Properties

Label 825.2.c.e
Level $825$
Weight $2$
Character orbit 825.c
Analytic conductor $6.588$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{2} - \beta_1 q^{3} + ( - 2 \beta_{3} - 1) q^{4} + (\beta_{3} + 1) q^{6} + ( - 2 \beta_{2} + 2 \beta_1) q^{7} + ( - \beta_{2} - 3 \beta_1) q^{8} - q^{9} - q^{11} + (2 \beta_{2} + \beta_1) q^{12}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{6} - 4 q^{9} - 4 q^{11} + 8 q^{14} + 12 q^{16} + 16 q^{19} + 8 q^{21} - 12 q^{24} + 32 q^{26} + 8 q^{29} + 4 q^{36} + 8 q^{41} + 4 q^{44} + 16 q^{46} - 20 q^{49} + 16 q^{51} - 4 q^{54}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
2.41421i 1.00000i −3.82843 0 2.41421 0.828427i 4.41421i −1.00000 0
199.2 0.414214i 1.00000i 1.82843 0 −0.414214 4.82843i 1.58579i −1.00000 0
199.3 0.414214i 1.00000i 1.82843 0 −0.414214 4.82843i 1.58579i −1.00000 0
199.4 2.41421i 1.00000i −3.82843 0 2.41421 0.828427i 4.41421i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.2.c.e 4
3.b odd 2 1 2475.2.c.m 4
5.b even 2 1 inner 825.2.c.e 4
5.c odd 4 1 165.2.a.a 2
5.c odd 4 1 825.2.a.g 2
15.d odd 2 1 2475.2.c.m 4
15.e even 4 1 495.2.a.d 2
15.e even 4 1 2475.2.a.m 2
20.e even 4 1 2640.2.a.bb 2
35.f even 4 1 8085.2.a.ba 2
55.e even 4 1 1815.2.a.k 2
55.e even 4 1 9075.2.a.v 2
60.l odd 4 1 7920.2.a.cg 2
165.l odd 4 1 5445.2.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.a.a 2 5.c odd 4 1
495.2.a.d 2 15.e even 4 1
825.2.a.g 2 5.c odd 4 1
825.2.c.e 4 1.a even 1 1 trivial
825.2.c.e 4 5.b even 2 1 inner
1815.2.a.k 2 55.e even 4 1
2475.2.a.m 2 15.e even 4 1
2475.2.c.m 4 3.b odd 2 1
2475.2.c.m 4 15.d odd 2 1
2640.2.a.bb 2 20.e even 4 1
5445.2.a.m 2 165.l odd 4 1
7920.2.a.cg 2 60.l odd 4 1
8085.2.a.ba 2 35.f even 4 1
9075.2.a.v 2 55.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{4} + 6T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 24T_{7}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 6T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 48T^{2} + 64 \) Copy content Toggle raw display
$19$ \( (T^{2} - 8 T + 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 4 T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T^{2} - 4 T - 4)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 88T^{2} + 784 \) Copy content Toggle raw display
$47$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 264 T^{2} + 15376 \) Copy content Toggle raw display
$59$ \( (T - 4)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 12 T + 4)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 16 T + 32)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 128)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T - 28)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
show more
show less