Properties

Label 825.2.c.e
Level 825825
Weight 22
Character orbit 825.c
Analytic conductor 6.5886.588
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 825=35211 825 = 3 \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 825.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.587658166766.58765816676
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+β1)q2β1q3+(2β31)q4+(β3+1)q6+(2β2+2β1)q7+(β23β1)q8q9q11+(2β2+β1)q12++q99+O(q100) q + (\beta_{2} + \beta_1) q^{2} - \beta_1 q^{3} + ( - 2 \beta_{3} - 1) q^{4} + (\beta_{3} + 1) q^{6} + ( - 2 \beta_{2} + 2 \beta_1) q^{7} + ( - \beta_{2} - 3 \beta_1) q^{8} - q^{9} - q^{11} + (2 \beta_{2} + \beta_1) q^{12}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+4q64q94q11+8q14+12q16+16q19+8q2112q24+32q26+8q29+4q36+8q41+4q44+16q4620q49+16q514q54++4q99+O(q100) 4 q - 4 q^{4} + 4 q^{6} - 4 q^{9} - 4 q^{11} + 8 q^{14} + 12 q^{16} + 16 q^{19} + 8 q^{21} - 12 q^{24} + 32 q^{26} + 8 q^{29} + 4 q^{36} + 8 q^{41} + 4 q^{44} + 16 q^{46} - 20 q^{49} + 16 q^{51} - 4 q^{54}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ82 \zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ83+ζ8 \zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
β3\beta_{3}== ζ83+ζ8 -\zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+β2)/2 ( -\beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/825Z)×\left(\mathbb{Z}/825\mathbb{Z}\right)^\times.

nn 376376 551551 727727
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
199.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
2.41421i 1.00000i −3.82843 0 2.41421 0.828427i 4.41421i −1.00000 0
199.2 0.414214i 1.00000i 1.82843 0 −0.414214 4.82843i 1.58579i −1.00000 0
199.3 0.414214i 1.00000i 1.82843 0 −0.414214 4.82843i 1.58579i −1.00000 0
199.4 2.41421i 1.00000i −3.82843 0 2.41421 0.828427i 4.41421i −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.2.c.e 4
3.b odd 2 1 2475.2.c.m 4
5.b even 2 1 inner 825.2.c.e 4
5.c odd 4 1 165.2.a.a 2
5.c odd 4 1 825.2.a.g 2
15.d odd 2 1 2475.2.c.m 4
15.e even 4 1 495.2.a.d 2
15.e even 4 1 2475.2.a.m 2
20.e even 4 1 2640.2.a.bb 2
35.f even 4 1 8085.2.a.ba 2
55.e even 4 1 1815.2.a.k 2
55.e even 4 1 9075.2.a.v 2
60.l odd 4 1 7920.2.a.cg 2
165.l odd 4 1 5445.2.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.a.a 2 5.c odd 4 1
495.2.a.d 2 15.e even 4 1
825.2.a.g 2 5.c odd 4 1
825.2.c.e 4 1.a even 1 1 trivial
825.2.c.e 4 5.b even 2 1 inner
1815.2.a.k 2 55.e even 4 1
2475.2.a.m 2 15.e even 4 1
2475.2.c.m 4 3.b odd 2 1
2475.2.c.m 4 15.d odd 2 1
2640.2.a.bb 2 20.e even 4 1
5445.2.a.m 2 165.l odd 4 1
7920.2.a.cg 2 60.l odd 4 1
8085.2.a.ba 2 35.f even 4 1
9075.2.a.v 2 55.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(825,[χ])S_{2}^{\mathrm{new}}(825, [\chi]):

T24+6T22+1 T_{2}^{4} + 6T_{2}^{2} + 1 Copy content Toggle raw display
T74+24T72+16 T_{7}^{4} + 24T_{7}^{2} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+6T2+1 T^{4} + 6T^{2} + 1 Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
1111 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1313 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
1717 T4+48T2+64 T^{4} + 48T^{2} + 64 Copy content Toggle raw display
1919 (T28T+8)2 (T^{2} - 8 T + 8)^{2} Copy content Toggle raw display
2323 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
2929 (T24T4)2 (T^{2} - 4 T - 4)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4+136T2+16 T^{4} + 136T^{2} + 16 Copy content Toggle raw display
4141 (T24T4)2 (T^{2} - 4 T - 4)^{2} Copy content Toggle raw display
4343 T4+88T2+784 T^{4} + 88T^{2} + 784 Copy content Toggle raw display
4747 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
5353 T4+264T2+15376 T^{4} + 264 T^{2} + 15376 Copy content Toggle raw display
5959 (T4)4 (T - 4)^{4} Copy content Toggle raw display
6161 (T2+12T+4)2 (T^{2} + 12 T + 4)^{2} Copy content Toggle raw display
6767 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
7171 (T216T+32)2 (T^{2} - 16 T + 32)^{2} Copy content Toggle raw display
7373 (T2+128)2 (T^{2} + 128)^{2} Copy content Toggle raw display
7979 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
8383 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
8989 (T24T28)2 (T^{2} - 4 T - 28)^{2} Copy content Toggle raw display
9797 T4+136T2+16 T^{4} + 136T^{2} + 16 Copy content Toggle raw display
show more
show less