 1.52470 0.190588
\(65\) 1.36557 + 8.75393i 0.169378 + 1.08579i
\(66\) 0 0
\(67\) 5.61000 + 9.71681i 0.685371 + 1.18710i 0.973320 + 0.229452i \(0.0736933\pi\)
−0.287949 + 0.957646i \(0.592973\pi\)
\(68\) −2.84224 −0.344672
\(69\) 0 0
\(70\) 9.19445 + 6.30731i 1.09895 + 0.753867i
\(71\) 1.63013 + 2.82347i 0.193461 + 0.335085i 0.946395 0.323012i \(-0.104695\pi\)
−0.752934 + 0.658096i \(0.771362\pi\)
\(72\) 0 0
\(73\) 7.50717 13.0028i 0.878648 1.52186i 0.0258228 0.999667i \(-0.491779\pi\)
0.852825 0.522196i \(-0.174887\pi\)
\(74\) 4.84774 0.563538
\(75\) 0 0
\(76\) −1.50297 + 2.60322i −0.172403 + 0.298610i
\(77\) 2.26501 + 1.55377i 0.258121 + 0.177069i
\(78\) 0 0
\(79\) −0.211818 0.366880i −0.0238314 0.0412773i 0.853864 0.520497i \(-0.174253\pi\)
−0.877695 + 0.479219i \(0.840920\pi\)
\(80\) 6.13893 + 10.6329i 0.686354 + 1.18880i
\(81\) 0 0
\(82\) 4.35798 7.54824i 0.481258 0.833564i
\(83\) 1.34088 0.147181 0.0735904 0.997289i \(-0.476554\pi\)
0.0735904 + 0.997289i \(0.476554\pi\)
\(84\) 0 0
\(85\) 3.70986 + 6.42567i 0.402391 + 0.696961i
\(86\) −5.51958 9.56019i −0.595192 1.03090i
\(87\) 0 0
\(88\) 0.942496 + 1.63245i 0.100470 + 0.174020i
\(89\) −5.30493 −0.562322 −0.281161 0.959661i \(-0.590719\pi\)
−0.281161 + 0.959661i \(0.590719\pi\)
\(90\) 0 0
\(91\) 9.51106 0.734615i 0.997030 0.0770086i
\(92\) 3.26819 0.340732
\(93\) 0 0
\(94\) −8.38560 14.5243i −0.864909 1.49807i
\(95\) 7.84707 0.805092
\(96\) 0 0
\(97\) 2.92406 + 5.06463i 0.296894 + 0.514235i 0.975424 0.220338i \(-0.0707159\pi\)
−0.678530 + 0.734573i \(0.737383\pi\)
\(98\) 7.53871 9.34298i 0.761524 0.943784i
\(99\) 0 0
\(100\) −0.488608 + 0.846294i −0.0488608 + 0.0846294i
\(101\) −9.26437 16.0464i −0.921840 1.59667i −0.796567 0.604551i \(-0.793353\pi\)
−0.125273 0.992122i \(-0.539981\pi\)
\(102\) 0 0
\(103\) −1.01571 1.75926i −0.100081 0.173345i 0.811637 0.584162i \(-0.198577\pi\)
−0.911718 + 0.410817i \(0.865243\pi\)
\(104\) 6.10629 + 2.36034i 0.598771 + 0.231450i
\(105\) 0 0
\(106\) −10.1349 + 17.5541i −0.984385 + 1.70500i
\(107\) 2.43666 0.235561 0.117781 0.993040i \(-0.462422\pi\)
0.117781 + 0.993040i \(0.462422\pi\)
\(108\) 0 0
\(109\) −7.85642 + 13.6077i −0.752508 + 1.30338i 0.194095 + 0.980983i \(0.437823\pi\)
−0.946604 + 0.322400i \(0.895510\pi\)
\(110\) −2.18754 + 3.78894i −0.208574 + 0.361261i
\(111\) 0 0
\(112\) 11.9269 5.70166i 1.12698 0.538756i
\(113\) −2.52708 4.37702i −0.237727 0.411756i 0.722335 0.691544i \(-0.243069\pi\)
−0.960062 + 0.279788i \(0.909736\pi\)
\(114\) 0 0
\(115\) −4.26584 7.38864i −0.397791 0.688995i
\(116\) 3.77852 6.54458i 0.350826 0.607649i
\(117\) 0 0
\(118\) −15.3347 −1.41167
\(119\) 7.20760 3.44561i 0.660719 0.315858i
\(120\) 0 0
\(121\) 4.96111 8.59289i 0.451010 0.781172i
\(122\) 2.23718 3.87491i 0.202545 0.350818i
\(123\) 0 0
\(124\) −3.27640 + 5.67490i −0.294230 + 0.509621i
\(125\) −9.73529 −0.870751
\(126\) 0 0
\(127\) 1.84246 3.19124i 0.163492 0.283177i −0.772627 0.634861i \(-0.781058\pi\)
0.936119 + 0.351684i \(0.114391\pi\)
\(128\) 12.4905 1.10401
\(129\) 0 0
\(130\) 2.34198 + 15.0132i 0.205405 + 1.31674i
\(131\) 0.924144 + 1.60066i 0.0807428 + 0.139851i 0.903569 0.428442i \(-0.140937\pi\)
−0.822826 + 0.568293i \(0.807604\pi\)
\(132\) 0 0
\(133\) 0.655512 8.42351i 0.0568401 0.730411i
\(134\) 9.62127 + 16.6645i 0.831151 + 1.43960i
\(135\) 0 0
\(136\) 5.48251 0.470121
\(137\) −2.81519 −0.240518 −0.120259 0.992743i \(-0.538372\pi\)
−0.120259 + 0.992743i \(0.538372\pi\)
\(138\) 0 0
\(139\) 1.87848 + 3.25363i 0.159331 + 0.275969i 0.934628 0.355628i \(-0.115733\pi\)
−0.775297 + 0.631597i \(0.782400\pi\)
\(140\) 5.04641 + 3.46179i 0.426499 + 0.292574i
\(141\) 0 0
\(142\) 2.79571 + 4.84232i 0.234611 + 0.406358i
\(143\) 0.576934 + 3.69842i 0.0482457 + 0.309277i
\(144\) 0 0
\(145\) −19.7278 −1.63830
\(146\) 12.8750 22.3001i 1.06554 1.84557i
\(147\) 0 0
\(148\) 2.66070 0.218708
\(149\) 3.36841 5.83426i 0.275951 0.477961i −0.694424 0.719567i \(-0.744341\pi\)
0.970375 + 0.241605i \(0.0776739\pi\)
\(150\) 0 0
\(151\) −2.70020 + 4.67689i −0.219739 + 0.380600i −0.954728 0.297479i \(-0.903854\pi\)
0.734989 + 0.678079i \(0.237187\pi\)
\(152\) 2.89914 5.02146i 0.235151 0.407294i
\(153\) 0 0
\(154\) 3.88453 + 2.66475i 0.313025 + 0.214732i
\(155\) 17.1062 1.37401
\(156\) 0 0
\(157\) −5.82721 + 10.0930i −0.465062 + 0.805512i −0.999204 0.0398832i \(-0.987301\pi\)
0.534142 + 0.845395i \(0.320635\pi\)
\(158\) −0.363273 0.629207i −0.0289004 0.0500570i
\(159\) 0 0
\(160\) 6.06673 + 10.5079i 0.479617 + 0.830722i
\(161\) −8.28776 + 3.96198i −0.653167 + 0.312248i
\(162\) 0 0
\(163\) −12.1258 + 21.0025i −0.949766 + 1.64504i −0.203851 + 0.979002i \(0.565346\pi\)
−0.745915 + 0.666041i \(0.767987\pi\)
\(164\) 2.39189 4.14288i 0.186775 0.323504i
\(165\) 0 0
\(166\) 2.29964 0.178487
\(167\) −8.23216 + 14.2585i −0.637024 + 1.10336i 0.349059 + 0.937101i \(0.386501\pi\)
−0.986083 + 0.166257i \(0.946832\pi\)
\(168\) 0 0
\(169\) 9.62021 + 8.74366i 0.740016 + 0.672589i
\(170\) 6.36248 + 11.0201i 0.487980 + 0.845207i
\(171\) 0 0
\(172\) −3.02944 5.24714i −0.230993 0.400091i
\(173\) −10.0203 + 17.3556i −0.761827 + 1.31952i 0.180081 + 0.983652i \(0.442364\pi\)
−0.941908 + 0.335871i \(0.890969\pi\)
\(174\) 0 0
\(175\) 0.213104 2.73844i 0.0161091 0.207007i
\(176\) 2.59362 + 4.49228i 0.195501 + 0.338618i
\(177\) 0 0
\(178\) −9.09806 −0.681929
\(179\) −5.04757 8.74265i −0.377273 0.653456i 0.613391 0.789779i \(-0.289805\pi\)
−0.990664 + 0.136323i \(0.956472\pi\)
\(180\) 0 0
\(181\) 19.8959 1.47885 0.739426 0.673238i \(-0.235097\pi\)
0.739426 + 0.673238i \(0.235097\pi\)
\(182\) 16.3117 1.25988i 1.20910 0.0933885i
\(183\) 0 0
\(184\) −6.30414 −0.464748
\(185\) −3.47290 6.01524i −0.255333 0.442249i
\(186\) 0 0
\(187\) 1.56737 + 2.71476i 0.114617 + 0.198523i
\(188\) −4.60246 7.97170i −0.335669 0.581396i
\(189\) 0 0
\(190\) 13.4579 0.976337
\(191\) 7.63868 13.2306i 0.552715 0.957331i −0.445362 0.895350i \(-0.646925\pi\)
0.998077 0.0619803i \(-0.0197416\pi\)
\(192\) 0 0
\(193\) −12.8340 22.2292i −0.923814 1.60009i −0.793458 0.608625i \(-0.791722\pi\)
−0.130355 0.991467i \(-0.541612\pi\)
\(194\) 5.01483 + 8.68594i 0.360044 + 0.623614i
\(195\) 0 0
\(196\) 4.13764 5.12793i 0.295546 0.366281i
\(197\) −7.84255 + 13.5837i −0.558759 + 0.967798i 0.438842 + 0.898564i \(0.355389\pi\)
−0.997600 + 0.0692340i \(0.977944\pi\)
\(198\) 0 0
\(199\) −5.75089 −0.407670 −0.203835 0.979005i \(-0.565341\pi\)
−0.203835 + 0.979005i \(0.565341\pi\)
\(200\) 0.942496 1.63245i 0.0666445 0.115432i
\(201\) 0 0
\(202\) −15.8886 27.5198i −1.11792 1.93629i
\(203\) −1.64798 + 21.1770i −0.115665 + 1.48633i
\(204\) 0 0
\(205\) −12.4882 −0.872210
\(206\) −1.74196 3.01717i −0.121368 0.210216i
\(207\) 0 0
\(208\) 16.8037 + 6.49532i 1.16512 + 0.450369i
\(209\) 3.31528 0.229323
\(210\) 0 0
\(211\) 10.3771 17.9736i 0.714387 1.23735i −0.248809 0.968553i \(-0.580039\pi\)
0.963196 0.268802i \(-0.0866276\pi\)
\(212\) −5.56255 + 9.63462i −0.382038 + 0.661708i
\(213\) 0 0
\(214\) 4.17893 0.285666
\(215\) −7.90841 + 13.6978i −0.539349 + 0.934180i
\(216\) 0 0
\(217\) 1.42898 18.3628i 0.0970058 1.24655i
\(218\) −13.4739 + 23.3375i −0.912569 + 1.58062i
\(219\) 0 0
\(220\) −1.20064 + 2.07957i −0.0809472 + 0.140205i
\(221\) 10.1547 + 3.92523i 0.683081 + 0.264039i
\(222\) 0 0
\(223\) 5.68668 9.84963i 0.380809 0.659580i −0.610369 0.792117i \(-0.708979\pi\)
0.991178 + 0.132537i \(0.0423123\pi\)
\(224\) 11.7866 5.63460i 0.787524 0.376478i
\(225\) 0 0
\(226\) −4.33399 7.50668i −0.288292 0.499337i
\(227\) 5.42928 0.360354 0.180177 0.983634i \(-0.442333\pi\)
0.180177 + 0.983634i \(0.442333\pi\)
\(228\) 0 0
\(229\) −8.67170 15.0198i −0.573042 0.992538i −0.996251 0.0865059i \(-0.972430\pi\)
0.423209 0.906032i \(-0.360903\pi\)
\(230\) −7.31599 12.6717i −0.482402 0.835545i
\(231\) 0 0
\(232\) −7.28853 + 12.6241i −0.478516 + 0.828813i
\(233\) −10.0164 17.3490i −0.656199 1.13657i −0.981592 0.190991i \(-0.938830\pi\)
0.325393 0.945579i \(-0.394504\pi\)
\(234\) 0 0
\(235\) −12.0148 + 20.8103i −0.783761 + 1.35751i
\(236\) −8.41650 −0.547867
\(237\) 0 0
\(238\) 12.3612 5.90929i 0.801256 0.383042i
\(239\) 8.30497 0.537204 0.268602 0.963251i \(-0.413438\pi\)
0.268602 + 0.963251i \(0.413438\pi\)
\(240\) 0 0
\(241\) 20.5906 1.32636 0.663178 0.748461i \(-0.269207\pi\)
0.663178 + 0.748461i \(0.269207\pi\)
\(242\) 8.50840 14.7370i 0.546941 0.947329i
\(243\) 0 0
\(244\) 1.22788 2.12676i 0.0786073 0.136152i
\(245\) −16.9938 2.66101i −1.08569 0.170006i
\(246\) 0 0
\(247\) 8.96494 7.22512i 0.570426 0.459723i
\(248\) 6.31999 10.9465i 0.401320 0.695106i
\(249\) 0 0
\(250\) −16.6962 −1.05596
\(251\) −5.22288 9.04629i −0.329665 0.570997i 0.652780 0.757547i \(-0.273603\pi\)
−0.982445 + 0.186550i \(0.940269\pi\)
\(252\) 0 0
\(253\) −1.80226 3.12160i −0.113307 0.196253i
\(254\) 3.15986 5.47304i 0.198267 0.343409i
\(255\) 0 0
\(256\) 18.3720 1.14825
\(257\) −7.23377 −0.451230 −0.225615 0.974216i \(-0.572439\pi\)
−0.225615 + 0.974216i \(0.572439\pi\)
\(258\) 0 0
\(259\) −6.74723 + 3.22553i −0.419252 + 0.200425i
\(260\) 1.28540 + 8.24003i 0.0797173 + 0.511025i
\(261\) 0 0
\(262\) 1.58493 + 2.74517i 0.0979170 + 0.169597i
\(263\) −0.853104 1.47762i −0.0526047 0.0911139i 0.838524 0.544865i \(-0.183419\pi\)
−0.891129 + 0.453751i \(0.850086\pi\)
\(264\) 0 0
\(265\) 29.0423 1.78405
\(266\) 1.12422 14.4465i 0.0689301 0.885771i
\(267\) 0 0
\(268\) 5.28067 + 9.14638i 0.322568 + 0.558704i
\(269\) −21.9883 −1.34065 −0.670324 0.742068i \(-0.733845\pi\)
−0.670324 + 0.742068i \(0.733845\pi\)
\(270\) 0 0
\(271\) −23.6502 −1.43665 −0.718324 0.695709i \(-0.755090\pi\)
−0.718324 + 0.695709i \(0.755090\pi\)
\(272\) 15.0871 0.914790
\(273\) 0 0
\(274\) −4.82810 −0.291676
\(275\) 1.07778 0.0649926
\(276\) 0 0
\(277\) −29.9287 −1.79824 −0.899119 0.437703i \(-0.855792\pi\)
−0.899119 + 0.437703i \(0.855792\pi\)
\(278\) 3.22164 + 5.58004i 0.193221 + 0.334669i
\(279\) 0 0
\(280\) −9.73422 6.67758i −0.581731 0.399062i
\(281\) 27.8636 1.66220 0.831102 0.556120i \(-0.187711\pi\)
0.831102 + 0.556120i \(0.187711\pi\)
\(282\) 0 0
\(283\) 9.70377 + 16.8074i 0.576829 + 0.999097i 0.995840 + 0.0911161i \(0.0290434\pi\)
−0.419011 + 0.907981i \(0.637623\pi\)
\(284\) 1.53444 + 2.65772i 0.0910520 + 0.157707i
\(285\) 0 0
\(286\) 0.989454 + 6.34286i 0.0585077 + 0.375061i
\(287\) −1.04321 + 13.4055i −0.0615787 + 0.791303i
\(288\) 0 0
\(289\) −7.88262 −0.463683
\(290\) −33.8335 −1.98677
\(291\) 0 0
\(292\) 7.06646 12.2395i 0.413533 0.716261i
\(293\) 2.20711 + 3.82282i 0.128940 + 0.223331i 0.923266 0.384160i \(-0.125509\pi\)
−0.794326 + 0.607492i \(0.792176\pi\)
\(294\) 0 0
\(295\) 10.9857 + 19.0278i 0.639613 + 1.10784i
\(296\) −5.13233 −0.298311
\(297\) 0 0
\(298\) 5.77690 10.0059i 0.334647 0.579625i
\(299\) −11.6766 4.51348i −0.675273 0.261021i
\(300\) 0 0
\(301\) 14.0434 + 9.63361i 0.809446 + 0.555272i
\(302\) −4.63090 + 8.02096i −0.266479 + 0.461554i
\(303\) 0 0
\(304\) 7.97803 13.8184i 0.457571 0.792537i
\(305\) −6.41083 −0.367083
\(306\) 0 0
\(307\) −9.06995 −0.517649 −0.258825 0.965924i \(-0.583335\pi\)
−0.258825 + 0.965924i \(0.583335\pi\)
\(308\) 2.13204 + 1.46256i 0.121484 + 0.0833370i
\(309\) 0 0
\(310\) 29.3375 1.66626
\(311\) 11.8691 20.5579i 0.673037 1.16573i −0.304002 0.952671i \(-0.598323\pi\)
0.977039 0.213062i \(-0.0683437\pi\)
\(312\) 0 0
\(313\) −6.48059 11.2247i −0.366304 0.634458i 0.622680 0.782476i \(-0.286044\pi\)
−0.988985 + 0.148019i \(0.952710\pi\)
\(314\) −9.99379 + 17.3098i −0.563982 + 0.976846i
\(315\) 0 0
\(316\) −0.199384 0.345342i −0.0112162 0.0194270i
\(317\) −15.7012 27.1953i −0.881867 1.52744i −0.849263 0.527971i \(-0.822953\pi\)
−0.0326048 0.999468i \(-0.510380\pi\)
\(318\) 0 0
\(319\) −8.33472 −0.466655
\(320\) −1.87330 3.24465i −0.104721 0.181381i
\(321\) 0 0
\(322\) −14.2137 + 6.79488i −0.792097 + 0.378664i
\(323\) 4.82126 8.35066i 0.268262 0.464643i
\(324\) 0 0
\(325\) 2.91446 2.34885i 0.161665 0.130291i
\(326\) −20.7960 + 36.0197i −1.15178 + 1.99495i
\(327\) 0 0
\(328\) −4.61382 + 7.99136i −0.254755 + 0.441249i
\(329\) 21.3353 + 14.6358i 1.17625 + 0.806899i
\(330\) 0 0
\(331\) 5.76165 9.97948i 0.316689 0.548522i −0.663106 0.748526i \(-0.730762\pi\)
0.979795 + 0.200004i \(0.0640955\pi\)
\(332\) 1.26216 0.0692702
\(333\) 0 0
\(334\) −14.1183 + 24.4537i −0.772520 + 1.33804i
\(335\) 13.7853 23.8768i 0.753170 1.30453i
\(336\) 0 0
\(337\) −17.7823 −0.968665 −0.484332 0.874884i \(-0.660937\pi\)
−0.484332 + 0.874884i \(0.660937\pi\)
\(338\) 16.4989 + 14.9956i 0.897419 + 0.815651i
\(339\) 0 0
\(340\) 3.49207 + 6.04844i 0.189384 + 0.328023i
\(341\) 7.22715 0.391372
\(342\) 0 0
\(343\) −4.27608 + 18.0199i −0.230886 + 0.972981i
\(344\) 5.84361 + 10.1214i 0.315066 + 0.545711i
\(345\) 0 0
\(346\) −17.1850 + 29.7652i −0.923869 + 1.60019i
\(347\) 12.3200 0.661373 0.330687 0.943741i \(-0.392720\pi\)
0.330687 + 0.943741i \(0.392720\pi\)
\(348\) 0 0
\(349\) −4.29722 + 7.44301i −0.230025 + 0.398415i −0.957815 0.287385i \(-0.907214\pi\)
0.727790 + 0.685800i \(0.240548\pi\)
\(350\) 0.365477 4.69648i 0.0195356 0.251037i
\(351\) 0 0
\(352\) 2.56311 + 4.43944i 0.136614 + 0.236623i
\(353\) 14.5824 + 25.2575i 0.776144 + 1.34432i 0.934149 + 0.356882i \(0.116160\pi\)
−0.158005 + 0.987438i \(0.550506\pi\)
\(354\) 0 0
\(355\) 4.00567 6.93803i 0.212599 0.368232i
\(356\) −4.99350 −0.264655
\(357\) 0 0
\(358\) −8.65668 14.9938i −0.457520 0.792448i
\(359\) 1.79924 + 3.11637i 0.0949602 + 0.164476i 0.909592 0.415503i \(-0.136394\pi\)
−0.814632 + 0.579979i \(0.803061\pi\)
\(360\) 0 0
\(361\) 4.40106 + 7.62286i 0.231635 + 0.401203i
\(362\) 34.1219 1.79341
\(363\) 0 0
\(364\) 8.95271 0.691489i 0.469250 0.0362439i
\(365\) −36.8943 −1.93113
\(366\) 0 0
\(367\) −15.5328 26.9035i −0.810803 1.40435i −0.912303 0.409516i \(-0.865697\pi\)
0.101500 0.994836i \(-0.467636\pi\)
\(368\) −17.3481 −0.904333
\(369\) 0 0
\(370\) −5.95610 10.3163i −0.309643 0.536317i
\(371\) 2.42607 31.1757i 0.125956 1.61856i
\(372\) 0 0
\(373\) 11.7312 20.3191i 0.607421 1.05208i −0.384243 0.923232i \(-0.625537\pi\)
0.991664 0.128852i \(-0.0411292\pi\)
\(374\) 2.68806 + 4.65586i 0.138996 + 0.240749i
\(375\) 0 0
\(376\) 8.87788 + 15.3769i 0.457842 + 0.793005i
\(377\) −22.5381 + 18.1642i −1.16077 + 0.935502i
\(378\) 0 0
\(379\) 4.67032 8.08923i 0.239898 0.415516i −0.720787 0.693157i \(-0.756219\pi\)
0.960685 + 0.277641i \(0.0895526\pi\)
\(380\) 7.38640 0.378914
\(381\) 0 0
\(382\) 13.1005 22.6907i 0.670279 1.16096i
\(383\) 5.84067 10.1163i 0.298444 0.516921i −0.677336 0.735674i \(-0.736866\pi\)
0.975780 + 0.218753i \(0.0701989\pi\)
\(384\) 0 0
\(385\) 0.523653 6.72908i 0.0266878 0.342946i
\(386\) −22.0106 38.1235i −1.12031 1.94044i
\(387\) 0 0
\(388\) 2.75241 + 4.76731i 0.139732 + 0.242023i
\(389\) −9.34341 + 16.1833i −0.473730 + 0.820524i −0.999548 0.0300730i \(-0.990426\pi\)
0.525818 + 0.850597i \(0.323759\pi\)
\(390\) 0 0
\(391\) −10.4838 −0.530186
\(392\) −7.98127 + 9.89147i −0.403115 + 0.499595i
\(393\) 0 0
\(394\) −13.4501 + 23.2963i −0.677608 + 1.17365i
\(395\) −0.520495 + 0.901523i −0.0261889 + 0.0453605i
\(396\) 0 0
\(397\) −4.72206 + 8.17885i −0.236993 + 0.410485i −0.959850 0.280513i \(-0.909495\pi\)
0.722857 + 0.690998i \(0.242829\pi\)
\(398\) −9.86289 −0.494382
\(399\) 0 0
\(400\) 2.59362 4.49228i 0.129681 0.224614i
\(401\) −10.3724 −0.517975 −0.258987 0.965881i \(-0.583389\pi\)
−0.258987 + 0.965881i \(0.583389\pi\)
\(402\) 0 0
\(403\) 19.5431 15.7504i 0.973513 0.784584i
\(404\) −8.72050 15.1044i −0.433861 0.751470i
\(405\) 0 0
\(406\) −2.82632 + 36.3189i −0.140268 + 1.80248i
\(407\) −1.46725 2.54136i −0.0727291 0.125970i
\(408\) 0 0
\(409\) 22.8870 1.13169 0.565844 0.824512i \(-0.308550\pi\)
0.565844 + 0.824512i \(0.308550\pi\)
\(410\) −21.4174 −1.05773
\(411\) 0 0
\(412\) −0.956082 1.65598i −0.0471028 0.0815844i
\(413\) 21.3433 10.2032i 1.05023 0.502067i
\(414\) 0 0
\(415\) −1.64745 2.85347i −0.0808702 0.140071i
\(416\) 16.6060 + 6.41893i 0.814178 + 0.314714i
\(417\) 0 0
\(418\) 5.68577 0.278100
\(419\) −4.33086 + 7.50127i −0.211576 + 0.366461i −0.952208 0.305450i \(-0.901193\pi\)
0.740632 + 0.671911i \(0.234526\pi\)
\(420\) 0 0
\(421\) −1.15030 −0.0560620 −0.0280310 0.999607i \(-0.508924\pi\)
−0.0280310 + 0.999607i \(0.508924\pi\)
\(422\) 17.7969 30.8251i 0.866339 1.50054i
\(423\) 0 0
\(424\) 10.7298 18.5846i 0.521087 0.902549i
\(425\) 1.56737 2.71476i 0.0760284 0.131685i
\(426\) 0 0
\(427\) −0.535535 + 6.88177i −0.0259163 + 0.333032i
\(428\) 2.29362 0.110866
\(429\) 0 0
\(430\) −13.5631 + 23.4919i −0.654070 + 1.13288i
\(431\) 4.38024 + 7.58680i 0.210989 + 0.365443i 0.952024 0.306023i \(-0.0989983\pi\)
−0.741036 + 0.671466i \(0.765665\pi\)
\(432\) 0 0
\(433\) 0.463102 + 0.802117i 0.0222553 + 0.0385473i 0.876939 0.480603i \(-0.159582\pi\)
−0.854683 + 0.519150i \(0.826249\pi\)
\(434\) 2.45074 31.4926i 0.117639 1.51170i
\(435\) 0 0
\(436\) −7.39520 + 12.8089i −0.354166 + 0.613434i
\(437\) −5.54379 + 9.60213i −0.265195 + 0.459332i
\(438\) 0 0
\(439\) 12.4084 0.592219 0.296109 0.955154i \(-0.404311\pi\)
0.296109 + 0.955154i \(0.404311\pi\)
\(440\) 2.31597 4.01137i 0.110409 0.191235i
\(441\) 0 0
\(442\) 17.4156 + 6.73185i 0.828374 + 0.320201i
\(443\) 1.61468 + 2.79670i 0.0767156 + 0.132875i 0.901831 0.432089i \(-0.142223\pi\)
−0.825115 + 0.564964i \(0.808890\pi\)
\(444\) 0 0
\(445\) 6.51782 + 11.2892i 0.308974 + 0.535159i
\(446\) 9.75278 16.8923i 0.461808 0.799874i
\(447\) 0 0
\(448\) −3.63949 + 1.73986i −0.171950 + 0.0822009i
\(449\) 9.94344 + 17.2225i 0.469260 + 0.812782i 0.999382 0.0351392i \(-0.0111875\pi\)
−0.530123 + 0.847921i \(0.677854\pi\)
\(450\) 0 0
\(451\) −5.27608 −0.248441
\(452\) −2.37872 4.12007i −0.111886 0.193792i
\(453\) 0 0
\(454\) 9.31132 0.437002
\(455\) −13.2489 19.3375i −0.621119 0.906556i
\(456\) 0 0
\(457\) −0.0789744 −0.00369427 −0.00184713 0.999998i \(-0.500588\pi\)
−0.00184713 + 0.999998i \(0.500588\pi\)
\(458\) −14.8721 25.7593i −0.694929 1.20365i
\(459\) 0 0
\(460\) −4.01541 6.95489i −0.187219 0.324273i
\(461\) −2.45979 4.26049i −0.114564 0.198431i 0.803041 0.595923i \(-0.203214\pi\)
−0.917605 + 0.397493i \(0.869880\pi\)
\(462\) 0 0
\(463\) 1.24837 0.0580166 0.0290083 0.999579i \(-0.490765\pi\)
0.0290083 + 0.999579i \(0.490765\pi\)
\(464\) −20.0570 + 34.7398i −0.931124 + 1.61275i
\(465\) 0 0
\(466\) −17.1784 29.7539i −0.795774 1.37832i
\(467\) 14.3411 + 24.8395i 0.663628 + 1.14944i 0.979655 + 0.200687i \(0.0643173\pi\)
−0.316028 + 0.948750i \(0.602349\pi\)
\(468\) 0 0
\(469\) −24.4792 16.7925i −1.13035 0.775406i
\(470\) −20.6057 + 35.6901i −0.950468 + 1.64626i
\(471\) 0 0
\(472\) 16.2349 0.747273
\(473\) −3.34120 + 5.78712i −0.153628 + 0.266092i
\(474\) 0 0
\(475\) −1.65764 2.87112i −0.0760577 0.131736i
\(476\) 6.78447 3.24333i 0.310966 0.148658i
\(477\) 0 0
\(478\) 14.2432 0.651468
\(479\) −3.48936 6.04374i −0.159433 0.276146i 0.775232 0.631677i \(-0.217633\pi\)
−0.934664 + 0.355532i \(0.884300\pi\)
\(480\) 0 0
\(481\) −9.50612 3.67451i −0.433442 0.167543i
\(482\) 35.3133 1.60848
\(483\) 0 0
\(484\) 4.66987 8.08844i 0.212267 0.367657i
\(485\) 7.18521 12.4451i 0.326263 0.565105i
\(486\) 0 0
\(487\) −1.92831 −0.0873803 −0.0436901 0.999045i \(-0.513911\pi\)
−0.0436901 + 0.999045i \(0.513911\pi\)
\(488\) −2.36852 + 4.10239i −0.107218 + 0.185707i
\(489\) 0 0
\(490\) −29.1447 4.56368i −1.31662 0.206166i
\(491\) −14.6968 + 25.4556i −0.663256 + 1.14879i 0.316499 + 0.948593i \(0.397493\pi\)
−0.979755 + 0.200200i \(0.935841\pi\)
\(492\) 0 0
\(493\) −12.1208 + 20.9938i −0.545893 + 0.945514i
\(494\) 15.3751 12.3912i 0.691756 0.557508i
\(495\) 0 0
\(496\) 17.3917 30.1233i 0.780911 1.35258i
\(497\) −7.11308 4.87950i −0.319065 0.218876i
\(498\) 0 0
\(499\) −9.92902 17.1976i −0.444484 0.769869i 0.553532 0.832828i \(-0.313280\pi\)
−0.998016 + 0.0629592i \(0.979946\pi\)
\(500\) −9.16378 −0.409817
\(501\) 0 0
\(502\) −8.95734 15.5146i −0.399786 0.692449i
\(503\) −13.3790 23.1731i −0.596540 1.03324i −0.993328 0.115327i \(-0.963208\pi\)
0.396787 0.917911i \(-0.370125\pi\)
\(504\) 0 0
\(505\) −22.7650 + 39.4302i −1.01303 + 1.75462i
\(506\) −3.09091 5.35361i −0.137408 0.237997i
\(507\) 0 0
\(508\) 1.73430 3.00389i 0.0769471 0.133276i
\(509\) −5.92930 −0.262811 −0.131406 0.991329i \(-0.541949\pi\)
−0.131406 + 0.991329i \(0.541949\pi\)
\(510\) 0 0
\(511\) −3.08200 + 39.6045i −0.136339 + 1.75200i
\(512\) 6.52743 0.288474
\(513\) 0 0
\(514\) −12.4061 −0.547208
\(515\) −2.49587 + 4.32297i −0.109981 + 0.190493i
\(516\) 0 0
\(517\) −5.07610 + 8.79206i −0.223247 + 0.386674i
\(518\) −11.5716 + 5.53185i −0.508428 + 0.243055i
\(519\) 0 0
\(520\) −2.47947 15.8945i −0.108732 0.697021i
\(521\) 16.7414 28.9969i 0.733453 1.27038i −0.221946 0.975059i \(-0.571241\pi\)
0.955399 0.295319i \(-0.0954259\pi\)
\(522\) 0 0
\(523\) 41.4546 1.81268 0.906341 0.422547i \(-0.138864\pi\)
0.906341 + 0.422547i \(0.138864\pi\)
\(524\) 0.869892 + 1.50670i 0.0380014 + 0.0658203i
\(525\) 0 0
\(526\) −1.46309 2.53415i −0.0637938 0.110494i
\(527\) 10.5101 18.2040i 0.457827 0.792980i
\(528\) 0 0
\(529\) −10.9451 −0.475874
\(530\) 49.8081 2.16353
\(531\) 0 0
\(532\) 0.617030 7.92900i 0.0267516 0.343766i
\(533\) −14.2672 + 11.4984i −0.617980 + 0.498049i
\(534\) 0 0
\(535\) −2.99377 5.18536i −0.129432 0.224183i
\(536\) −10.1861 17.6428i −0.439972 0.762054i
\(537\) 0 0
\(538\) −37.7103 −1.62581
\(539\) −7.17965 1.12424i −0.309249 0.0484244i
\(540\) 0 0
\(541\) −14.7605 25.5660i −0.634606 1.09917i −0.986599 0.163166i \(-0.947829\pi\)
0.351993 0.936003i \(-0.385504\pi\)
\(542\) −40.5606 −1.74223
\(543\) 0 0
\(544\) 14.9097 0.639246
\(545\) 38.6106 1.65390
\(546\) 0 0
\(547\) 34.6619 1.48203 0.741017 0.671486i \(-0.234344\pi\)
0.741017 + 0.671486i \(0.234344\pi\)
\(548\) −2.64992 −0.113199
\(549\) 0 0
\(550\) 1.84842 0.0788167
\(551\) 12.8189 + 22.2030i 0.546104 + 0.945879i
\(552\) 0 0
\(553\) 0.924268 + 0.634039i 0.0393039 + 0.0269621i
\(554\) −51.3283 −2.18073
\(555\) 0 0
\(556\) 1.76821 + 3.06262i 0.0749887 + 0.129884i
\(557\) −7.52422 13.0323i −0.318812 0.552198i 0.661429 0.750008i \(-0.269950\pi\)
−0.980240 + 0.197810i \(0.936617\pi\)
\(558\) 0 0
\(559\) 3.57707 + 22.9307i 0.151294 + 0.969866i
\(560\) −26.7872 18.3758i −1.13197 0.776518i
\(561\) 0 0
\(562\) 47.7867 2.01576
\(563\) 1.45745 0.0614242 0.0307121 0.999528i \(-0.490223\pi\)
0.0307121 + 0.999528i \(0.490223\pi\)
\(564\) 0 0
\(565\) −6.20970 + 10.7555i −0.261244 + 0.452488i
\(566\) 16.6422 + 28.8251i 0.699522 + 1.21161i
\(567\) 0 0
\(568\) −2.95984 5.12659i −0.124192 0.215107i
\(569\) −4.10651 −0.172154 −0.0860770 0.996288i \(-0.527433\pi\)
−0.0860770 + 0.996288i \(0.527433\pi\)
\(570\) 0 0
\(571\) 16.1753 28.0165i 0.676916 1.17245i −0.298988 0.954257i \(-0.596649\pi\)
0.975905 0.218197i \(-0.0700175\pi\)
\(572\) 0.543065 + 3.48130i 0.0227067 + 0.145560i
\(573\) 0 0
\(574\) −1.78913 + 22.9907i −0.0746767 + 0.959615i
\(575\) −1.80226 + 3.12160i −0.0751593 + 0.130180i
\(576\) 0 0
\(577\) 3.24107 5.61369i 0.134927 0.233701i −0.790642 0.612278i \(-0.790253\pi\)
0.925570 + 0.378577i \(0.123587\pi\)
\(578\) −13.5188 −0.562310
\(579\) 0 0
\(580\) −18.5696 −0.771063
\(581\) −3.20070 + 1.53010i −0.132788 + 0.0634794i
\(582\) 0 0
\(583\) 12.2700 0.508170
\(584\) −13.6308 + 23.6092i −0.564046 + 0.976956i
\(585\) 0 0
\(586\) 3.78523 + 6.55621i 0.156366 + 0.270835i
\(587\) −8.72720 + 15.1159i −0.360210 + 0.623902i −0.987995 0.154485i \(-0.950628\pi\)
0.627785 + 0.778387i \(0.283962\pi\)
\(588\) 0 0
\(589\) −11.1154 19.2525i −0.458004 0.793286i
\(590\) 18.8407 + 32.6331i 0.775660 + 1.34348i
\(591\) 0 0
\(592\) −14.1234 −0.580470
\(593\) 5.07543 + 8.79090i 0.208423 + 0.360999i 0.951218 0.308520i \(-0.0998337\pi\)
−0.742795 + 0.669519i \(0.766500\pi\)
\(594\) 0 0
\(595\) −16.1879 11.1048i −0.663641 0.455251i
\(596\) 3.17067 5.49176i 0.129876 0.224951i
\(597\) 0 0
\(598\) −20.0255 7.74071i −0.818905 0.316541i
\(599\) 5.29665 9.17406i 0.216415 0.374842i −0.737294 0.675572i \(-0.763897\pi\)
0.953709 + 0.300730i \(0.0972302\pi\)
\(600\) 0 0
\(601\) 5.08203 8.80234i 0.207300 0.359055i −0.743563 0.668666i \(-0.766866\pi\)
0.950863 + 0.309611i \(0.100199\pi\)
\(602\) 24.0846 + 16.5218i 0.981617 + 0.673380i
\(603\) 0 0
\(604\) −2.54169 + 4.40233i −0.103420 + 0.179128i
\(605\) −24.3815 −0.991251
\(606\) 0 0
\(607\) −16.2239 + 28.1006i −0.658508 + 1.14057i 0.322494 + 0.946572i \(0.395479\pi\)
−0.981002 + 0.193998i \(0.937854\pi\)
\(608\) 7.88420 13.6558i 0.319746 0.553817i
\(609\) 0 0
\(610\) −10.9947 −0.445163
\(611\) 5.43446 + 34.8374i 0.219855 + 1.40937i
\(612\) 0 0
\(613\) 4.91821 + 8.51859i 0.198645 + 0.344063i 0.948089 0.318004i \(-0.103013\pi\)
−0.749445 + 0.662067i \(0.769679\pi\)
\(614\) −15.5551 −0.627755
\(615\) 0 0
\(616\) −4.11258 2.82119i −0.165700 0.113669i
\(617\) −17.6661 30.5985i −0.711208 1.23185i −0.964404 0.264434i \(-0.914815\pi\)
0.253195 0.967415i \(-0.418518\pi\)
\(618\) 0 0
\(619\) −17.5126 + 30.3327i −0.703892 + 1.21918i 0.263198 + 0.964742i \(0.415223\pi\)
−0.967090 + 0.254434i \(0.918111\pi\)
\(620\) 16.1020 0.646672
\(621\) 0 0
\(622\) 20.3558 35.2573i 0.816193 1.41369i
\(623\) 12.6630 6.05356i 0.507331 0.242531i
\(624\) 0 0
\(625\) 14.5565 + 25.2126i 0.582261 + 1.00850i
\(626\) −11.1143 19.2506i −0.444218 0.769409i
\(627\) 0 0
\(628\) −5.48512 + 9.50051i −0.218880 + 0.379112i
\(629\) −8.53503 −0.340314
\(630\) 0 0
\(631\) −10.2980 17.8367i −0.409959 0.710069i 0.584926 0.811087i \(-0.301124\pi\)
−0.994885 + 0.101017i \(0.967790\pi\)
\(632\) 0.384599 + 0.666145i 0.0152985 + 0.0264978i
\(633\) 0 0
\(634\) −26.9279 46.6405i −1.06944 1.85233i
\(635\) −9.05484 −0.359330
\(636\) 0 0
\(637\) −21.8648 + 12.6068i −0.866314 + 0.499499i
\(638\) −14.2942 −0.565913
\(639\) 0 0
\(640\) −15.3462 26.5804i −0.606612 1.05068i
\(641\) 35.0768 1.38545 0.692725 0.721202i \(-0.256410\pi\)
0.692725 + 0.721202i \(0.256410\pi\)
\(642\) 0 0
\(643\) −12.4615 21.5840i −0.491435 0.851190i 0.508517 0.861052i \(-0.330194\pi\)
−0.999951 + 0.00986235i \(0.996861\pi\)
\(644\) −7.80122 + 3.72939i −0.307411 + 0.146959i
\(645\) 0 0
\(646\) 8.26855 14.3215i 0.325322 0.563474i
\(647\) −1.67759 2.90567i −0.0659528 0.114234i 0.831163 0.556028i \(-0.187675\pi\)
−0.897116 + 0.441795i \(0.854342\pi\)
\(648\) 0 0
\(649\) 4.64131 + 8.03899i 0.182188 + 0.315558i
\(650\) 4.99835 4.02832i 0.196052 0.158004i
\(651\) 0 0
\(652\) −11.4140 + 19.7695i −0.447005 + 0.774235i
\(653\) −5.09251 −0.199285 −0.0996426 0.995023i \(-0.531770\pi\)
−0.0996426 + 0.995023i \(0.531770\pi\)
\(654\) 0 0
\(655\) 2.27087 3.93326i 0.0887302 0.153685i
\(656\) −12.6966 + 21.9911i −0.495718 + 0.858608i
\(657\) 0 0
\(658\) 36.5905 + 25.1007i 1.42645 + 0.978529i
\(659\) 16.9148 + 29.2973i 0.658907 + 1.14126i 0.980899 + 0.194518i \(0.0623143\pi\)
−0.321992 + 0.946742i \(0.604352\pi\)
\(660\) 0 0
\(661\) −16.9507 29.3595i −0.659306 1.14195i −0.980796 0.195038i \(-0.937517\pi\)
0.321490 0.946913i \(-0.395816\pi\)
\(662\) 9.88135 17.1150i 0.384050 0.665194i
\(663\) 0 0
\(664\) −2.43464 −0.0944823
\(665\) −18.7311 + 8.95444i −0.726360 + 0.347238i
\(666\) 0 0
\(667\) 13.9373 24.1400i 0.539653 0.934706i
\(668\) −7.74889 + 13.4215i −0.299813 + 0.519292i
\(669\) 0 0
\(670\) 23.6420 40.9492i 0.913372 1.58201i
\(671\) −2.70849 −0.104560
\(672\) 0 0
\(673\) −7.46805 + 12.9350i −0.287872 + 0.498609i −0.973302 0.229530i \(-0.926281\pi\)
0.685430 + 0.728139i \(0.259614\pi\)
\(674\) −30.4970 −1.17470
\(675\) 0 0
\(676\) 9.05545 + 8.23036i 0.348287 + 0.316552i
\(677\) −10.8470 18.7875i −0.416883 0.722063i 0.578741 0.815512i \(-0.303544\pi\)
−0.995624 + 0.0934485i \(0.970211\pi\)
\(678\) 0 0
\(679\) −12.7591 8.75265i −0.489651 0.335896i
\(680\) −6.73600 11.6671i −0.258314 0.447412i
\(681\) 0 0
\(682\) 12.3947 0.474618
\(683\) −23.2958 −0.891389 −0.445694 0.895185i \(-0.647043\pi\)
−0.445694 + 0.895185i \(0.647043\pi\)
\(684\) 0 0
\(685\) 3.45883 + 5.99087i 0.132155 + 0.228900i
\(686\) −7.33356 + 30.9044i −0.279996 + 1.17994i
\(687\) 0 0
\(688\) 16.0808 + 27.8527i 0.613074 + 1.06188i
\(689\) 33.1796 26.7404i 1.26404 1.01873i
\(690\) 0 0
\(691\) 31.3451 1.19242 0.596212 0.802827i \(-0.296672\pi\)
0.596212 + 0.802827i \(0.296672\pi\)
\(692\) −9.43202 + 16.3367i −0.358552 + 0.621030i
\(693\) 0 0
\(694\) 21.1291 0.802049
\(695\) 4.61594 7.99504i 0.175093 0.303269i
\(696\) 0 0
\(697\) −7.67275 + 13.2896i −0.290626 + 0.503379i
\(698\) −7.36983 + 12.7649i −0.278952 + 0.483159i
\(699\) 0 0
\(700\) 0.200593 2.57768i 0.00758171 0.0974271i
\(701\) 36.5409 1.38013 0.690066 0.723746i \(-0.257581\pi\)
0.690066 + 0.723746i \(0.257581\pi\)
\(702\) 0 0
\(703\) −4.51331 + 7.81728i −0.170223 + 0.294834i
\(704\) −0.791443 1.37082i −0.0298286 0.0516647i
\(705\) 0 0
\(706\) 25.0091 + 43.3171i 0.941232 + 1.63026i
\(707\) 40.4250 + 27.7312i 1.52034 + 1.04294i
\(708\) 0 0
\(709\) −16.4689 + 28.5249i −0.618502 + 1.07128i 0.371258 + 0.928530i \(0.378927\pi\)
−0.989759 + 0.142746i \(0.954407\pi\)
\(710\) 6.86981 11.8989i 0.257819 0.446556i
\(711\) 0 0
\(712\) 9.63217 0.360981
\(713\) −12.0852 + 20.9322i −0.452594 + 0.783916i
\(714\) 0 0
\(715\) 7.16160 5.77175i 0.267829 0.215851i
\(716\) −4.75125 8.22941i −0.177563 0.307547i
\(717\) 0 0
\(718\) 3.08573 + 5.34465i 0.115159 + 0.199460i
\(719\) 4.29318 7.43600i 0.160109 0.277316i −0.774799 0.632208i \(-0.782149\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(720\) 0 0
\(721\) 4.43204 + 3.04034i 0.165058 + 0.113228i
\(722\) 7.54790 + 13.0734i 0.280904 + 0.486540i
\(723\) 0 0
\(724\) 18.7279 0.696017
\(725\) 4.16736 + 7.21808i 0.154772 + 0.268073i
\(726\) 0 0
\(727\) 31.5760 1.17109 0.585545 0.810640i \(-0.300881\pi\)
0.585545 + 0.810640i \(0.300881\pi\)
\(728\) −17.2693 + 1.33384i −0.640041 + 0.0494355i
\(729\) 0 0
\(730\) −63.2744 −2.34189
\(731\) 9.71789 + 16.8319i 0.359429 + 0.622549i
\(732\) 0 0
\(733\) 7.35414 + 12.7377i 0.271631 + 0.470479i 0.969280 0.245961i \(-0.0791035\pi\)
−0.697648 + 0.716440i \(0.745770\pi\)
\(734\) −26.6390 46.1401i −0.983263 1.70306i
\(735\) 0 0
\(736\) −17.1441 −0.631939
\(737\) 5.82409 10.0876i 0.214533 0.371583i
\(738\) 0 0
\(739\) 7.08297 + 12.2681i 0.260551 + 0.451288i 0.966389 0.257086i \(-0.0827624\pi\)
−0.705837 + 0.708374i \(0.749429\pi\)
\(740\) −3.26902 5.66211i −0.120172 0.208143i
\(741\) 0 0
\(742\) 4.16077 53.4670i 0.152747 1.96283i
\(743\) 21.4265 37.1119i 0.786063 1.36150i −0.142298 0.989824i \(-0.545449\pi\)
0.928362 0.371678i \(-0.121217\pi\)
\(744\) 0 0
\(745\) −16.5542 −0.606498
\(746\) 20.1193 34.8477i 0.736621 1.27586i
\(747\) 0 0
\(748\) 1.47535 + 2.55539i 0.0539442 + 0.0934342i
\(749\) −5.81636 + 2.78052i −0.212525 + 0.101598i
\(750\) 0 0
\(751\) −0.620656 −0.0226481 −0.0113240 0.999936i \(-0.503605\pi\)
−0.0113240 + 0.999936i \(0.503605\pi\)
\(752\) 24.4307 + 42.3152i 0.890895 + 1.54308i
\(753\) 0 0
\(754\) −38.6534 + 31.1519i −1.40767 + 1.13449i
\(755\) 13.2702 0.482954
\(756\) 0 0
\(757\) 2.21558 3.83750i 0.0805266 0.139476i −0.822950 0.568114i \(-0.807673\pi\)
0.903476 + 0.428638i \(0.141006\pi\)
\(758\) 8.00970 13.8732i 0.290925 0.503897i
\(759\) 0 0
\(760\) −14.2479 −0.516827
\(761\) 10.5022 18.1903i 0.380704 0.659399i −0.610459 0.792048i \(-0.709015\pi\)
0.991163 + 0.132649i \(0.0423482\pi\)
\(762\) 0 0
\(763\) 3.22538 41.4469i 0.116766 1.50048i
\(764\) 7.19024 12.4539i 0.260134 0.450565i
\(765\) 0 0
\(766\) 10.0169 17.3497i 0.361924 0.626871i
\(767\) 30.0704 + 11.6235i 1.08578 + 0.419699i
\(768\) 0 0
\(769\) −5.85570 + 10.1424i −0.211162 + 0.365743i −0.952078 0.305854i \(-0.901058\pi\)
0.740917 + 0.671597i \(0.234391\pi\)
\(770\) 0.898075 11.5405i 0.0323644 0.415891i
\(771\) 0 0
\(772\) −12.0806 20.9242i −0.434790 0.753079i
\(773\) −8.04150 −0.289233 −0.144616 0.989488i \(-0.546195\pi\)
−0.144616 + 0.989488i \(0.546195\pi\)
\(774\) 0 0
\(775\) −3.61357 6.25890i −0.129803 0.224826i
\(776\) −5.30923 9.19585i −0.190590 0.330112i
\(777\) 0 0
\(778\) −16.0241 + 27.7546i −0.574493 + 0.995052i
\(779\) 8.11467 + 14.0550i 0.290738 + 0.503573i
\(780\) 0 0
\(781\) 1.69234 2.93122i 0.0605568 0.104887i
\(782\) −17.9799 −0.642958
\(783\) 0 0
\(784\) −21.9633 + 27.2199i −0.784404 + 0.972140i
\(785\) 28.6380 1.02214
\(786\) 0 0
\(787\) 44.1774 1.57475 0.787377 0.616472i \(-0.211439\pi\)
0.787377 + 0.616472i \(0.211439\pi\)
\(788\) −7.38215 + 12.7863i −0.262978 + 0.455492i
\(789\) 0 0
\(790\) −0.892659 + 1.54613i −0.0317594 + 0.0550088i
\(791\) 11.0269 + 7.56433i 0.392071 + 0.268957i
\(792\) 0 0
\(793\) −7.32410 + 5.90272i −0.260086 + 0.209612i
\(794\) −8.09843 + 14.0269i −0.287403 + 0.497796i
\(795\) 0 0
\(796\) −5.41328 −0.191869
\(797\) 9.83025 + 17.0265i 0.348205 + 0.603109i 0.985931 0.167155i \(-0.0534579\pi\)
−0.637725 + 0.770264i \(0.720125\pi\)
\(798\) 0 0
\(799\) 14.7639 + 25.5718i 0.522308 + 0.904664i
\(800\) 2.56311 4.43944i 0.0906197 0.156958i
\(801\) 0 0
\(802\) −17.7889 −0.628149
\(803\) −15.5873 −0.550065
\(804\) 0 0
\(805\) 18.6139 + 12.7690i 0.656055 + 0.450048i
\(806\) 33.5169 27.0123i 1.18058 0.951466i
\(807\) 0 0
\(808\) 16.8213 + 29.1354i 0.591773 + 1.02498i
\(809\) −0.436336 0.755756i −0.0153407 0.0265710i 0.858253 0.513227i \(-0.171550\pi\)
−0.873594 + 0.486656i \(0.838217\pi\)
\(810\) 0 0
\(811\) 35.1149 1.23305 0.616526 0.787335i \(-0.288540\pi\)
0.616526 + 0.787335i \(0.288540\pi\)
\(812\) −1.55123 + 19.9338i −0.0544376 + 0.699538i
\(813\) 0 0
\(814\) −2.51637 4.35848i −0.0881987 0.152765i
\(815\) 59.5927 2.08744
\(816\) 0 0
\(817\) 20.5552 0.719136
\(818\) 39.2517 1.37240
\(819\) 0 0
\(820\) −11.7550 −0.410503
\(821\) 20.2047 0.705151 0.352575 0.935783i \(-0.385306\pi\)
0.352575 + 0.935783i \(0.385306\pi\)
\(822\) 0 0
\(823\) 27.9427 0.974020 0.487010 0.873396i \(-0.338087\pi\)
0.487010 + 0.873396i \(0.338087\pi\)
\(824\) 1.84422 + 3.19429i 0.0642466 + 0.111278i
\(825\) 0 0
\(826\) 36.6042 17.4987i 1.27362 0.608858i
\(827\) 44.6141 1.55138 0.775692 0.631112i \(-0.217401\pi\)
0.775692 + 0.631112i \(0.217401\pi\)
\(828\) 0 0
\(829\) 14.0525 + 24.3397i 0.488065 + 0.845353i 0.999906 0.0137273i \(-0.00436966\pi\)
−0.511841 + 0.859080i \(0.671036\pi\)
\(830\) −2.82541 4.89376i −0.0980715 0.169865i
\(831\) 0 0
\(832\) −5.12764 1.98205i −0.177769 0.0687152i
\(833\) −13.2728 + 16.4495i −0.459875 + 0.569940i
\(834\) 0 0
\(835\) 40.4572 1.40008
\(836\) 3.12066 0.107930
\(837\) 0 0
\(838\) −7.42751 + 12.8648i −0.256579 + 0.444408i
\(839\) −18.8751 32.6926i −0.651640 1.12867i −0.982725 0.185072i \(-0.940748\pi\)
0.331085 0.943601i \(-0.392585\pi\)
\(840\) 0 0
\(841\) −17.7271 30.7043i −0.611280 1.05877i
\(842\) −1.97278 −0.0679865
\(843\) 0 0
\(844\) 9.76788 16.9185i 0.336224 0.582357i
\(845\) 6.78728 31.2151i 0.233490 1.07383i
\(846\) 0 0
\(847\) −2.03674 + 26.1726i −0.0699830 + 0.899301i
\(848\) 29.5270 51.1422i 1.01396 1.75623i
\(849\) 0 0
\(850\) 2.68806 4.65586i 0.0921998 0.159695i
\(851\) 9.81413 0.336424
\(852\) 0 0
\(853\) 7.52465 0.257639 0.128820 0.991668i \(-0.458881\pi\)
0.128820 + 0.991668i \(0.458881\pi\)
\(854\) −0.918453 + 11.8024i −0.0314288 + 0.403869i
\(855\) 0 0
\(856\) −4.42425 −0.151218
\(857\) −7.72284 + 13.3764i −0.263807 + 0.456928i −0.967250 0.253824i \(-0.918312\pi\)
0.703443 + 0.710751i \(0.251645\pi\)
\(858\) 0 0
\(859\) 4.27437 + 7.40343i 0.145840 + 0.252602i 0.929686 0.368353i \(-0.120078\pi\)
−0.783846 + 0.620955i \(0.786745\pi\)
\(860\) −7.44414 + 12.8936i −0.253843 + 0.439669i
\(861\) 0 0
\(862\) 7.51220 + 13.0115i 0.255866 + 0.443174i
\(863\) 27.6867 + 47.9548i 0.942468 + 1.63240i 0.760744 + 0.649052i \(0.224834\pi\)
0.181724 + 0.983350i \(0.441832\pi\)
\(864\) 0 0
\(865\) 49.2450 1.67438
\(866\) 0.794230 + 1.37565i 0.0269890 + 0.0467464i
\(867\) 0 0
\(868\) 1.34510 17.2848i 0.0456555 0.586686i
\(869\) −0.219902 + 0.380881i −0.00745966 + 0.0129205i
\(870\) 0 0
\(871\) −6.23526 39.9709i −0.211274 1.35436i
\(872\) 14.2649 24.7075i 0.483071 0.836703i
\(873\) 0 0
\(874\) −9.50771 + 16.4678i −0.321603 + 0.557033i
\(875\) 23.2383 11.1091i 0.785598 0.375557i
\(876\) 0 0
\(877\) −24.5606 + 42.5402i −0.829352 + 1.43648i 0.0691950 + 0.997603i \(0.477957\pi\)
−0.898547 + 0.438877i \(0.855376\pi\)
\(878\) 21.2806 0.718185
\(879\) 0 0
\(880\) 6.37321 11.0387i 0.214841 0.372115i
\(881\) 3.45324 5.98118i 0.116342 0.201511i −0.801973 0.597360i \(-0.796216\pi\)
0.918316 + 0.395849i \(0.129550\pi\)
\(882\) 0 0
\(883\) −25.4087 −0.855071 −0.427536 0.903998i \(-0.640618\pi\)
−0.427536 + 0.903998i \(0.640618\pi\)
\(884\) 9.55859 + 3.69480i 0.321490 + 0.124269i
\(885\) 0 0
\(886\) 2.76920 + 4.79640i 0.0930332 + 0.161138i
\(887\) 42.1860 1.41647 0.708234 0.705977i \(-0.249492\pi\)
0.708234 + 0.705977i \(0.249492\pi\)
\(888\) 0 0
\(889\) −0.756405 + 9.72000i −0.0253690 + 0.325998i
\(890\) 11.1782 + 19.3612i 0.374694 + 0.648989i
\(891\) 0 0
\(892\) 5.35285 9.27140i 0.179227 0.310429i
\(893\) 31.2284 1.04502
\(894\) 0 0
\(895\) −12.4032 + 21.4830i −0.414594 + 0.718098i
\(896\) −29.8150 + 14.2531i −0.996048 + 0.476163i
\(897\) 0 0
\(898\) 17.0532 + 29.5370i 0.569072 + 0.985662i
\(899\) 27.9446 + 48.4014i 0.932004 + 1.61428i
\(900\) 0 0
\(901\) 17.8436 30.9061i 0.594458 1.02963i
\(902\) −9.04858 −0.301285
\(903\) 0 0
\(904\) 4.58841 + 7.94737i 0.152608 + 0.264325i
\(905\) −24.4448 42.3396i −0.812572 1.40742i
\(906\) 0 0
\(907\) −13.6930 23.7169i −0.454667 0.787507i 0.544002 0.839084i \(-0.316909\pi\)
−0.998669 + 0.0515772i \(0.983575\pi\)
\(908\) 5.11055 0.169599
\(909\) 0 0
\(910\) −22.7222 33.1642i −0.753232 1.09938i
\(911\) −46.0844 −1.52685 −0.763423 0.645899i \(-0.776483\pi\)
−0.763423 + 0.645899i \(0.776483\pi\)
\(912\) 0 0
\(913\) −0.696026 1.20555i −0.0230351 0.0398980i
\(914\) −0.135443 −0.00448005
\(915\) 0 0
\(916\) −8.16262 14.1381i −0.269701 0.467135i
\(917\) −4.03250 2.76625i −0.133165 0.0913497i
\(918\) 0 0
\(919\) 20.0638 34.7516i 0.661845 1.14635i −0.318286 0.947995i \(-0.603107\pi\)
0.980130 0.198354i \(-0.0635596\pi\)
\(920\) 7.74548 + 13.4156i 0.255361 + 0.442298i
\(921\) 0 0
\(922\) −4.21860 7.30683i −0.138932 0.240638i
\(923\) −1.81182 11.6146i −0.0596367 0.382299i
\(924\) 0 0
\(925\) −1.46725 + 2.54136i −0.0482430 + 0.0835593i
\(926\) 2.14098 0.0703569
\(927\) 0 0
\(928\) −19.8211 + 34.3312i −0.650660 + 1.12698i
\(929\) −23.5530 + 40.7950i −0.772750 + 1.33844i 0.163301 + 0.986576i \(0.447786\pi\)
−0.936051 + 0.351865i \(0.885548\pi\)
\(930\) 0 0
\(931\) 8.04751 + 20.8551i 0.263746 + 0.683497i
\(932\) −9.42842 16.3305i −0.308838 0.534924i
\(933\) 0 0
\(934\) 24.5953 + 42.6003i 0.804783 + 1.39392i
\(935\) 3.85144 6.67088i 0.125955 0.218161i
\(936\) 0 0
\(937\) 43.2558 1.41310 0.706552 0.707661i \(-0.250249\pi\)
0.706552 + 0.707661i \(0.250249\pi\)
\(938\) −41.9823 28.7995i −1.37077 0.940337i
\(939\) 0 0
\(940\) −11.3095 + 19.5886i −0.368875 + 0.638910i
\(941\) 21.2053 36.7287i 0.691274 1.19732i −0.280146 0.959957i \(-0.590383\pi\)
0.971421 0.237365i \(-0.0762836\pi\)
\(942\) 0 0
\(943\) 8.82262 15.2812i 0.287304 0.497625i
\(944\) 44.6762 1.45409
\(945\) 0 0
\(946\) −5.73022 + 9.92503i −0.186305 + 0.322691i
\(947\) −43.8160 −1.42383 −0.711914 0.702266i \(-0.752172\pi\)
−0.711914 + 0.702266i \(0.752172\pi\)
\(948\) 0 0
\(949\) −42.1501 + 33.9701i −1.36825 + 1.10271i
\(950\) −2.84289 4.92402i −0.0922354 0.159756i
\(951\) 0 0
\(952\) −13.0868 + 6.25620i −0.424147 + 0.202765i
\(953\) −8.09343 14.0182i −0.262172 0.454095i 0.704647 0.709558i \(-0.251105\pi\)
−0.966819 + 0.255463i \(0.917772\pi\)
\(954\) 0 0
\(955\) −37.5405 −1.21478
\(956\) 7.81742 0.252833
\(957\) 0 0
\(958\) −5.98432 10.3651i −0.193345 0.334883i
\(959\) 6.71990 3.21246i 0.216997 0.103736i
\(960\) 0 0
\(961\) −8.73113 15.1228i −0.281649 0.487831i
\(962\) −16.3032 6.30187i −0.525636 0.203180i
\(963\) 0 0
\(964\) 19.3818 0.624246
\(965\) −31.5366 + 54.6231i −1.01520 + 1.75838i
\(966\) 0 0
\(967\) −42.5994 −1.36990 −0.684952 0.728588i \(-0.740177\pi\)
−0.684952 + 0.728588i \(0.740177\pi\)
\(968\) −9.00789 + 15.6021i −0.289525 + 0.501471i
\(969\) 0 0
\(970\) 12.3228 21.3437i 0.395661 0.685304i
\(971\) 1.50269 2.60273i 0.0482236 0.0835257i −0.840906 0.541181i \(-0.817977\pi\)
0.889130 + 0.457655i \(0.151311\pi\)
\(972\) 0 0
\(973\) −8.19675 5.62290i −0.262776 0.180262i
\(974\) −3.30710 −0.105966
\(975\) 0 0
\(976\) −6.51782 + 11.2892i −0.208630 + 0.361359i
\(977\) −20.4223 35.3725i −0.653368 1.13167i −0.982300 0.187313i \(-0.940022\pi\)
0.328932 0.944354i \(-0.393311\pi\)
\(978\) 0 0
\(979\) 2.75369 + 4.76953i 0.0880083 + 0.152435i
\(980\) −15.9962 2.50479i −0.510979 0.0800126i
\(981\) 0 0
\(982\) −25.2053 + 43.6568i −0.804332 + 1.39314i
\(983\) −30.1629 + 52.2437i −0.962047 + 1.66631i −0.244699 + 0.969599i \(0.578689\pi\)
−0.717348 + 0.696715i \(0.754644\pi\)
\(984\) 0 0
\(985\) 38.5425 1.22807
\(986\) −20.7874 + 36.0048i −0.662006 + 1.14663i
\(987\) 0 0
\(988\) 8.43865 6.80096i 0.268469 0.216367i
\(989\) −11.1743 19.3544i −0.355321 0.615433i
\(990\) 0 0
\(991\) 22.9595 + 39.7670i 0.729332 + 1.26324i 0.957166 + 0.289540i \(0.0935022\pi\)
−0.227834 + 0.973700i \(0.573164\pi\)
\(992\) 17.1872 29.7690i 0.545693 0.945168i
\(993\) 0 0
\(994\) −12.1991 8.36845i −0.386931 0.265431i
\(995\) 7.06574 + 12.2382i 0.223999 + 0.387978i
\(996\) 0 0
\(997\) 26.5770 0.841701 0.420850 0.907130i \(-0.361732\pi\)
0.420850 + 0.907130i \(0.361732\pi\)
\(998\) −17.0285 29.4942i −0.539027 0.933621i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.e.802.7 16
3.2 odd 2 273.2.l.b.256.2 yes 16
7.2 even 3 819.2.n.e.100.2 16
13.3 even 3 819.2.n.e.172.2 16
21.2 odd 6 273.2.j.b.100.7 16
39.29 odd 6 273.2.j.b.172.7 yes 16
91.16 even 3 inner 819.2.s.e.289.7 16
273.107 odd 6 273.2.l.b.16.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.b.100.7 16 21.2 odd 6
273.2.j.b.172.7 yes 16 39.29 odd 6
273.2.l.b.16.2 yes 16 273.107 odd 6
273.2.l.b.256.2 yes 16 3.2 odd 2
819.2.n.e.100.2 16 7.2 even 3
819.2.n.e.172.2 16 13.3 even 3
819.2.s.e.289.7 16 91.16 even 3 inner
819.2.s.e.802.7 16 1.1 even 1 trivial