Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [825,2,Mod(169,825)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(825, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 9, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("825.169");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 825.cb (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.58765816676\) |
Analytic rank: | \(0\) |
Dimension: | \(240\) |
Relative dimension: | \(60\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
169.1 | −2.63258 | − | 0.855376i | 0.951057 | − | 0.309017i | 4.58076 | + | 3.32812i | −0.694498 | + | 2.12548i | −2.76806 | 3.66791 | − | 1.19178i | −5.95837 | − | 8.20099i | 0.809017 | − | 0.587785i | 3.64641 | − | 5.00144i | ||
169.2 | −2.60741 | − | 0.847200i | −0.951057 | + | 0.309017i | 4.46282 | + | 3.24243i | 1.30322 | + | 1.81703i | 2.74160 | −3.97271 | + | 1.29081i | −5.66648 | − | 7.79924i | 0.809017 | − | 0.587785i | −1.85864 | − | 5.84185i | ||
169.3 | −2.55995 | − | 0.831779i | −0.951057 | + | 0.309017i | 4.24347 | + | 3.08306i | −2.21665 | − | 0.294050i | 2.69169 | 0.542994 | − | 0.176430i | −5.13438 | − | 7.06687i | 0.809017 | − | 0.587785i | 5.42993 | + | 2.59652i | ||
169.4 | −2.47523 | − | 0.804252i | 0.951057 | − | 0.309017i | 3.86193 | + | 2.80585i | 2.18794 | − | 0.461453i | −2.60261 | −0.220156 | + | 0.0715332i | −4.24300 | − | 5.83999i | 0.809017 | − | 0.587785i | −5.78678 | − | 0.617448i | ||
169.5 | −2.45958 | − | 0.799165i | 0.951057 | − | 0.309017i | 3.79282 | + | 2.75564i | −1.27760 | − | 1.83514i | −2.58615 | 0.283269 | − | 0.0920396i | −4.08631 | − | 5.62432i | 0.809017 | − | 0.587785i | 1.67576 | + | 5.53468i | ||
169.6 | −2.10834 | − | 0.685041i | −0.951057 | + | 0.309017i | 2.35778 | + | 1.71303i | 0.644933 | − | 2.14104i | 2.21684 | −3.97500 | + | 1.29155i | −1.19146 | − | 1.63991i | 0.809017 | − | 0.587785i | −2.82644 | + | 4.07224i | ||
169.7 | −2.09650 | − | 0.681193i | 0.951057 | − | 0.309017i | 2.31323 | + | 1.68066i | 2.21589 | + | 0.299753i | −2.20439 | −3.07728 | + | 0.999868i | −1.11342 | − | 1.53249i | 0.809017 | − | 0.587785i | −4.44140 | − | 2.13788i | ||
169.8 | −2.08139 | − | 0.676285i | −0.951057 | + | 0.309017i | 2.25679 | + | 1.63966i | −1.84257 | + | 1.26685i | 2.18850 | −1.00018 | + | 0.324978i | −1.01565 | − | 1.39792i | 0.809017 | − | 0.587785i | 4.69187 | − | 1.39072i | ||
169.9 | −2.03594 | − | 0.661516i | −0.951057 | + | 0.309017i | 2.08940 | + | 1.51804i | 0.00440980 | + | 2.23606i | 2.14071 | 4.70550 | − | 1.52891i | −0.733119 | − | 1.00905i | 0.809017 | − | 0.587785i | 1.47021 | − | 4.55540i | ||
169.10 | −1.96058 | − | 0.637033i | 0.951057 | − | 0.309017i | 1.82005 | + | 1.32234i | −2.14188 | − | 0.642157i | −2.06148 | 1.60997 | − | 0.523111i | −0.302567 | − | 0.416448i | 0.809017 | − | 0.587785i | 3.79025 | + | 2.62345i | ||
169.11 | −1.95539 | − | 0.635346i | 0.951057 | − | 0.309017i | 1.80187 | + | 1.30913i | −2.22400 | − | 0.231974i | −2.05602 | −4.36107 | + | 1.41700i | −0.274612 | − | 0.377970i | 0.809017 | − | 0.587785i | 4.20142 | + | 1.86661i | ||
169.12 | −1.95335 | − | 0.634681i | 0.951057 | − | 0.309017i | 1.79471 | + | 1.30393i | 1.33152 | − | 1.79640i | −2.05387 | 4.36588 | − | 1.41856i | −0.263635 | − | 0.362863i | 0.809017 | − | 0.587785i | −3.74106 | + | 2.66390i | ||
169.13 | −1.81721 | − | 0.590448i | −0.951057 | + | 0.309017i | 1.33560 | + | 0.970368i | 1.53007 | + | 1.63061i | 1.91073 | 1.82631 | − | 0.593403i | 0.392086 | + | 0.539660i | 0.809017 | − | 0.587785i | −1.81767 | − | 3.86659i | ||
169.14 | −1.75058 | − | 0.568798i | −0.951057 | + | 0.309017i | 1.12297 | + | 0.815886i | 2.12442 | − | 0.697744i | 1.84067 | 0.161477 | − | 0.0524671i | 0.662061 | + | 0.911249i | 0.809017 | − | 0.587785i | −4.11584 | + | 0.0130915i | ||
169.15 | −1.42855 | − | 0.464164i | −0.951057 | + | 0.309017i | 0.207274 | + | 0.150593i | −1.19097 | − | 1.89251i | 1.50207 | 4.03713 | − | 1.31174i | 1.53958 | + | 2.11906i | 0.809017 | − | 0.587785i | 0.822929 | + | 3.25635i | ||
169.16 | −1.41304 | − | 0.459125i | 0.951057 | − | 0.309017i | 0.167853 | + | 0.121952i | 1.85059 | + | 1.25512i | −1.48576 | 1.08303 | − | 0.351897i | 1.56542 | + | 2.15462i | 0.809017 | − | 0.587785i | −2.03870 | − | 2.62318i | ||
169.17 | −1.27409 | − | 0.413977i | −0.951057 | + | 0.309017i | −0.166107 | − | 0.120683i | −0.599520 | − | 2.15420i | 1.33966 | −0.114201 | + | 0.0371061i | 1.73654 | + | 2.39014i | 0.809017 | − | 0.587785i | −0.127946 | + | 2.99283i | ||
169.18 | −1.18834 | − | 0.386117i | 0.951057 | − | 0.309017i | −0.354957 | − | 0.257892i | −1.39539 | + | 1.74725i | −1.24950 | −1.93521 | + | 0.628789i | 1.79111 | + | 2.46525i | 0.809017 | − | 0.587785i | 2.33284 | − | 1.53756i | ||
169.19 | −1.18185 | − | 0.384006i | 0.951057 | − | 0.309017i | −0.368730 | − | 0.267898i | −0.282910 | − | 2.21810i | −1.24267 | −2.77555 | + | 0.901831i | 1.79375 | + | 2.46889i | 0.809017 | − | 0.587785i | −0.517406 | + | 2.73009i | ||
169.20 | −1.11155 | − | 0.361164i | 0.951057 | − | 0.309017i | −0.512931 | − | 0.372666i | −0.391185 | + | 2.20158i | −1.16875 | 2.43045 | − | 0.789701i | 1.80951 | + | 2.49057i | 0.809017 | − | 0.587785i | 1.22996 | − | 2.30589i | ||
See next 80 embeddings (of 240 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
275.bb | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 825.2.cb.a | yes | 240 |
11.c | even | 5 | 1 | 825.2.by.a | ✓ | 240 | |
25.e | even | 10 | 1 | 825.2.by.a | ✓ | 240 | |
275.bb | even | 10 | 1 | inner | 825.2.cb.a | yes | 240 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
825.2.by.a | ✓ | 240 | 11.c | even | 5 | 1 | |
825.2.by.a | ✓ | 240 | 25.e | even | 10 | 1 | |
825.2.cb.a | yes | 240 | 1.a | even | 1 | 1 | trivial |
825.2.cb.a | yes | 240 | 275.bb | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(825, [\chi])\).