Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [825,2,Mod(281,825)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(825, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 4, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("825.281");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 825.bd (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.58765816676\) |
Analytic rank: | \(0\) |
Dimension: | \(464\) |
Relative dimension: | \(116\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
281.1 | −2.20416 | + | 1.60142i | 1.25438 | − | 1.19437i | 1.67575 | − | 5.15744i | −2.13665 | + | 0.659325i | −0.852173 | + | 4.64137i | −1.51240 | − | 2.08164i | 2.88175 | + | 8.86911i | 0.146950 | − | 2.99640i | 3.65367 | − | 4.87493i |
281.2 | −2.18337 | + | 1.58631i | 1.72299 | + | 0.176909i | 1.63268 | − | 5.02489i | 1.09099 | − | 1.95186i | −4.04256 | + | 2.34694i | −0.304112 | − | 0.418574i | 2.73833 | + | 8.42771i | 2.93741 | + | 0.609626i | 0.714222 | + | 5.99227i |
281.3 | −2.16412 | + | 1.57232i | −1.53523 | + | 0.801919i | 1.59317 | − | 4.90327i | 2.14753 | + | 0.622979i | 2.06154 | − | 4.14932i | −2.26400 | − | 3.11612i | 2.60848 | + | 8.02807i | 1.71385 | − | 2.46226i | −5.62703 | + | 2.02842i |
281.4 | −2.16050 | + | 1.56970i | −1.38393 | − | 1.04150i | 1.58578 | − | 4.88054i | 0.110245 | − | 2.23335i | 4.62483 | + | 0.0778170i | 1.98404 | + | 2.73080i | 2.58440 | + | 7.95397i | 0.830539 | + | 2.88274i | 3.26749 | + | 4.99820i |
281.5 | −2.14689 | + | 1.55981i | −1.12584 | + | 1.31624i | 1.55810 | − | 4.79535i | −2.18598 | + | 0.470628i | 0.363983 | − | 4.58191i | 1.49728 | + | 2.06083i | 2.49467 | + | 7.67779i | −0.464960 | − | 2.96375i | 3.95897 | − | 4.42009i |
281.6 | −2.11420 | + | 1.53605i | 0.411482 | + | 1.68246i | 1.49233 | − | 4.59293i | 0.753422 | + | 2.10532i | −3.45431 | − | 2.92500i | 1.71202 | + | 2.35639i | 2.28480 | + | 7.03189i | −2.66137 | + | 1.38461i | −4.82676 | − | 3.29376i |
281.7 | −2.07007 | + | 1.50399i | −1.68242 | − | 0.411654i | 1.40516 | − | 4.32463i | −0.534610 | + | 2.17122i | 4.10185 | − | 1.67820i | −0.0704560 | − | 0.0969743i | 2.01405 | + | 6.19860i | 2.66108 | + | 1.38515i | −2.15882 | − | 5.29862i |
281.8 | −2.04004 | + | 1.48217i | −0.551464 | − | 1.64192i | 1.34688 | − | 4.14526i | 1.84572 | − | 1.26227i | 3.55861 | + | 2.53220i | −2.55571 | − | 3.51763i | 1.83786 | + | 5.65636i | −2.39177 | + | 1.81092i | −1.89442 | + | 5.31075i |
281.9 | −1.99834 | + | 1.45188i | −0.136528 | + | 1.72666i | 1.26738 | − | 3.90059i | −1.54760 | − | 1.61398i | −2.23408 | − | 3.64868i | −2.57895 | − | 3.54962i | 1.60394 | + | 4.93642i | −2.96272 | − | 0.471475i | 5.43594 | + | 0.978351i |
281.10 | −1.94958 | + | 1.41646i | 1.70448 | + | 0.307837i | 1.17650 | − | 3.62089i | 1.84858 | + | 1.25808i | −3.75906 | + | 1.81416i | −1.10506 | − | 1.52099i | 1.34580 | + | 4.14194i | 2.81047 | + | 1.04940i | −5.38597 | + | 0.165695i |
281.11 | −1.94870 | + | 1.41581i | 1.08801 | + | 1.34768i | 1.17486 | − | 3.61586i | −1.10432 | − | 1.94434i | −4.02826 | − | 1.08581i | 0.699142 | + | 0.962287i | 1.34125 | + | 4.12795i | −0.632482 | + | 2.93257i | 4.90482 | + | 2.22542i |
281.12 | −1.89846 | + | 1.37931i | 0.827595 | − | 1.52154i | 1.08362 | − | 3.33504i | −1.41111 | − | 1.73458i | 0.527524 | + | 4.03010i | 1.48322 | + | 2.04148i | 1.09256 | + | 3.36255i | −1.63017 | − | 2.51844i | 5.07147 | + | 1.34666i |
281.13 | −1.89211 | + | 1.37470i | −0.973640 | − | 1.43249i | 1.07224 | − | 3.30003i | −2.20999 | − | 0.340492i | 3.81147 | + | 1.37196i | −0.941561 | − | 1.29595i | 1.06229 | + | 3.26940i | −1.10405 | + | 2.78946i | 4.64961 | − | 2.39382i |
281.14 | −1.87941 | + | 1.36547i | 0.325550 | + | 1.70118i | 1.04963 | − | 3.23043i | 2.21204 | − | 0.326921i | −2.93475 | − | 2.75268i | 0.0106902 | + | 0.0147139i | 1.00263 | + | 3.08577i | −2.78803 | + | 1.10764i | −3.71092 | + | 3.63489i |
281.15 | −1.81186 | + | 1.31639i | 1.70337 | − | 0.313899i | 0.931910 | − | 2.86812i | −0.213344 | + | 2.22587i | −2.67305 | + | 2.81104i | 1.99220 | + | 2.74203i | 0.702951 | + | 2.16346i | 2.80293 | − | 1.06937i | −2.54357 | − | 4.31380i |
281.16 | −1.74548 | + | 1.26817i | −1.71691 | − | 0.228503i | 0.820423 | − | 2.52500i | 2.23486 | + | 0.0734295i | 3.28662 | − | 1.77848i | 2.35078 | + | 3.23557i | 0.436662 | + | 1.34391i | 2.89557 | + | 0.784639i | −3.99403 | + | 2.70601i |
281.17 | −1.68896 | + | 1.22710i | −0.196078 | − | 1.72092i | 0.728782 | − | 2.24296i | 2.23224 | + | 0.130831i | 2.44291 | + | 2.66596i | 1.10379 | + | 1.51924i | 0.231206 | + | 0.711580i | −2.92311 | + | 0.674866i | −3.93071 | + | 2.51822i |
281.18 | −1.63379 | + | 1.18702i | −1.49672 | + | 0.871674i | 0.642227 | − | 1.97657i | −0.0158726 | − | 2.23601i | 1.41064 | − | 3.20077i | −0.480412 | − | 0.661230i | 0.0488574 | + | 0.150368i | 1.48037 | − | 2.60931i | 2.68012 | + | 3.63434i |
281.19 | −1.62747 | + | 1.18243i | 0.0504497 | − | 1.73132i | 0.632497 | − | 1.94663i | −0.951707 | + | 2.02343i | 1.96505 | + | 2.87732i | 1.14275 | + | 1.57286i | 0.0290944 | + | 0.0895434i | −2.99491 | − | 0.174689i | −0.843678 | − | 4.41840i |
281.20 | −1.61806 | + | 1.17559i | 0.892373 | + | 1.48448i | 0.618080 | − | 1.90226i | −1.07525 | + | 1.96057i | −3.18906 | − | 1.35291i | −1.33043 | − | 1.83118i | 9.23955e−5 | 0 | 0.000284364i | −1.40734 | + | 2.64941i | −0.565006 | − | 4.43639i |
See next 80 embeddings (of 464 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
275.bc | odd | 10 | 1 | inner |
825.bd | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 825.2.bd.a | ✓ | 464 |
3.b | odd | 2 | 1 | inner | 825.2.bd.a | ✓ | 464 |
11.d | odd | 10 | 1 | 825.2.cg.a | yes | 464 | |
25.d | even | 5 | 1 | 825.2.cg.a | yes | 464 | |
33.f | even | 10 | 1 | 825.2.cg.a | yes | 464 | |
75.j | odd | 10 | 1 | 825.2.cg.a | yes | 464 | |
275.bc | odd | 10 | 1 | inner | 825.2.bd.a | ✓ | 464 |
825.bd | even | 10 | 1 | inner | 825.2.bd.a | ✓ | 464 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
825.2.bd.a | ✓ | 464 | 1.a | even | 1 | 1 | trivial |
825.2.bd.a | ✓ | 464 | 3.b | odd | 2 | 1 | inner |
825.2.bd.a | ✓ | 464 | 275.bc | odd | 10 | 1 | inner |
825.2.bd.a | ✓ | 464 | 825.bd | even | 10 | 1 | inner |
825.2.cg.a | yes | 464 | 11.d | odd | 10 | 1 | |
825.2.cg.a | yes | 464 | 25.d | even | 5 | 1 | |
825.2.cg.a | yes | 464 | 33.f | even | 10 | 1 | |
825.2.cg.a | yes | 464 | 75.j | odd | 10 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(825, [\chi])\).