Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [825,2,Mod(16,825)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(825, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 2, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("825.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 825.m (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.58765816676\) |
Analytic rank: | \(0\) |
Dimension: | \(116\) |
Relative dimension: | \(29\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −0.847576 | + | 2.60857i | −0.309017 | + | 0.951057i | −4.46822 | − | 3.24635i | −1.98183 | − | 1.03555i | −2.21898 | − | 1.61218i | −0.0321751 | + | 0.0233766i | 7.81752 | − | 5.67976i | −0.809017 | − | 0.587785i | 4.38105 | − | 4.29203i |
16.2 | −0.800260 | + | 2.46295i | −0.309017 | + | 0.951057i | −3.80765 | − | 2.76642i | 0.723149 | + | 2.11591i | −2.09511 | − | 1.52218i | −2.42067 | + | 1.75872i | 5.67044 | − | 4.11982i | −0.809017 | − | 0.587785i | −5.79007 | + | 0.0878035i |
16.3 | −0.776479 | + | 2.38976i | −0.309017 | + | 0.951057i | −3.48998 | − | 2.53562i | −0.348283 | + | 2.20878i | −2.03285 | − | 1.47695i | 4.01919 | − | 2.92011i | 4.70372 | − | 3.41745i | −0.809017 | − | 0.587785i | −5.00801 | − | 2.54738i |
16.4 | −0.757913 | + | 2.33262i | −0.309017 | + | 0.951057i | −3.24863 | − | 2.36027i | 0.247603 | − | 2.22232i | −1.98424 | − | 1.44164i | −0.721549 | + | 0.524236i | 3.99929 | − | 2.90566i | −0.809017 | − | 0.587785i | 4.99615 | + | 2.26189i |
16.5 | −0.727859 | + | 2.24012i | −0.309017 | + | 0.951057i | −2.87033 | − | 2.08542i | 1.74945 | − | 1.39263i | −1.90556 | − | 1.38447i | 1.56703 | − | 1.13852i | 2.94966 | − | 2.14305i | −0.809017 | − | 0.587785i | 1.84630 | + | 4.93262i |
16.6 | −0.588317 | + | 1.81065i | −0.309017 | + | 0.951057i | −1.31431 | − | 0.954903i | −2.09234 | + | 0.788728i | −1.54023 | − | 1.11904i | −3.61705 | + | 2.62794i | −0.578238 | + | 0.420115i | −0.809017 | − | 0.587785i | −0.197152 | − | 4.25253i |
16.7 | −0.554841 | + | 1.70762i | −0.309017 | + | 0.951057i | −0.990097 | − | 0.719347i | −1.87831 | − | 1.21324i | −1.45259 | − | 1.05537i | −0.384319 | + | 0.279224i | −1.12746 | + | 0.819150i | −0.809017 | − | 0.587785i | 3.11393 | − | 2.53429i |
16.8 | −0.483294 | + | 1.48743i | −0.309017 | + | 0.951057i | −0.360827 | − | 0.262156i | 2.13956 | − | 0.649831i | −1.26528 | − | 0.919279i | 0.368134 | − | 0.267465i | −1.96624 | + | 1.42855i | −0.809017 | − | 0.587785i | −0.0674617 | + | 3.49650i |
16.9 | −0.426854 | + | 1.31372i | −0.309017 | + | 0.951057i | 0.0743742 | + | 0.0540360i | 1.03778 | + | 1.98066i | −1.11752 | − | 0.811925i | −0.334885 | + | 0.243308i | −2.33777 | + | 1.69849i | −0.809017 | − | 0.587785i | −3.04502 | + | 0.517904i |
16.10 | −0.388389 | + | 1.19534i | −0.309017 | + | 0.951057i | 0.340048 | + | 0.247059i | 1.09825 | − | 1.94778i | −1.01681 | − | 0.738759i | −3.43852 | + | 2.49823i | −2.46102 | + | 1.78804i | −0.809017 | − | 0.587785i | 1.90171 | + | 2.06928i |
16.11 | −0.252495 | + | 0.777100i | −0.309017 | + | 0.951057i | 1.07790 | + | 0.783143i | 0.151332 | − | 2.23094i | −0.661041 | − | 0.480274i | 3.23602 | − | 2.35111i | −2.20283 | + | 1.60045i | −0.809017 | − | 0.587785i | 1.69545 | + | 0.680901i |
16.12 | −0.0929182 | + | 0.285973i | −0.309017 | + | 0.951057i | 1.54489 | + | 1.12243i | −2.23508 | + | 0.0663282i | −0.243263 | − | 0.176741i | 2.68310 | − | 1.94939i | −0.951057 | + | 0.690984i | −0.809017 | − | 0.587785i | 0.188712 | − | 0.645336i |
16.13 | −0.0908180 | + | 0.279509i | −0.309017 | + | 0.951057i | 1.54816 | + | 1.12480i | −0.941014 | + | 2.02842i | −0.237765 | − | 0.172746i | −3.67252 | + | 2.66825i | −0.930522 | + | 0.676064i | −0.809017 | − | 0.587785i | −0.481501 | − | 0.447239i |
16.14 | −0.0722725 | + | 0.222432i | −0.309017 | + | 0.951057i | 1.57378 | + | 1.14342i | 2.17969 | − | 0.498934i | −0.189212 | − | 0.137470i | 1.81606 | − | 1.31944i | −0.746498 | + | 0.542362i | −0.809017 | − | 0.587785i | −0.0465531 | + | 0.520893i |
16.15 | −0.0684947 | + | 0.210805i | −0.309017 | + | 0.951057i | 1.57829 | + | 1.14669i | 1.73917 | + | 1.40545i | −0.179321 | − | 0.130285i | −0.403342 | + | 0.293045i | −0.708476 | + | 0.514738i | −0.809017 | − | 0.587785i | −0.415399 | + | 0.270361i |
16.16 | −0.0210583 | + | 0.0648107i | −0.309017 | + | 0.951057i | 1.61428 | + | 1.17284i | −1.19461 | − | 1.89022i | −0.0551313 | − | 0.0400552i | −1.33663 | + | 0.971117i | −0.220269 | + | 0.160035i | −0.809017 | − | 0.587785i | 0.147663 | − | 0.0376185i |
16.17 | 0.149586 | − | 0.460378i | −0.309017 | + | 0.951057i | 1.42846 | + | 1.03784i | −0.470682 | + | 2.18597i | 0.391621 | + | 0.284529i | 1.20123 | − | 0.872745i | 1.47472 | − | 1.07145i | −0.809017 | − | 0.587785i | 0.935965 | + | 0.543682i |
16.18 | 0.300458 | − | 0.924714i | −0.309017 | + | 0.951057i | 0.853212 | + | 0.619895i | 1.61330 | − | 1.54831i | 0.786609 | + | 0.571505i | −2.89935 | + | 2.10650i | 2.40280 | − | 1.74574i | −0.809017 | − | 0.587785i | −0.947013 | − | 1.95704i |
16.19 | 0.307072 | − | 0.945069i | −0.309017 | + | 0.951057i | 0.819171 | + | 0.595163i | 0.405361 | − | 2.19902i | 0.803924 | + | 0.584085i | 1.55913 | − | 1.13277i | 2.42186 | − | 1.75959i | −0.809017 | − | 0.587785i | −1.95375 | − | 1.05835i |
16.20 | 0.362325 | − | 1.11512i | −0.309017 | + | 0.951057i | 0.505816 | + | 0.367497i | −2.22061 | + | 0.262475i | 0.948580 | + | 0.689183i | −2.07711 | + | 1.50911i | 2.49023 | − | 1.80926i | −0.809017 | − | 0.587785i | −0.511891 | + | 2.57135i |
See next 80 embeddings (of 116 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
275.g | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 825.2.m.d | ✓ | 116 |
11.c | even | 5 | 1 | 825.2.o.d | yes | 116 | |
25.d | even | 5 | 1 | 825.2.o.d | yes | 116 | |
275.g | even | 5 | 1 | inner | 825.2.m.d | ✓ | 116 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
825.2.m.d | ✓ | 116 | 1.a | even | 1 | 1 | trivial |
825.2.m.d | ✓ | 116 | 275.g | even | 5 | 1 | inner |
825.2.o.d | yes | 116 | 11.c | even | 5 | 1 | |
825.2.o.d | yes | 116 | 25.d | even | 5 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{116} - 4 T_{2}^{115} + 52 T_{2}^{114} - 189 T_{2}^{113} + 1457 T_{2}^{112} - 4858 T_{2}^{111} + \cdots + 132710400 \) acting on \(S_{2}^{\mathrm{new}}(825, [\chi])\).