Properties

Label 825.1.co.a.98.1
Level 825825
Weight 11
Character 825.98
Analytic conductor 0.4120.412
Analytic rank 00
Dimension 88
Projective image D20D_{20}
CM discriminant -11
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,1,Mod(98,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 11, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.98");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 825=35211 825 = 3 \cdot 5^{2} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 825.co (of order 2020, degree 88, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4117286354220.411728635422
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)

Embedding invariants

Embedding label 98.1
Root 0.9510570.309017i-0.951057 - 0.309017i of defining polynomial
Character χ\chi == 825.98
Dual form 825.1.co.a.362.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.587785+0.809017i)q3+(0.951057+0.309017i)q41.00000iq5+(0.309017+0.951057i)q9+(0.5877850.809017i)q11+(0.309017+0.951057i)q12+(0.8090170.587785i)q15+(0.809017+0.587785i)q16+(0.3090170.951057i)q20+(0.142040+0.896802i)q231.00000q25+(0.951057+0.309017i)q27+(0.3632711.11803i)q31+(0.3090170.951057i)q33+(0.587785+0.809017i)q36+(1.39680+0.221232i)q37+(0.3090170.951057i)q44+(0.951057+0.309017i)q45+(1.26007+0.642040i)q47+1.00000iq481.00000iq49+(0.142040+0.278768i)q53+(0.809017+0.587785i)q55+(1.30902+0.951057i)q59+(0.9510570.309017i)q60+(0.587785+0.809017i)q64+(0.809017+0.412215i)q67+(0.809017+0.412215i)q69+(1.118030.363271i)q71+(0.5877850.809017i)q75+(0.5877850.809017i)q80+(0.8090170.587785i)q81+(1.538841.11803i)q89+(0.412215+0.809017i)q92+(0.6909830.951057i)q93+(0.8968021.76007i)q97+(0.9510570.309017i)q99+O(q100)q+(0.587785 + 0.809017i) q^{3} +(0.951057 + 0.309017i) q^{4} -1.00000i q^{5} +(-0.309017 + 0.951057i) q^{9} +(-0.587785 - 0.809017i) q^{11} +(0.309017 + 0.951057i) q^{12} +(0.809017 - 0.587785i) q^{15} +(0.809017 + 0.587785i) q^{16} +(0.309017 - 0.951057i) q^{20} +(-0.142040 + 0.896802i) q^{23} -1.00000 q^{25} +(-0.951057 + 0.309017i) q^{27} +(-0.363271 - 1.11803i) q^{31} +(0.309017 - 0.951057i) q^{33} +(-0.587785 + 0.809017i) q^{36} +(-1.39680 + 0.221232i) q^{37} +(-0.309017 - 0.951057i) q^{44} +(0.951057 + 0.309017i) q^{45} +(-1.26007 + 0.642040i) q^{47} +1.00000i q^{48} -1.00000i q^{49} +(0.142040 + 0.278768i) q^{53} +(-0.809017 + 0.587785i) q^{55} +(1.30902 + 0.951057i) q^{59} +(0.951057 - 0.309017i) q^{60} +(0.587785 + 0.809017i) q^{64} +(0.809017 + 0.412215i) q^{67} +(-0.809017 + 0.412215i) q^{69} +(-1.11803 - 0.363271i) q^{71} +(-0.587785 - 0.809017i) q^{75} +(0.587785 - 0.809017i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(1.53884 - 1.11803i) q^{89} +(-0.412215 + 0.809017i) q^{92} +(0.690983 - 0.951057i) q^{93} +(-0.896802 - 1.76007i) q^{97} +(0.951057 - 0.309017i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q92q12+2q15+2q162q20+2q238q252q332q37+2q44+2q472q532q55+6q59+2q672q692q818q92+10q93++2q97+O(q100) 8 q + 2 q^{9} - 2 q^{12} + 2 q^{15} + 2 q^{16} - 2 q^{20} + 2 q^{23} - 8 q^{25} - 2 q^{33} - 2 q^{37} + 2 q^{44} + 2 q^{47} - 2 q^{53} - 2 q^{55} + 6 q^{59} + 2 q^{67} - 2 q^{69} - 2 q^{81} - 8 q^{92} + 10 q^{93}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/825Z)×\left(\mathbb{Z}/825\mathbb{Z}\right)^\times.

nn 376376 551551 727727
χ(n)\chi(n) 1-1 1-1 e(1120)e\left(\frac{11}{20}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
33 0.587785 + 0.809017i 0.587785 + 0.809017i
44 0.951057 + 0.309017i 0.951057 + 0.309017i
55 1.00000i 1.00000i
66 0 0
77 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
88 0 0
99 −0.309017 + 0.951057i −0.309017 + 0.951057i
1010 0 0
1111 −0.587785 0.809017i −0.587785 0.809017i
1212 0.309017 + 0.951057i 0.309017 + 0.951057i
1313 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
1414 0 0
1515 0.809017 0.587785i 0.809017 0.587785i
1616 0.809017 + 0.587785i 0.809017 + 0.587785i
1717 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
1818 0 0
1919 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
2020 0.309017 0.951057i 0.309017 0.951057i
2121 0 0
2222 0 0
2323 −0.142040 + 0.896802i −0.142040 + 0.896802i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
2424 0 0
2525 −1.00000 −1.00000
2626 0 0
2727 −0.951057 + 0.309017i −0.951057 + 0.309017i
2828 0 0
2929 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3030 0 0
3131 −0.363271 1.11803i −0.363271 1.11803i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
3232 0 0
3333 0.309017 0.951057i 0.309017 0.951057i
3434 0 0
3535 0 0
3636 −0.587785 + 0.809017i −0.587785 + 0.809017i
3737 −1.39680 + 0.221232i −1.39680 + 0.221232i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
4242 0 0
4343 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4444 −0.309017 0.951057i −0.309017 0.951057i
4545 0.951057 + 0.309017i 0.951057 + 0.309017i
4646 0 0
4747 −1.26007 + 0.642040i −1.26007 + 0.642040i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
4848 1.00000i 1.00000i
4949 1.00000i 1.00000i
5050 0 0
5151 0 0
5252 0 0
5353 0.142040 + 0.278768i 0.142040 + 0.278768i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
5454 0 0
5555 −0.809017 + 0.587785i −0.809017 + 0.587785i
5656 0 0
5757 0 0
5858 0 0
5959 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
6060 0.951057 0.309017i 0.951057 0.309017i
6161 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
6262 0 0
6363 0 0
6464 0.587785 + 0.809017i 0.587785 + 0.809017i
6565 0 0
6666 0 0
6767 0.809017 + 0.412215i 0.809017 + 0.412215i 0.809017 0.587785i 0.200000π-0.200000\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 −0.809017 + 0.412215i −0.809017 + 0.412215i
7070 0 0
7171 −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
7272 0 0
7373 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
7474 0 0
7575 −0.587785 0.809017i −0.587785 0.809017i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
8080 0.587785 0.809017i 0.587785 0.809017i
8181 −0.809017 0.587785i −0.809017 0.587785i
8282 0 0
8383 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 1.53884 1.11803i 1.53884 1.11803i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
9090 0 0
9191 0 0
9292 −0.412215 + 0.809017i −0.412215 + 0.809017i
9393 0.690983 0.951057i 0.690983 0.951057i
9494 0 0
9595 0 0
9696 0 0
9797 −0.896802 1.76007i −0.896802 1.76007i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
9898 0 0
9999 0.951057 0.309017i 0.951057 0.309017i
100100 −0.951057 0.309017i −0.951057 0.309017i
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 −1.58779 + 0.809017i −1.58779 + 0.809017i −0.587785 + 0.809017i 0.700000π0.700000\pi
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
108108 −1.00000 −1.00000
109109 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
110110 0 0
111111 −1.00000 1.00000i −1.00000 1.00000i
112112 0 0
113113 1.76007 0.278768i 1.76007 0.278768i 0.809017 0.587785i 0.200000π-0.200000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
114114 0 0
115115 0.896802 + 0.142040i 0.896802 + 0.142040i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.309017 + 0.951057i −0.309017 + 0.951057i
122122 0 0
123123 0 0
124124 1.17557i 1.17557i
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
132132 0.587785 0.809017i 0.587785 0.809017i
133133 0 0
134134 0 0
135135 0.309017 + 0.951057i 0.309017 + 0.951057i
136136 0 0
137137 −0.278768 1.76007i −0.278768 1.76007i −0.587785 0.809017i 0.700000π-0.700000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
138138 0 0
139139 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
140140 0 0
141141 −1.26007 0.642040i −1.26007 0.642040i
142142 0 0
143143 0 0
144144 −0.809017 + 0.587785i −0.809017 + 0.587785i
145145 0 0
146146 0 0
147147 0.809017 0.587785i 0.809017 0.587785i
148148 −1.39680 0.221232i −1.39680 0.221232i
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 −1.11803 + 0.363271i −1.11803 + 0.363271i
156156 0 0
157157 1.26007 1.26007i 1.26007 1.26007i 0.309017 0.951057i 0.400000π-0.400000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
158158 0 0
159159 −0.142040 + 0.278768i −0.142040 + 0.278768i
160160 0 0
161161 0 0
162162 0 0
163163 0.309017 + 1.95106i 0.309017 + 1.95106i 0.309017 + 0.951057i 0.400000π0.400000\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 −0.951057 0.309017i −0.951057 0.309017i
166166 0 0
167167 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
168168 0 0
169169 −0.951057 + 0.309017i −0.951057 + 0.309017i
170170 0 0
171171 0 0
172172 0 0
173173 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
174174 0 0
175175 0 0
176176 1.00000i 1.00000i
177177 1.61803i 1.61803i
178178 0 0
179179 −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i 0.5π0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
180180 0.809017 + 0.587785i 0.809017 + 0.587785i
181181 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
182182 0 0
183183 0 0
184184 0 0
185185 0.221232 + 1.39680i 0.221232 + 1.39680i
186186 0 0
187187 0 0
188188 −1.39680 + 0.221232i −1.39680 + 0.221232i
189189 0 0
190190 0 0
191191 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
192192 −0.309017 + 0.951057i −0.309017 + 0.951057i
193193 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
194194 0 0
195195 0 0
196196 0.309017 0.951057i 0.309017 0.951057i
197197 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
198198 0 0
199199 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
200200 0 0
201201 0.142040 + 0.896802i 0.142040 + 0.896802i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −0.809017 0.412215i −0.809017 0.412215i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
212212 0.0489435 + 0.309017i 0.0489435 + 0.309017i
213213 −0.363271 1.11803i −0.363271 1.11803i
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 −0.951057 + 0.309017i −0.951057 + 0.309017i
221221 0 0
222222 0 0
223223 1.95106 + 0.309017i 1.95106 + 0.309017i 1.00000 00
0.951057 + 0.309017i 0.100000π0.100000\pi
224224 0 0
225225 0.309017 0.951057i 0.309017 0.951057i
226226 0 0
227227 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
228228 0 0
229229 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 00
0.809017 + 0.587785i 0.200000π0.200000\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
234234 0 0
235235 0.642040 + 1.26007i 0.642040 + 1.26007i
236236 0.951057 + 1.30902i 0.951057 + 1.30902i
237237 0 0
238238 0 0
239239 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
240240 1.00000 1.00000
241241 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
242242 0 0
243243 1.00000i 1.00000i
244244 0 0
245245 −1.00000 −1.00000
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
252252 0 0
253253 0.809017 0.412215i 0.809017 0.412215i
254254 0 0
255255 0 0
256256 0.309017 + 0.951057i 0.309017 + 0.951057i
257257 1.26007 + 1.26007i 1.26007 + 1.26007i 0.951057 + 0.309017i 0.100000π0.100000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
264264 0 0
265265 0.278768 0.142040i 0.278768 0.142040i
266266 0 0
267267 1.80902 + 0.587785i 1.80902 + 0.587785i
268268 0.642040 + 0.642040i 0.642040 + 0.642040i
269269 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
270270 0 0
271271 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0.587785 + 0.809017i 0.587785 + 0.809017i
276276 −0.896802 + 0.142040i −0.896802 + 0.142040i
277277 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
278278 0 0
279279 1.17557 1.17557
280280 0 0
281281 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
282282 0 0
283283 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
284284 −0.951057 0.690983i −0.951057 0.690983i
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.587785 0.809017i −0.587785 0.809017i
290290 0 0
291291 0.896802 1.76007i 0.896802 1.76007i
292292 0 0
293293 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
294294 0 0
295295 0.951057 1.30902i 0.951057 1.30902i
296296 0 0
297297 0.809017 + 0.587785i 0.809017 + 0.587785i
298298 0 0
299299 0 0
300300 −0.309017 0.951057i −0.309017 0.951057i
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
308308 0 0
309309 −1.58779 0.809017i −1.58779 0.809017i
310310 0 0
311311 1.11803 + 1.53884i 1.11803 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
312312 0 0
313313 0.278768 + 1.76007i 0.278768 + 1.76007i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
314314 0 0
315315 0 0
316316 0 0
317317 0.142040 0.278768i 0.142040 0.278768i −0.809017 0.587785i 0.800000π-0.800000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
318318 0 0
319319 0 0
320320 0.809017 0.587785i 0.809017 0.587785i
321321 0 0
322322 0 0
323323 0 0
324324 −0.587785 0.809017i −0.587785 0.809017i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.587785 + 1.80902i 0.587785 + 1.80902i 0.587785 + 0.809017i 0.300000π0.300000\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0.221232 1.39680i 0.221232 1.39680i
334334 0 0
335335 0.412215 0.809017i 0.412215 0.809017i
336336 0 0
337337 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
338338 0 0
339339 1.26007 + 1.26007i 1.26007 + 1.26007i
340340 0 0
341341 −0.690983 + 0.951057i −0.690983 + 0.951057i
342342 0 0
343343 0 0
344344 0 0
345345 0.412215 + 0.809017i 0.412215 + 0.809017i
346346 0 0
347347 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0 0
353353 −0.642040 1.26007i −0.642040 1.26007i −0.951057 0.309017i 0.900000π-0.900000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
354354 0 0
355355 −0.363271 + 1.11803i −0.363271 + 1.11803i
356356 1.80902 0.587785i 1.80902 0.587785i
357357 0 0
358358 0 0
359359 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
360360 0 0
361361 0.809017 0.587785i 0.809017 0.587785i
362362 0 0
363363 −0.951057 + 0.309017i −0.951057 + 0.309017i
364364 0 0
365365 0 0
366366 0 0
367367 −0.809017 0.412215i −0.809017 0.412215i 1.00000i 0.5π-0.5\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
368368 −0.642040 + 0.642040i −0.642040 + 0.642040i
369369 0 0
370370 0 0
371371 0 0
372372 0.951057 0.690983i 0.951057 0.690983i
373373 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
374374 0 0
375375 −0.809017 + 0.587785i −0.809017 + 0.587785i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.278768 + 0.142040i 0.278768 + 0.142040i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 −0.309017 1.95106i −0.309017 1.95106i
389389 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 1.00000 1.00000
397397 −0.412215 0.809017i −0.412215 0.809017i 0.587785 0.809017i 0.300000π-0.300000\pi
−1.00000 π\pi
398398 0 0
399399 0 0
400400 −0.809017 0.587785i −0.809017 0.587785i
401401 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.587785 + 0.809017i −0.587785 + 0.809017i
406406 0 0
407407 1.00000 + 1.00000i 1.00000 + 1.00000i
408408 0 0
409409 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
410410 0 0
411411 1.26007 1.26007i 1.26007 1.26007i
412412 −1.76007 + 0.278768i −1.76007 + 0.278768i
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0.363271 + 1.11803i 0.363271 + 1.11803i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
420420 0 0
421421 −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i 0.5π0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
422422 0 0
423423 −0.221232 1.39680i −0.221232 1.39680i
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
432432 −0.951057 0.309017i −0.951057 0.309017i
433433 −0.642040 + 1.26007i −0.642040 + 1.26007i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
440440 0 0
441441 0.951057 + 0.309017i 0.951057 + 0.309017i
442442 0 0
443443 −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i 0.800000π-0.800000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
444444 −0.642040 1.26007i −0.642040 1.26007i
445445 −1.11803 1.53884i −1.11803 1.53884i
446446 0 0
447447 0 0
448448 0 0
449449 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
450450 0 0
451451 0 0
452452 1.76007 + 0.278768i 1.76007 + 0.278768i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
458458 0 0
459459 0 0
460460 0.809017 + 0.412215i 0.809017 + 0.412215i
461461 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
462462 0 0
463463 −0.278768 1.76007i −0.278768 1.76007i −0.587785 0.809017i 0.700000π-0.700000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
464464 0 0
465465 −0.951057 0.690983i −0.951057 0.690983i
466466 0 0
467467 0.642040 1.26007i 0.642040 1.26007i −0.309017 0.951057i 0.600000π-0.600000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
468468 0 0
469469 0 0
470470 0 0
471471 1.76007 + 0.278768i 1.76007 + 0.278768i
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 −0.309017 + 0.0489435i −0.309017 + 0.0489435i
478478 0 0
479479 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −0.587785 + 0.809017i −0.587785 + 0.809017i
485485 −1.76007 + 0.896802i −1.76007 + 0.896802i
486486 0 0
487487 1.39680 0.221232i 1.39680 0.221232i 0.587785 0.809017i 0.300000π-0.300000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
488488 0 0
489489 −1.39680 + 1.39680i −1.39680 + 1.39680i
490490 0 0
491491 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
492492 0 0
493493 0 0
494494 0 0
495495 −0.309017 0.951057i −0.309017 0.951057i
496496 0.363271 1.11803i 0.363271 1.11803i
497497 0 0
498498 0 0
499499 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
500500 −0.309017 + 0.951057i −0.309017 + 0.951057i
501501 0 0
502502 0 0
503503 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
504504 0 0
505505 0 0
506506 0 0
507507 −0.809017 0.587785i −0.809017 0.587785i
508508 0 0
509509 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0.809017 + 1.58779i 0.809017 + 1.58779i
516516 0 0
517517 1.26007 + 0.642040i 1.26007 + 0.642040i
518518 0 0
519519 0 0
520520 0 0
521521 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0.809017 0.587785i 0.809017 0.587785i
529529 0.166977 + 0.0542543i 0.166977 + 0.0542543i
530530 0 0
531531 −1.30902 + 0.951057i −1.30902 + 0.951057i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −1.80902 + 0.587785i −1.80902 + 0.587785i
538538 0 0
539539 −0.809017 + 0.587785i −0.809017 + 0.587785i
540540 1.00000i 1.00000i
541541 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
548548 0.278768 1.76007i 0.278768 1.76007i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 −1.00000 + 1.00000i −1.00000 + 1.00000i
556556 0 0
557557 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
564564 −1.00000 1.00000i −1.00000 1.00000i
565565 −0.278768 1.76007i −0.278768 1.76007i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
570570 0 0
571571 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
572572 0 0
573573 −0.618034 −0.618034
574574 0 0
575575 0.142040 0.896802i 0.142040 0.896802i
576576 −0.951057 + 0.309017i −0.951057 + 0.309017i
577577 −0.0489435 + 0.309017i −0.0489435 + 0.309017i 0.951057 + 0.309017i 0.100000π0.100000\pi
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0.142040 0.278768i 0.142040 0.278768i
584584 0 0
585585 0 0
586586 0 0
587587 −0.309017 1.95106i −0.309017 1.95106i −0.309017 0.951057i 0.600000π-0.600000\pi
1.00000i 0.5π-0.5\pi
588588 0.951057 0.309017i 0.951057 0.309017i
589589 0 0
590590 0 0
591591 0 0
592592 −1.26007 0.642040i −1.26007 0.642040i
593593 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
594594 0 0
595595 0 0
596596 0 0
597597 1.53884 1.11803i 1.53884 1.11803i
598598 0 0
599599 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 −0.642040 + 0.642040i −0.642040 + 0.642040i
604604 0 0
605605 0.951057 + 0.309017i 0.951057 + 0.309017i
606606 0 0
607607 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.896802 1.76007i 0.896802 1.76007i 0.309017 0.951057i 0.400000π-0.400000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
618618 0 0
619619 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
620620 −1.17557 −1.17557
621621 −0.142040 0.896802i −0.142040 0.896802i
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 1.58779 0.809017i 1.58779 0.809017i
629629 0 0
630630 0 0
631631 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 −0.221232 + 0.221232i −0.221232 + 0.221232i
637637 0 0
638638 0 0
639639 0.690983 0.951057i 0.690983 0.951057i
640640 0 0
641641 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
642642 0 0
643643 0.221232 + 0.221232i 0.221232 + 0.221232i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
644644 0 0
645645 0 0
646646 0 0
647647 −1.58779 + 0.809017i −1.58779 + 0.809017i −0.587785 + 0.809017i 0.700000π0.700000\pi
−1.00000 π\pi
648648 0 0
649649 1.61803i 1.61803i
650650 0 0
651651 0 0
652652 −0.309017 + 1.95106i −0.309017 + 1.95106i
653653 −0.896802 1.76007i −0.896802 1.76007i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
660660 −0.809017 0.587785i −0.809017 0.587785i
661661 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0.896802 + 1.76007i 0.896802 + 1.76007i
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
674674 0 0
675675 0.951057 0.309017i 0.951057 0.309017i
676676 −1.00000 −1.00000
677677 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0.809017 + 0.412215i 0.809017 + 0.412215i 0.809017 0.587785i 0.200000π-0.200000\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 −1.76007 + 0.278768i −1.76007 + 0.278768i
686686 0 0
687687 0.587785 + 1.80902i 0.587785 + 1.80902i
688688 0 0
689689 0 0
690690 0 0
691691 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0.309017 0.951057i 0.309017 0.951057i
705705 −0.642040 + 1.26007i −0.642040 + 1.26007i
706706 0 0
707707 0 0
708708 −0.500000 + 1.53884i −0.500000 + 1.53884i
709709 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
710710 0 0
711711 0 0
712712 0 0
713713 1.05425 0.166977i 1.05425 0.166977i
714714 0 0
715715 0 0
716716 −1.11803 + 1.53884i −1.11803 + 1.53884i
717717 0 0
718718 0 0
719719 −0.587785 1.80902i −0.587785 1.80902i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π-0.5\pi
720720 0.587785 + 0.809017i 0.587785 + 0.809017i
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0.0489435 0.309017i 0.0489435 0.309017i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000 00
728728 0 0
729729 0.809017 0.587785i 0.809017 0.587785i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
734734 0 0
735735 −0.587785 0.809017i −0.587785 0.809017i
736736 0 0
737737 −0.142040 0.896802i −0.142040 0.896802i
738738 0 0
739739 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
740740 −0.221232 + 1.39680i −0.221232 + 1.39680i
741741 0 0
742742 0 0
743743 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
752752 −1.39680 0.221232i −1.39680 0.221232i
753753 0.951057 0.690983i 0.951057 0.690983i
754754 0 0
755755 0 0
756756 0 0
757757 −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i 0.800000π-0.800000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
758758 0 0
759759 0.809017 + 0.412215i 0.809017 + 0.412215i
760760 0 0
761761 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
762762 0 0
763763 0 0
764764 −0.500000 + 0.363271i −0.500000 + 0.363271i
765765 0 0
766766 0 0
767767 0 0
768768 −0.587785 + 0.809017i −0.587785 + 0.809017i
769769 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
770770 0 0
771771 −0.278768 + 1.76007i −0.278768 + 1.76007i
772772 0 0
773773 0.309017 1.95106i 0.309017 1.95106i 1.00000i 0.5π-0.5\pi
0.309017 0.951057i 0.400000π-0.400000\pi
774774 0 0
775775 0.363271 + 1.11803i 0.363271 + 1.11803i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0.363271 + 1.11803i 0.363271 + 1.11803i
782782 0 0
783783 0 0
784784 0.587785 0.809017i 0.587785 0.809017i
785785 −1.26007 1.26007i −1.26007 1.26007i
786786 0 0
787787 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0.278768 + 0.142040i 0.278768 + 0.142040i
796796 0.587785 1.80902i 0.587785 1.80902i
797797 0.809017 0.412215i 0.809017 0.412215i 1.00000i 0.5π-0.5\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.587785 + 1.80902i 0.587785 + 1.80902i
802802 0 0
803803 0 0
804804 −0.142040 + 0.896802i −0.142040 + 0.896802i
805805 0 0
806806 0 0
807807 0.363271 0.500000i 0.363271 0.500000i
808808 0 0
809809 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
810810 0 0
811811 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
812812 0 0
813813 0 0
814814 0 0
815815 1.95106 0.309017i 1.95106 0.309017i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
822822 0 0
823823 −1.95106 0.309017i −1.95106 0.309017i −0.951057 0.309017i 0.900000π-0.900000\pi
−1.00000 π\pi
824824 0 0
825825 −0.309017 + 0.951057i −0.309017 + 0.951057i
826826 0 0
827827 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
828828 −0.642040 0.642040i −0.642040 0.642040i
829829 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0.690983 + 0.951057i 0.690983 + 0.951057i
838838 0 0
839839 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
840840 0 0
841841 −0.809017 0.587785i −0.809017 0.587785i
842842 0 0
843843 0 0
844844 0 0
845845 0.309017 + 0.951057i 0.309017 + 0.951057i
846846 0 0
847847 0 0
848848 −0.0489435 + 0.309017i −0.0489435 + 0.309017i
849849 0 0
850850 0 0
851851 1.28408i 1.28408i
852852 1.17557i 1.17557i
853853 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
858858 0 0
859859 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
860860 0 0
861861 0 0
862862 0 0
863863 −1.95106 + 0.309017i −1.95106 + 0.309017i −0.951057 + 0.309017i 0.900000π0.900000\pi
−1.00000 1.00000π1.00000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0.309017 0.951057i 0.309017 0.951057i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 1.95106 0.309017i 1.95106 0.309017i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
878878 0 0
879879 0 0
880880 −1.00000 −1.00000
881881 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
882882 0 0
883883 −0.142040 + 0.278768i −0.142040 + 0.278768i −0.951057 0.309017i 0.900000π-0.900000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
884884 0 0
885885 1.61803 1.61803
886886 0 0
887887 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
888888 0 0
889889 0 0
890890 0 0
891891 1.00000i 1.00000i
892892 1.76007 + 0.896802i 1.76007 + 0.896802i
893893 0 0
894894 0 0
895895 1.80902 + 0.587785i 1.80902 + 0.587785i
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0.587785 0.809017i 0.587785 0.809017i
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
908908 0 0
909909 0 0
910910 0 0
911911 −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 1.53884 + 1.11803i 1.53884 + 1.11803i
917917 0 0
918918 0 0
919919 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 1.39680 0.221232i 1.39680 0.221232i
926926 0 0
927927 −0.278768 1.76007i −0.278768 1.76007i
928928 0 0
929929 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
930930 0 0
931931 0 0
932932 0 0
933933 −0.587785 + 1.80902i −0.587785 + 1.80902i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
938938 0 0
939939 −1.26007 + 1.26007i −1.26007 + 1.26007i
940940 0.221232 + 1.39680i 0.221232 + 1.39680i
941941 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
942942 0 0
943943 0 0
944944 0.500000 + 1.53884i 0.500000 + 1.53884i
945945 0 0
946946 0 0
947947 −1.76007 + 0.896802i −1.76007 + 0.896802i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0.309017 0.0489435i 0.309017 0.0489435i
952952 0 0
953953 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
954954 0 0
955955 0.500000 + 0.363271i 0.500000 + 0.363271i
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0.951057 + 0.309017i 0.951057 + 0.309017i
961961 −0.309017 + 0.224514i −0.309017 + 0.224514i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
968968 0 0
969969 0 0
970970 0 0
971971 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
972972 0.309017 0.951057i 0.309017 0.951057i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 1.39680 + 0.221232i 1.39680 + 0.221232i 0.809017 0.587785i 0.200000π-0.200000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
978978 0 0
979979 −1.80902 0.587785i −1.80902 0.587785i
980980 −0.951057 0.309017i −0.951057 0.309017i
981981 0 0
982982 0 0
983983 −0.809017 0.412215i −0.809017 0.412215i 1.00000i 0.5π-0.5\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.951057 0.690983i −0.951057 0.690983i 1.00000i 0.5π-0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
992992 0 0
993993 −1.11803 + 1.53884i −1.11803 + 1.53884i
994994 0 0
995995 −1.90211 −1.90211
996996 0 0
997997 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
998998 0 0
999999 1.26007 0.642040i 1.26007 0.642040i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.1.co.a.98.1 8
3.2 odd 2 825.1.co.b.98.1 yes 8
11.10 odd 2 CM 825.1.co.a.98.1 8
25.12 odd 20 825.1.co.b.362.1 yes 8
33.32 even 2 825.1.co.b.98.1 yes 8
75.62 even 20 inner 825.1.co.a.362.1 yes 8
275.87 even 20 825.1.co.b.362.1 yes 8
825.362 odd 20 inner 825.1.co.a.362.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.1.co.a.98.1 8 1.1 even 1 trivial
825.1.co.a.98.1 8 11.10 odd 2 CM
825.1.co.a.362.1 yes 8 75.62 even 20 inner
825.1.co.a.362.1 yes 8 825.362 odd 20 inner
825.1.co.b.98.1 yes 8 3.2 odd 2
825.1.co.b.98.1 yes 8 33.32 even 2
825.1.co.b.362.1 yes 8 25.12 odd 20
825.1.co.b.362.1 yes 8 275.87 even 20