Properties

Label 825.2.n.l.676.1
Level $825$
Weight $2$
Character 825.676
Analytic conductor $6.588$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(301,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.819390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 10x^{6} - 13x^{5} + 29x^{4} - 7x^{3} + 80x^{2} + 143x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 676.1
Root \(-0.575405 - 1.77091i\) of defining polynomial
Character \(\chi\) \(=\) 825.676
Dual form 825.2.n.l.526.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.575405 - 1.77091i) q^{2} +(-0.809017 - 0.587785i) q^{3} +(-1.18701 + 0.862413i) q^{4} +(-0.575405 + 1.77091i) q^{6} +(1.04263 - 0.757515i) q^{7} +(-0.802588 - 0.583114i) q^{8} +(0.309017 + 0.951057i) q^{9} +(3.04508 - 1.31433i) q^{11} +1.46722 q^{12} +(-0.312990 - 0.963285i) q^{13} +(-1.94143 - 1.41053i) q^{14} +(-1.47763 + 4.54767i) q^{16} +(2.19741 - 6.76294i) q^{17} +(1.50643 - 1.09448i) q^{18} +(-2.69344 - 1.95690i) q^{19} -1.28876 q^{21} +(-4.07972 - 4.63631i) q^{22} -4.54563 q^{23} +(0.306561 + 0.943499i) q^{24} +(-1.52580 + 1.10856i) q^{26} +(0.309017 - 0.951057i) q^{27} +(-0.584321 + 1.79835i) q^{28} +(0.510402 - 0.370829i) q^{29} +(0.457371 + 1.40764i) q^{31} +6.91965 q^{32} +(-3.23607 - 0.726543i) q^{33} -13.2410 q^{34} +(-1.18701 - 0.862413i) q^{36} +(-1.56898 + 1.13993i) q^{37} +(-1.91568 + 5.89585i) q^{38} +(-0.312990 + 0.963285i) q^{39} +(-8.55794 - 6.21771i) q^{41} +(0.741559 + 2.28228i) q^{42} -1.64375 q^{43} +(-2.48105 + 4.18624i) q^{44} +(2.61558 + 8.04992i) q^{46} +(1.61161 + 1.17090i) q^{47} +(3.86848 - 2.81061i) q^{48} +(-1.64987 + 5.07778i) q^{49} +(-5.75290 + 4.17973i) q^{51} +(1.20227 + 0.873502i) q^{52} +(0.544147 + 1.67471i) q^{53} -1.86205 q^{54} -1.27852 q^{56} +(1.02880 + 3.16633i) q^{57} +(-0.950394 - 0.690501i) q^{58} +(4.79553 - 3.48416i) q^{59} +(0.939361 - 2.89105i) q^{61} +(2.22964 - 1.61993i) q^{62} +(1.04263 + 0.757515i) q^{63} +(-1.02635 - 3.15877i) q^{64} +(0.575405 + 6.14885i) q^{66} -10.6112 q^{67} +(3.22410 + 9.92275i) q^{68} +(3.67749 + 2.67186i) q^{69} +(4.99903 - 15.3854i) q^{71} +(0.306561 - 0.943499i) q^{72} +(-5.95374 + 4.32564i) q^{73} +(2.92151 + 2.12260i) q^{74} +4.88479 q^{76} +(2.17927 - 3.67705i) q^{77} +1.88599 q^{78} +(5.25535 + 16.1743i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(-6.08674 + 18.7331i) q^{82} +(-2.81511 + 8.66401i) q^{83} +(1.52977 - 1.11144i) q^{84} +(0.945821 + 2.91094i) q^{86} -0.630892 q^{87} +(-3.21035 - 0.720769i) q^{88} -0.138629 q^{89} +(-1.05604 - 0.767255i) q^{91} +(5.39571 - 3.92021i) q^{92} +(0.457371 - 1.40764i) q^{93} +(1.14624 - 3.52775i) q^{94} +(-5.59812 - 4.06727i) q^{96} +(1.66709 + 5.13078i) q^{97} +9.94166 q^{98} +(2.19098 + 2.48990i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 2 q^{3} - 7 q^{4} + 3 q^{6} + 7 q^{7} - 16 q^{8} - 2 q^{9} + 2 q^{11} + 18 q^{12} - 5 q^{13} - 2 q^{14} - 11 q^{16} + 8 q^{17} - 2 q^{18} - 5 q^{19} - 8 q^{21} - 8 q^{22} - 2 q^{23} + 19 q^{24}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.575405 1.77091i −0.406873 1.25222i −0.919322 0.393507i \(-0.871262\pi\)
0.512449 0.858718i \(-0.328738\pi\)
\(3\) −0.809017 0.587785i −0.467086 0.339358i
\(4\) −1.18701 + 0.862413i −0.593505 + 0.431207i
\(5\) 0 0
\(6\) −0.575405 + 1.77091i −0.234908 + 0.722972i
\(7\) 1.04263 0.757515i 0.394077 0.286314i −0.373047 0.927812i \(-0.621687\pi\)
0.767124 + 0.641499i \(0.221687\pi\)
\(8\) −0.802588 0.583114i −0.283758 0.206162i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) 3.04508 1.31433i 0.918128 0.396285i
\(12\) 1.46722 0.423551
\(13\) −0.312990 0.963285i −0.0868079 0.267167i 0.898224 0.439537i \(-0.144858\pi\)
−0.985032 + 0.172370i \(0.944858\pi\)
\(14\) −1.94143 1.41053i −0.518868 0.376980i
\(15\) 0 0
\(16\) −1.47763 + 4.54767i −0.369407 + 1.13692i
\(17\) 2.19741 6.76294i 0.532951 1.64025i −0.215085 0.976595i \(-0.569003\pi\)
0.748036 0.663658i \(-0.230997\pi\)
\(18\) 1.50643 1.09448i 0.355069 0.257973i
\(19\) −2.69344 1.95690i −0.617917 0.448943i 0.234276 0.972170i \(-0.424728\pi\)
−0.852193 + 0.523227i \(0.824728\pi\)
\(20\) 0 0
\(21\) −1.28876 −0.281231
\(22\) −4.07972 4.63631i −0.869799 0.988465i
\(23\) −4.54563 −0.947830 −0.473915 0.880571i \(-0.657160\pi\)
−0.473915 + 0.880571i \(0.657160\pi\)
\(24\) 0.306561 + 0.943499i 0.0625766 + 0.192591i
\(25\) 0 0
\(26\) −1.52580 + 1.10856i −0.299234 + 0.217406i
\(27\) 0.309017 0.951057i 0.0594703 0.183031i
\(28\) −0.584321 + 1.79835i −0.110426 + 0.339857i
\(29\) 0.510402 0.370829i 0.0947793 0.0688612i −0.539386 0.842058i \(-0.681344\pi\)
0.634166 + 0.773197i \(0.281344\pi\)
\(30\) 0 0
\(31\) 0.457371 + 1.40764i 0.0821462 + 0.252820i 0.983691 0.179865i \(-0.0575662\pi\)
−0.901545 + 0.432685i \(0.857566\pi\)
\(32\) 6.91965 1.22323
\(33\) −3.23607 0.726543i −0.563327 0.126475i
\(34\) −13.2410 −2.27081
\(35\) 0 0
\(36\) −1.18701 0.862413i −0.197835 0.143736i
\(37\) −1.56898 + 1.13993i −0.257938 + 0.187403i −0.709238 0.704970i \(-0.750961\pi\)
0.451299 + 0.892373i \(0.350961\pi\)
\(38\) −1.91568 + 5.89585i −0.310764 + 0.956434i
\(39\) −0.312990 + 0.963285i −0.0501186 + 0.154249i
\(40\) 0 0
\(41\) −8.55794 6.21771i −1.33653 0.971043i −0.999564 0.0295248i \(-0.990601\pi\)
−0.336962 0.941518i \(-0.609399\pi\)
\(42\) 0.741559 + 2.28228i 0.114425 + 0.352164i
\(43\) −1.64375 −0.250669 −0.125335 0.992115i \(-0.540000\pi\)
−0.125335 + 0.992115i \(0.540000\pi\)
\(44\) −2.48105 + 4.18624i −0.374033 + 0.631100i
\(45\) 0 0
\(46\) 2.61558 + 8.04992i 0.385646 + 1.18690i
\(47\) 1.61161 + 1.17090i 0.235077 + 0.170793i 0.699087 0.715037i \(-0.253590\pi\)
−0.464010 + 0.885830i \(0.653590\pi\)
\(48\) 3.86848 2.81061i 0.558367 0.405677i
\(49\) −1.64987 + 5.07778i −0.235696 + 0.725397i
\(50\) 0 0
\(51\) −5.75290 + 4.17973i −0.805567 + 0.585279i
\(52\) 1.20227 + 0.873502i 0.166725 + 0.121133i
\(53\) 0.544147 + 1.67471i 0.0747443 + 0.230039i 0.981448 0.191729i \(-0.0614095\pi\)
−0.906704 + 0.421769i \(0.861409\pi\)
\(54\) −1.86205 −0.253393
\(55\) 0 0
\(56\) −1.27852 −0.170849
\(57\) 1.02880 + 3.16633i 0.136268 + 0.419390i
\(58\) −0.950394 0.690501i −0.124793 0.0906673i
\(59\) 4.79553 3.48416i 0.624325 0.453598i −0.230105 0.973166i \(-0.573907\pi\)
0.854429 + 0.519567i \(0.173907\pi\)
\(60\) 0 0
\(61\) 0.939361 2.89105i 0.120273 0.370162i −0.872737 0.488190i \(-0.837657\pi\)
0.993010 + 0.118028i \(0.0376573\pi\)
\(62\) 2.22964 1.61993i 0.283164 0.205731i
\(63\) 1.04263 + 0.757515i 0.131359 + 0.0954379i
\(64\) −1.02635 3.15877i −0.128293 0.394846i
\(65\) 0 0
\(66\) 0.575405 + 6.14885i 0.0708274 + 0.756871i
\(67\) −10.6112 −1.29636 −0.648181 0.761486i \(-0.724470\pi\)
−0.648181 + 0.761486i \(0.724470\pi\)
\(68\) 3.22410 + 9.92275i 0.390979 + 1.20331i
\(69\) 3.67749 + 2.67186i 0.442718 + 0.321654i
\(70\) 0 0
\(71\) 4.99903 15.3854i 0.593276 1.82592i 0.0301476 0.999545i \(-0.490402\pi\)
0.563128 0.826370i \(-0.309598\pi\)
\(72\) 0.306561 0.943499i 0.0361286 0.111192i
\(73\) −5.95374 + 4.32564i −0.696832 + 0.506278i −0.878899 0.477008i \(-0.841721\pi\)
0.182067 + 0.983286i \(0.441721\pi\)
\(74\) 2.92151 + 2.12260i 0.339619 + 0.246747i
\(75\) 0 0
\(76\) 4.88479 0.560324
\(77\) 2.17927 3.67705i 0.248351 0.419039i
\(78\) 1.88599 0.213546
\(79\) 5.25535 + 16.1743i 0.591274 + 1.81975i 0.572464 + 0.819930i \(0.305988\pi\)
0.0188097 + 0.999823i \(0.494012\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) −6.08674 + 18.7331i −0.672169 + 2.06872i
\(83\) −2.81511 + 8.66401i −0.308998 + 0.950999i 0.669157 + 0.743121i \(0.266655\pi\)
−0.978155 + 0.207877i \(0.933345\pi\)
\(84\) 1.52977 1.11144i 0.166912 0.121268i
\(85\) 0 0
\(86\) 0.945821 + 2.91094i 0.101991 + 0.313895i
\(87\) −0.630892 −0.0676387
\(88\) −3.21035 0.720769i −0.342225 0.0768342i
\(89\) −0.138629 −0.0146946 −0.00734732 0.999973i \(-0.502339\pi\)
−0.00734732 + 0.999973i \(0.502339\pi\)
\(90\) 0 0
\(91\) −1.05604 0.767255i −0.110703 0.0804301i
\(92\) 5.39571 3.92021i 0.562542 0.408710i
\(93\) 0.457371 1.40764i 0.0474271 0.145966i
\(94\) 1.14624 3.52775i 0.118225 0.363860i
\(95\) 0 0
\(96\) −5.59812 4.06727i −0.571355 0.415114i
\(97\) 1.66709 + 5.13078i 0.169268 + 0.520952i 0.999325 0.0367253i \(-0.0116927\pi\)
−0.830058 + 0.557677i \(0.811693\pi\)
\(98\) 9.94166 1.00426
\(99\) 2.19098 + 2.48990i 0.220202 + 0.250244i
\(100\) 0 0
\(101\) −2.66485 8.20155i −0.265162 0.816085i −0.991656 0.128912i \(-0.958851\pi\)
0.726494 0.687173i \(-0.241149\pi\)
\(102\) 10.7122 + 7.78285i 1.06066 + 0.770617i
\(103\) 7.41999 5.39094i 0.731113 0.531185i −0.158802 0.987310i \(-0.550763\pi\)
0.889916 + 0.456125i \(0.150763\pi\)
\(104\) −0.310503 + 0.955630i −0.0304473 + 0.0937073i
\(105\) 0 0
\(106\) 2.65267 1.92727i 0.257650 0.187193i
\(107\) 12.1039 + 8.79401i 1.17013 + 0.850149i 0.991024 0.133681i \(-0.0426798\pi\)
0.179105 + 0.983830i \(0.442680\pi\)
\(108\) 0.453397 + 1.39541i 0.0436282 + 0.134274i
\(109\) −4.39550 −0.421013 −0.210506 0.977592i \(-0.567511\pi\)
−0.210506 + 0.977592i \(0.567511\pi\)
\(110\) 0 0
\(111\) 1.93936 0.184076
\(112\) 1.90431 + 5.86086i 0.179940 + 0.553799i
\(113\) −11.5540 8.39445i −1.08691 0.789683i −0.108032 0.994147i \(-0.534455\pi\)
−0.978874 + 0.204464i \(0.934455\pi\)
\(114\) 5.01531 3.64384i 0.469727 0.341277i
\(115\) 0 0
\(116\) −0.286045 + 0.880355i −0.0265586 + 0.0817389i
\(117\) 0.819419 0.595343i 0.0757553 0.0550395i
\(118\) −8.92951 6.48767i −0.822028 0.597238i
\(119\) −2.83194 8.71581i −0.259603 0.798977i
\(120\) 0 0
\(121\) 7.54508 8.00448i 0.685917 0.727680i
\(122\) −5.66032 −0.512461
\(123\) 3.26884 + 10.0605i 0.294742 + 0.907122i
\(124\) −1.75687 1.27644i −0.157772 0.114628i
\(125\) 0 0
\(126\) 0.741559 2.28228i 0.0660633 0.203322i
\(127\) 5.31921 16.3708i 0.472004 1.45268i −0.377953 0.925825i \(-0.623372\pi\)
0.849957 0.526853i \(-0.176628\pi\)
\(128\) 6.19289 4.49940i 0.547379 0.397694i
\(129\) 1.32982 + 0.966172i 0.117084 + 0.0850667i
\(130\) 0 0
\(131\) 3.93936 0.344184 0.172092 0.985081i \(-0.444947\pi\)
0.172092 + 0.985081i \(0.444947\pi\)
\(132\) 4.46782 1.92841i 0.388874 0.167847i
\(133\) −4.29064 −0.372045
\(134\) 6.10572 + 18.7915i 0.527454 + 1.62334i
\(135\) 0 0
\(136\) −5.70718 + 4.14651i −0.489387 + 0.355560i
\(137\) −6.30407 + 19.4019i −0.538593 + 1.65762i 0.197161 + 0.980371i \(0.436828\pi\)
−0.735754 + 0.677249i \(0.763172\pi\)
\(138\) 2.61558 8.04992i 0.222653 0.685255i
\(139\) 9.16003 6.65515i 0.776944 0.564483i −0.127116 0.991888i \(-0.540572\pi\)
0.904060 + 0.427405i \(0.140572\pi\)
\(140\) 0 0
\(141\) −0.615578 1.89456i −0.0518411 0.159550i
\(142\) −30.1227 −2.52784
\(143\) −2.21915 2.52191i −0.185575 0.210893i
\(144\) −4.78170 −0.398475
\(145\) 0 0
\(146\) 11.0861 + 8.05456i 0.917496 + 0.666600i
\(147\) 4.31942 3.13824i 0.356260 0.258838i
\(148\) 0.879301 2.70621i 0.0722781 0.222449i
\(149\) 6.63771 20.4288i 0.543782 1.67359i −0.180085 0.983651i \(-0.557637\pi\)
0.723867 0.689939i \(-0.242363\pi\)
\(150\) 0 0
\(151\) −5.29464 3.84678i −0.430872 0.313047i 0.351126 0.936328i \(-0.385799\pi\)
−0.781997 + 0.623282i \(0.785799\pi\)
\(152\) 1.02063 + 3.14117i 0.0827837 + 0.254782i
\(153\) 7.11097 0.574888
\(154\) −7.76571 1.74351i −0.625778 0.140496i
\(155\) 0 0
\(156\) −0.459227 1.41336i −0.0367676 0.113159i
\(157\) −11.3415 8.24008i −0.905150 0.657630i 0.0346334 0.999400i \(-0.488974\pi\)
−0.939784 + 0.341770i \(0.888974\pi\)
\(158\) 25.6194 18.6136i 2.03817 1.48081i
\(159\) 0.544147 1.67471i 0.0431537 0.132813i
\(160\) 0 0
\(161\) −4.73941 + 3.44338i −0.373518 + 0.271377i
\(162\) 1.50643 + 1.09448i 0.118356 + 0.0859908i
\(163\) −0.379172 1.16697i −0.0296990 0.0914042i 0.935108 0.354362i \(-0.115302\pi\)
−0.964807 + 0.262958i \(0.915302\pi\)
\(164\) 15.5206 1.21195
\(165\) 0 0
\(166\) 16.9630 1.31659
\(167\) −4.51137 13.8846i −0.349100 1.07442i −0.959352 0.282213i \(-0.908932\pi\)
0.610251 0.792208i \(-0.291068\pi\)
\(168\) 1.03434 + 0.751495i 0.0798014 + 0.0579791i
\(169\) 9.68727 7.03821i 0.745174 0.541401i
\(170\) 0 0
\(171\) 1.02880 3.16633i 0.0786745 0.242135i
\(172\) 1.95115 1.41759i 0.148774 0.108090i
\(173\) 4.92917 + 3.58125i 0.374758 + 0.272277i 0.759181 0.650880i \(-0.225600\pi\)
−0.384423 + 0.923157i \(0.625600\pi\)
\(174\) 0.363018 + 1.11725i 0.0275203 + 0.0846989i
\(175\) 0 0
\(176\) 1.47763 + 15.7901i 0.111380 + 1.19023i
\(177\) −5.92760 −0.445546
\(178\) 0.0797678 + 0.245500i 0.00597885 + 0.0184010i
\(179\) 0.479744 + 0.348554i 0.0358577 + 0.0260522i 0.605570 0.795792i \(-0.292945\pi\)
−0.569712 + 0.821844i \(0.692945\pi\)
\(180\) 0 0
\(181\) 6.38709 19.6574i 0.474748 1.46113i −0.371548 0.928414i \(-0.621173\pi\)
0.846297 0.532712i \(-0.178827\pi\)
\(182\) −0.751094 + 2.31163i −0.0556748 + 0.171349i
\(183\) −2.45928 + 1.78677i −0.181795 + 0.132082i
\(184\) 3.64827 + 2.65062i 0.268954 + 0.195407i
\(185\) 0 0
\(186\) −2.75599 −0.202079
\(187\) −2.19741 23.4818i −0.160691 1.71716i
\(188\) −2.92279 −0.213166
\(189\) −0.398249 1.22568i −0.0289684 0.0891554i
\(190\) 0 0
\(191\) −7.03612 + 5.11204i −0.509116 + 0.369894i −0.812488 0.582978i \(-0.801887\pi\)
0.303372 + 0.952872i \(0.401887\pi\)
\(192\) −1.02635 + 3.15877i −0.0740702 + 0.227965i
\(193\) 4.95128 15.2385i 0.356401 1.09689i −0.598792 0.800905i \(-0.704352\pi\)
0.955193 0.295985i \(-0.0956477\pi\)
\(194\) 8.12692 5.90455i 0.583479 0.423922i
\(195\) 0 0
\(196\) −2.42073 7.45025i −0.172909 0.532160i
\(197\) −6.94349 −0.494703 −0.247352 0.968926i \(-0.579560\pi\)
−0.247352 + 0.968926i \(0.579560\pi\)
\(198\) 3.14869 5.31274i 0.223768 0.377560i
\(199\) −20.6414 −1.46323 −0.731615 0.681718i \(-0.761233\pi\)
−0.731615 + 0.681718i \(0.761233\pi\)
\(200\) 0 0
\(201\) 8.58463 + 6.23710i 0.605513 + 0.439931i
\(202\) −12.9909 + 9.43842i −0.914035 + 0.664085i
\(203\) 0.251252 0.773274i 0.0176344 0.0542732i
\(204\) 3.22410 9.92275i 0.225732 0.694731i
\(205\) 0 0
\(206\) −13.8164 10.0382i −0.962633 0.699394i
\(207\) −1.40468 4.32315i −0.0976319 0.300480i
\(208\) 4.84318 0.335814
\(209\) −10.7738 2.41886i −0.745236 0.167316i
\(210\) 0 0
\(211\) 4.80256 + 14.7807i 0.330622 + 1.01755i 0.968839 + 0.247692i \(0.0796722\pi\)
−0.638217 + 0.769856i \(0.720328\pi\)
\(212\) −2.09020 1.51862i −0.143556 0.104299i
\(213\) −13.0876 + 9.50872i −0.896750 + 0.651527i
\(214\) 8.60878 26.4951i 0.588484 1.81117i
\(215\) 0 0
\(216\) −0.802588 + 0.583114i −0.0546092 + 0.0396759i
\(217\) 1.54318 + 1.12118i 0.104758 + 0.0761109i
\(218\) 2.52919 + 7.78405i 0.171298 + 0.527203i
\(219\) 7.35922 0.497290
\(220\) 0 0
\(221\) −7.20241 −0.484486
\(222\) −1.11592 3.43444i −0.0748955 0.230505i
\(223\) 18.5525 + 13.4791i 1.24236 + 0.902630i 0.997754 0.0669911i \(-0.0213399\pi\)
0.244610 + 0.969621i \(0.421340\pi\)
\(224\) 7.21463 5.24174i 0.482048 0.350228i
\(225\) 0 0
\(226\) −8.21764 + 25.2913i −0.546629 + 1.68235i
\(227\) −6.89728 + 5.01117i −0.457789 + 0.332603i −0.792663 0.609660i \(-0.791306\pi\)
0.334875 + 0.942263i \(0.391306\pi\)
\(228\) −3.95188 2.87121i −0.261720 0.190150i
\(229\) 0.857476 + 2.63904i 0.0566636 + 0.174393i 0.975383 0.220519i \(-0.0707751\pi\)
−0.918719 + 0.394912i \(0.870775\pi\)
\(230\) 0 0
\(231\) −3.92439 + 1.69385i −0.258206 + 0.111447i
\(232\) −0.625878 −0.0410909
\(233\) −6.02496 18.5429i −0.394708 1.21479i −0.929189 0.369606i \(-0.879493\pi\)
0.534480 0.845181i \(-0.320507\pi\)
\(234\) −1.52580 1.10856i −0.0997446 0.0724687i
\(235\) 0 0
\(236\) −2.68756 + 8.27145i −0.174945 + 0.538426i
\(237\) 5.25535 16.1743i 0.341372 1.05063i
\(238\) −13.8054 + 10.0302i −0.894873 + 0.650164i
\(239\) 8.34767 + 6.06494i 0.539966 + 0.392308i 0.824072 0.566484i \(-0.191697\pi\)
−0.284106 + 0.958793i \(0.591697\pi\)
\(240\) 0 0
\(241\) 19.1814 1.23558 0.617792 0.786341i \(-0.288027\pi\)
0.617792 + 0.786341i \(0.288027\pi\)
\(242\) −18.5167 8.75588i −1.19030 0.562849i
\(243\) 1.00000 0.0641500
\(244\) 1.37825 + 4.24183i 0.0882336 + 0.271555i
\(245\) 0 0
\(246\) 15.9353 11.5777i 1.01600 0.738166i
\(247\) −1.04203 + 3.20704i −0.0663028 + 0.204059i
\(248\) 0.453736 1.39646i 0.0288123 0.0886751i
\(249\) 7.37005 5.35465i 0.467058 0.339337i
\(250\) 0 0
\(251\) 8.04424 + 24.7576i 0.507748 + 1.56269i 0.796101 + 0.605164i \(0.206892\pi\)
−0.288353 + 0.957524i \(0.593108\pi\)
\(252\) −1.89090 −0.119116
\(253\) −13.8418 + 5.97445i −0.870229 + 0.375611i
\(254\) −32.0520 −2.01112
\(255\) 0 0
\(256\) −16.9055 12.2826i −1.05659 0.767659i
\(257\) 15.2192 11.0574i 0.949345 0.689739i −0.00130705 0.999999i \(-0.500416\pi\)
0.950652 + 0.310260i \(0.100416\pi\)
\(258\) 0.945821 2.91094i 0.0588843 0.181227i
\(259\) −0.772348 + 2.37704i −0.0479914 + 0.147702i
\(260\) 0 0
\(261\) 0.510402 + 0.370829i 0.0315931 + 0.0229537i
\(262\) −2.26673 6.97627i −0.140039 0.430995i
\(263\) 12.9135 0.796279 0.398140 0.917325i \(-0.369656\pi\)
0.398140 + 0.917325i \(0.369656\pi\)
\(264\) 2.17357 + 2.47011i 0.133774 + 0.152025i
\(265\) 0 0
\(266\) 2.46885 + 7.59835i 0.151375 + 0.465884i
\(267\) 0.112153 + 0.0814841i 0.00686366 + 0.00498674i
\(268\) 12.5956 9.15122i 0.769397 0.559000i
\(269\) 6.97551 21.4684i 0.425304 1.30895i −0.477398 0.878687i \(-0.658420\pi\)
0.902703 0.430265i \(-0.141580\pi\)
\(270\) 0 0
\(271\) 12.4497 9.04522i 0.756264 0.549458i −0.141498 0.989939i \(-0.545192\pi\)
0.897762 + 0.440480i \(0.145192\pi\)
\(272\) 27.5086 + 19.9862i 1.66796 + 1.21184i
\(273\) 0.403370 + 1.24144i 0.0244130 + 0.0751356i
\(274\) 37.9866 2.29485
\(275\) 0 0
\(276\) −6.66947 −0.401455
\(277\) 3.95889 + 12.1842i 0.237867 + 0.732078i 0.996728 + 0.0808261i \(0.0257558\pi\)
−0.758862 + 0.651252i \(0.774244\pi\)
\(278\) −17.0564 12.3922i −1.02298 0.743236i
\(279\) −1.19741 + 0.869971i −0.0716872 + 0.0520838i
\(280\) 0 0
\(281\) −1.97214 + 6.06961i −0.117648 + 0.362083i −0.992490 0.122325i \(-0.960965\pi\)
0.874842 + 0.484408i \(0.160965\pi\)
\(282\) −3.00089 + 2.18027i −0.178700 + 0.129833i
\(283\) 17.0876 + 12.4149i 1.01575 + 0.737989i 0.965408 0.260743i \(-0.0839676\pi\)
0.0503461 + 0.998732i \(0.483968\pi\)
\(284\) 7.33470 + 22.5739i 0.435234 + 1.33951i
\(285\) 0 0
\(286\) −3.18918 + 5.38105i −0.188580 + 0.318188i
\(287\) −13.6328 −0.804717
\(288\) 2.13829 + 6.58098i 0.126000 + 0.387788i
\(289\) −27.1554 19.7296i −1.59738 1.16056i
\(290\) 0 0
\(291\) 1.66709 5.13078i 0.0977267 0.300772i
\(292\) 3.33665 10.2692i 0.195263 0.600957i
\(293\) 20.1673 14.6524i 1.17819 0.856004i 0.186223 0.982508i \(-0.440375\pi\)
0.991966 + 0.126503i \(0.0403754\pi\)
\(294\) −8.04297 5.84356i −0.469075 0.340803i
\(295\) 0 0
\(296\) 1.92395 0.111827
\(297\) −0.309017 3.30220i −0.0179310 0.191613i
\(298\) −39.9970 −2.31696
\(299\) 1.42274 + 4.37874i 0.0822791 + 0.253229i
\(300\) 0 0
\(301\) −1.71382 + 1.24516i −0.0987830 + 0.0717701i
\(302\) −3.76576 + 11.5898i −0.216695 + 0.666919i
\(303\) −2.66485 + 8.20155i −0.153091 + 0.471167i
\(304\) 12.8792 9.35730i 0.738674 0.536678i
\(305\) 0 0
\(306\) −4.09169 12.5929i −0.233906 0.719889i
\(307\) 31.6395 1.80576 0.902879 0.429894i \(-0.141449\pi\)
0.902879 + 0.429894i \(0.141449\pi\)
\(308\) 0.584321 + 6.24413i 0.0332948 + 0.355792i
\(309\) −9.17161 −0.521755
\(310\) 0 0
\(311\) 2.42151 + 1.75933i 0.137311 + 0.0997624i 0.654320 0.756217i \(-0.272955\pi\)
−0.517009 + 0.855980i \(0.672955\pi\)
\(312\) 0.812908 0.590612i 0.0460218 0.0334368i
\(313\) 0.603659 1.85787i 0.0341208 0.105013i −0.932546 0.361052i \(-0.882418\pi\)
0.966666 + 0.256039i \(0.0824176\pi\)
\(314\) −8.06652 + 24.8262i −0.455220 + 1.40102i
\(315\) 0 0
\(316\) −20.1871 14.6668i −1.13561 0.825071i
\(317\) 7.19542 + 22.1452i 0.404135 + 1.24380i 0.921615 + 0.388105i \(0.126870\pi\)
−0.517480 + 0.855695i \(0.673130\pi\)
\(318\) −3.27888 −0.183870
\(319\) 1.06683 1.80004i 0.0597309 0.100783i
\(320\) 0 0
\(321\) −4.62328 14.2290i −0.258047 0.794186i
\(322\) 8.82501 + 6.41175i 0.491799 + 0.357313i
\(323\) −19.1530 + 13.9154i −1.06570 + 0.774276i
\(324\) 0.453397 1.39541i 0.0251887 0.0775230i
\(325\) 0 0
\(326\) −1.84843 + 1.34296i −0.102375 + 0.0743797i
\(327\) 3.55604 + 2.58361i 0.196649 + 0.142874i
\(328\) 3.24287 + 9.98052i 0.179057 + 0.551082i
\(329\) 2.56728 0.141539
\(330\) 0 0
\(331\) 32.2999 1.77537 0.887683 0.460456i \(-0.152314\pi\)
0.887683 + 0.460456i \(0.152314\pi\)
\(332\) −4.13039 12.7120i −0.226685 0.697664i
\(333\) −1.56898 1.13993i −0.0859793 0.0624676i
\(334\) −21.9925 + 15.9785i −1.20338 + 0.874304i
\(335\) 0 0
\(336\) 1.90431 5.86086i 0.103888 0.319736i
\(337\) 0.949424 0.689797i 0.0517184 0.0375756i −0.561626 0.827391i \(-0.689824\pi\)
0.613344 + 0.789816i \(0.289824\pi\)
\(338\) −18.0382 13.1055i −0.981147 0.712845i
\(339\) 4.41322 + 13.5825i 0.239693 + 0.737700i
\(340\) 0 0
\(341\) 3.24284 + 3.68525i 0.175609 + 0.199568i
\(342\) −6.19927 −0.335218
\(343\) 4.91403 + 15.1238i 0.265333 + 0.816610i
\(344\) 1.31925 + 0.958494i 0.0711294 + 0.0516785i
\(345\) 0 0
\(346\) 3.50582 10.7898i 0.188474 0.580063i
\(347\) −3.76579 + 11.5899i −0.202158 + 0.622179i 0.797660 + 0.603107i \(0.206071\pi\)
−0.999818 + 0.0190713i \(0.993929\pi\)
\(348\) 0.748875 0.544089i 0.0401439 0.0291662i
\(349\) −6.14684 4.46594i −0.329033 0.239056i 0.410987 0.911641i \(-0.365184\pi\)
−0.740020 + 0.672585i \(0.765184\pi\)
\(350\) 0 0
\(351\) −1.01286 −0.0540624
\(352\) 21.0709 9.09469i 1.12308 0.484749i
\(353\) −23.7904 −1.26624 −0.633118 0.774055i \(-0.718225\pi\)
−0.633118 + 0.774055i \(0.718225\pi\)
\(354\) 3.41077 + 10.4973i 0.181280 + 0.557923i
\(355\) 0 0
\(356\) 0.164554 0.119555i 0.00872134 0.00633643i
\(357\) −2.83194 + 8.71581i −0.149882 + 0.461290i
\(358\) 0.341213 1.05014i 0.0180336 0.0555019i
\(359\) −24.0920 + 17.5039i −1.27153 + 0.923818i −0.999262 0.0384041i \(-0.987773\pi\)
−0.272265 + 0.962222i \(0.587773\pi\)
\(360\) 0 0
\(361\) −2.44616 7.52851i −0.128745 0.396237i
\(362\) −38.4868 −2.02282
\(363\) −10.8090 + 2.04087i −0.567326 + 0.107118i
\(364\) 1.91521 0.100385
\(365\) 0 0
\(366\) 4.57930 + 3.32705i 0.239364 + 0.173908i
\(367\) −0.931911 + 0.677073i −0.0486454 + 0.0353429i −0.611842 0.790980i \(-0.709571\pi\)
0.563197 + 0.826323i \(0.309571\pi\)
\(368\) 6.71675 20.6720i 0.350135 1.07760i
\(369\) 3.26884 10.0605i 0.170169 0.523727i
\(370\) 0 0
\(371\) 1.83596 + 1.33390i 0.0953184 + 0.0692529i
\(372\) 0.671066 + 2.06533i 0.0347931 + 0.107082i
\(373\) 34.7216 1.79781 0.898907 0.438139i \(-0.144362\pi\)
0.898907 + 0.438139i \(0.144362\pi\)
\(374\) −40.3199 + 17.4030i −2.08489 + 0.899887i
\(375\) 0 0
\(376\) −0.610687 1.87950i −0.0314938 0.0969278i
\(377\) −0.516965 0.375597i −0.0266250 0.0193442i
\(378\) −1.94143 + 1.41053i −0.0998562 + 0.0725498i
\(379\) −9.75802 + 30.0321i −0.501236 + 1.54265i 0.305772 + 0.952105i \(0.401085\pi\)
−0.807008 + 0.590540i \(0.798915\pi\)
\(380\) 0 0
\(381\) −13.9259 + 10.1177i −0.713444 + 0.518347i
\(382\) 13.1016 + 9.51886i 0.670336 + 0.487027i
\(383\) 6.88570 + 21.1920i 0.351843 + 1.08286i 0.957818 + 0.287377i \(0.0927832\pi\)
−0.605975 + 0.795484i \(0.707217\pi\)
\(384\) −7.65483 −0.390634
\(385\) 0 0
\(386\) −29.8350 −1.51856
\(387\) −0.507947 1.56330i −0.0258204 0.0794669i
\(388\) −6.40371 4.65257i −0.325099 0.236198i
\(389\) 19.6422 14.2709i 0.995901 0.723564i 0.0346953 0.999398i \(-0.488954\pi\)
0.961205 + 0.275834i \(0.0889539\pi\)
\(390\) 0 0
\(391\) −9.98863 + 30.7418i −0.505147 + 1.55468i
\(392\) 4.28509 3.11330i 0.216430 0.157246i
\(393\) −3.18701 2.31550i −0.160763 0.116801i
\(394\) 3.99532 + 12.2963i 0.201281 + 0.619480i
\(395\) 0 0
\(396\) −4.74804 1.06600i −0.238598 0.0535686i
\(397\) 37.3655 1.87532 0.937660 0.347554i \(-0.112988\pi\)
0.937660 + 0.347554i \(0.112988\pi\)
\(398\) 11.8772 + 36.5541i 0.595348 + 1.83229i
\(399\) 3.47120 + 2.52197i 0.173777 + 0.126257i
\(400\) 0 0
\(401\) −1.19707 + 3.68421i −0.0597790 + 0.183981i −0.976487 0.215578i \(-0.930837\pi\)
0.916708 + 0.399558i \(0.130837\pi\)
\(402\) 6.10572 18.7915i 0.304526 0.937234i
\(403\) 1.21281 0.881157i 0.0604143 0.0438935i
\(404\) 10.2363 + 7.43712i 0.509276 + 0.370011i
\(405\) 0 0
\(406\) −1.51397 −0.0751372
\(407\) −3.27943 + 5.53332i −0.162555 + 0.274277i
\(408\) 7.05447 0.349248
\(409\) 9.82922 + 30.2512i 0.486024 + 1.49583i 0.830493 + 0.557030i \(0.188059\pi\)
−0.344469 + 0.938798i \(0.611941\pi\)
\(410\) 0 0
\(411\) 16.5043 11.9911i 0.814096 0.591475i
\(412\) −4.15839 + 12.7982i −0.204869 + 0.630522i
\(413\) 2.36066 7.26537i 0.116160 0.357505i
\(414\) −6.84767 + 4.97513i −0.336545 + 0.244514i
\(415\) 0 0
\(416\) −2.16578 6.66560i −0.106186 0.326808i
\(417\) −11.3224 −0.554461
\(418\) 1.91568 + 20.4712i 0.0936989 + 1.00128i
\(419\) −7.52127 −0.367438 −0.183719 0.982979i \(-0.558814\pi\)
−0.183719 + 0.982979i \(0.558814\pi\)
\(420\) 0 0
\(421\) −28.4044 20.6370i −1.38434 1.00578i −0.996459 0.0840763i \(-0.973206\pi\)
−0.387884 0.921708i \(-0.626794\pi\)
\(422\) 23.4120 17.0098i 1.13968 0.828025i
\(423\) −0.615578 + 1.89456i −0.0299304 + 0.0921164i
\(424\) 0.539823 1.66140i 0.0262161 0.0806849i
\(425\) 0 0
\(426\) 24.3698 + 17.7057i 1.18072 + 0.857844i
\(427\) −1.21061 3.72588i −0.0585856 0.180308i
\(428\) −21.9515 −1.06107
\(429\) 0.312990 + 3.34466i 0.0151113 + 0.161482i
\(430\) 0 0
\(431\) −9.12268 28.0767i −0.439424 1.35241i −0.888484 0.458907i \(-0.848241\pi\)
0.449060 0.893502i \(-0.351759\pi\)
\(432\) 3.86848 + 2.81061i 0.186122 + 0.135226i
\(433\) 4.43991 3.22578i 0.213368 0.155021i −0.475968 0.879463i \(-0.657902\pi\)
0.689336 + 0.724441i \(0.257902\pi\)
\(434\) 1.09757 3.37797i 0.0526850 0.162148i
\(435\) 0 0
\(436\) 5.21750 3.79074i 0.249873 0.181543i
\(437\) 12.2434 + 8.89534i 0.585680 + 0.425522i
\(438\) −4.23453 13.0325i −0.202334 0.622719i
\(439\) 7.12848 0.340224 0.170112 0.985425i \(-0.445587\pi\)
0.170112 + 0.985425i \(0.445587\pi\)
\(440\) 0 0
\(441\) −5.33910 −0.254243
\(442\) 4.14430 + 12.7548i 0.197124 + 0.606686i
\(443\) 12.5647 + 9.12880i 0.596967 + 0.433722i 0.844801 0.535080i \(-0.179719\pi\)
−0.247834 + 0.968803i \(0.579719\pi\)
\(444\) −2.30204 + 1.67253i −0.109250 + 0.0793748i
\(445\) 0 0
\(446\) 13.1952 40.6107i 0.624812 1.92297i
\(447\) −17.3778 + 12.6257i −0.821939 + 0.597174i
\(448\) −3.46291 2.51595i −0.163607 0.118868i
\(449\) −3.32420 10.2308i −0.156879 0.482823i 0.841468 0.540307i \(-0.181692\pi\)
−0.998346 + 0.0574843i \(0.981692\pi\)
\(450\) 0 0
\(451\) −34.2318 7.68551i −1.61191 0.361897i
\(452\) 20.9542 0.985601
\(453\) 2.02237 + 6.22422i 0.0950194 + 0.292440i
\(454\) 12.8431 + 9.33104i 0.602755 + 0.437927i
\(455\) 0 0
\(456\) 1.02063 3.14117i 0.0477952 0.147099i
\(457\) −5.11267 + 15.7352i −0.239161 + 0.736061i 0.757381 + 0.652973i \(0.226478\pi\)
−0.996542 + 0.0830884i \(0.973522\pi\)
\(458\) 4.18012 3.03703i 0.195324 0.141911i
\(459\) −5.75290 4.17973i −0.268522 0.195093i
\(460\) 0 0
\(461\) 7.85326 0.365763 0.182881 0.983135i \(-0.441458\pi\)
0.182881 + 0.983135i \(0.441458\pi\)
\(462\) 5.25778 + 5.97510i 0.244614 + 0.277987i
\(463\) −15.7430 −0.731638 −0.365819 0.930686i \(-0.619211\pi\)
−0.365819 + 0.930686i \(0.619211\pi\)
\(464\) 0.932223 + 2.86909i 0.0432774 + 0.133194i
\(465\) 0 0
\(466\) −29.3711 + 21.3394i −1.36059 + 0.988527i
\(467\) −2.82475 + 8.69369i −0.130714 + 0.402296i −0.994899 0.100878i \(-0.967835\pi\)
0.864185 + 0.503174i \(0.167835\pi\)
\(468\) −0.459227 + 1.41336i −0.0212278 + 0.0653324i
\(469\) −11.0635 + 8.03813i −0.510866 + 0.371166i
\(470\) 0 0
\(471\) 4.33207 + 13.3327i 0.199611 + 0.614340i
\(472\) −5.88050 −0.270672
\(473\) −5.00536 + 2.16043i −0.230147 + 0.0993365i
\(474\) −31.6673 −1.45453
\(475\) 0 0
\(476\) 10.8782 + 7.90345i 0.498600 + 0.362254i
\(477\) −1.42460 + 1.03503i −0.0652277 + 0.0473907i
\(478\) 5.93719 18.2728i 0.271561 0.835778i
\(479\) −7.27363 + 22.3859i −0.332340 + 1.02284i 0.635677 + 0.771955i \(0.280721\pi\)
−0.968017 + 0.250883i \(0.919279\pi\)
\(480\) 0 0
\(481\) 1.58915 + 1.15458i 0.0724590 + 0.0526445i
\(482\) −11.0371 33.9687i −0.502726 1.54723i
\(483\) 5.85823 0.266559
\(484\) −2.05292 + 16.0084i −0.0933146 + 0.727653i
\(485\) 0 0
\(486\) −0.575405 1.77091i −0.0261009 0.0803303i
\(487\) −5.62391 4.08601i −0.254844 0.185155i 0.453027 0.891497i \(-0.350344\pi\)
−0.707871 + 0.706342i \(0.750344\pi\)
\(488\) −2.43974 + 1.77257i −0.110442 + 0.0802405i
\(489\) −0.379172 + 1.16697i −0.0171467 + 0.0527722i
\(490\) 0 0
\(491\) −16.4599 + 11.9588i −0.742824 + 0.539693i −0.893594 0.448876i \(-0.851825\pi\)
0.150770 + 0.988569i \(0.451825\pi\)
\(492\) −12.5564 9.12278i −0.566087 0.411287i
\(493\) −1.38633 4.26668i −0.0624371 0.192162i
\(494\) 6.27898 0.282505
\(495\) 0 0
\(496\) −7.07731 −0.317781
\(497\) −6.44255 19.8281i −0.288988 0.889414i
\(498\) −13.7234 9.97062i −0.614960 0.446794i
\(499\) 10.6009 7.70201i 0.474562 0.344789i −0.324655 0.945833i \(-0.605248\pi\)
0.799217 + 0.601043i \(0.205248\pi\)
\(500\) 0 0
\(501\) −4.51137 + 13.8846i −0.201553 + 0.620317i
\(502\) 39.2149 28.4913i 1.75025 1.27163i
\(503\) 1.53214 + 1.11317i 0.0683149 + 0.0496337i 0.621419 0.783479i \(-0.286557\pi\)
−0.553104 + 0.833112i \(0.686557\pi\)
\(504\) −0.395084 1.21594i −0.0175985 0.0541625i
\(505\) 0 0
\(506\) 18.5449 + 21.0750i 0.824421 + 0.936897i
\(507\) −11.9741 −0.531789
\(508\) 7.80448 + 24.0197i 0.346268 + 1.06570i
\(509\) −27.8663 20.2461i −1.23515 0.897391i −0.237888 0.971293i \(-0.576455\pi\)
−0.997266 + 0.0739012i \(0.976455\pi\)
\(510\) 0 0
\(511\) −2.93080 + 9.02008i −0.129651 + 0.399025i
\(512\) −7.29289 + 22.4452i −0.322303 + 0.991948i
\(513\) −2.69344 + 1.95690i −0.118918 + 0.0863991i
\(514\) −28.3388 20.5893i −1.24997 0.908157i
\(515\) 0 0
\(516\) −2.41175 −0.106171
\(517\) 6.44642 + 1.44731i 0.283513 + 0.0636527i
\(518\) 4.65395 0.204483
\(519\) −1.88277 5.79458i −0.0826446 0.254354i
\(520\) 0 0
\(521\) 14.2222 10.3331i 0.623088 0.452700i −0.230911 0.972975i \(-0.574171\pi\)
0.853999 + 0.520275i \(0.174171\pi\)
\(522\) 0.363018 1.11725i 0.0158889 0.0489009i
\(523\) 11.3427 34.9093i 0.495982 1.52648i −0.319438 0.947607i \(-0.603494\pi\)
0.815421 0.578869i \(-0.196506\pi\)
\(524\) −4.67606 + 3.39736i −0.204275 + 0.148414i
\(525\) 0 0
\(526\) −7.43048 22.8687i −0.323984 0.997121i
\(527\) 10.5248 0.458469
\(528\) 8.08578 13.6430i 0.351888 0.593736i
\(529\) −2.33722 −0.101618
\(530\) 0 0
\(531\) 4.79553 + 3.48416i 0.208108 + 0.151199i
\(532\) 5.09303 3.70030i 0.220811 0.160428i
\(533\) −3.31087 + 10.1898i −0.143410 + 0.441370i
\(534\) 0.0797678 0.245500i 0.00345189 0.0106238i
\(535\) 0 0
\(536\) 8.51641 + 6.18753i 0.367853 + 0.267261i
\(537\) −0.183246 0.563973i −0.00790764 0.0243372i
\(538\) −42.0324 −1.81215
\(539\) 1.64987 + 17.6307i 0.0710650 + 0.759410i
\(540\) 0 0
\(541\) 9.52302 + 29.3088i 0.409427 + 1.26009i 0.917142 + 0.398561i \(0.130490\pi\)
−0.507715 + 0.861525i \(0.669510\pi\)
\(542\) −23.1819 16.8426i −0.995748 0.723453i
\(543\) −16.7216 + 12.1490i −0.717593 + 0.521362i
\(544\) 15.2053 46.7972i 0.651923 2.00641i
\(545\) 0 0
\(546\) 1.96639 1.42867i 0.0841537 0.0611412i
\(547\) −5.69336 4.13647i −0.243430 0.176862i 0.459380 0.888240i \(-0.348072\pi\)
−0.702810 + 0.711377i \(0.748072\pi\)
\(548\) −9.24949 28.4670i −0.395119 1.21605i
\(549\) 3.03983 0.129737
\(550\) 0 0
\(551\) −2.10041 −0.0894805
\(552\) −1.39352 4.28880i −0.0593120 0.182543i
\(553\) 17.7317 + 12.8828i 0.754027 + 0.547833i
\(554\) 19.2992 14.0217i 0.819945 0.595725i
\(555\) 0 0
\(556\) −5.13356 + 15.7995i −0.217711 + 0.670046i
\(557\) 0.394276 0.286458i 0.0167060 0.0121376i −0.579401 0.815043i \(-0.696713\pi\)
0.596107 + 0.802905i \(0.296713\pi\)
\(558\) 2.22964 + 1.61993i 0.0943881 + 0.0685770i
\(559\) 0.514478 + 1.58340i 0.0217601 + 0.0669707i
\(560\) 0 0
\(561\) −12.0245 + 20.2888i −0.507676 + 0.856594i
\(562\) 11.8835 0.501276
\(563\) −3.24947 10.0009i −0.136949 0.421486i 0.858939 0.512078i \(-0.171124\pi\)
−0.995888 + 0.0905921i \(0.971124\pi\)
\(564\) 2.36459 + 1.71797i 0.0995671 + 0.0723397i
\(565\) 0 0
\(566\) 12.1534 37.4043i 0.510845 1.57222i
\(567\) −0.398249 + 1.22568i −0.0167249 + 0.0514739i
\(568\) −12.9836 + 9.43316i −0.544781 + 0.395807i
\(569\) −28.3627 20.6067i −1.18903 0.863878i −0.195865 0.980631i \(-0.562751\pi\)
−0.993161 + 0.116753i \(0.962751\pi\)
\(570\) 0 0
\(571\) 22.2489 0.931089 0.465544 0.885025i \(-0.345859\pi\)
0.465544 + 0.885025i \(0.345859\pi\)
\(572\) 4.80909 + 1.07971i 0.201078 + 0.0451448i
\(573\) 8.69712 0.363327
\(574\) 7.84436 + 24.1425i 0.327417 + 1.00769i
\(575\) 0 0
\(576\) 2.68701 1.95223i 0.111959 0.0813428i
\(577\) 0.527233 1.62266i 0.0219490 0.0675521i −0.939482 0.342598i \(-0.888693\pi\)
0.961431 + 0.275046i \(0.0886931\pi\)
\(578\) −19.3140 + 59.4424i −0.803357 + 2.47248i
\(579\) −12.9626 + 9.41790i −0.538708 + 0.391394i
\(580\) 0 0
\(581\) 3.62800 + 11.1658i 0.150515 + 0.463237i
\(582\) −10.0454 −0.416396
\(583\) 3.85809 + 4.38445i 0.159786 + 0.181586i
\(584\) 7.30074 0.302107
\(585\) 0 0
\(586\) −37.5526 27.2835i −1.55128 1.12707i
\(587\) 1.92350 1.39750i 0.0793913 0.0576812i −0.547382 0.836883i \(-0.684375\pi\)
0.626773 + 0.779202i \(0.284375\pi\)
\(588\) −2.42073 + 7.45025i −0.0998293 + 0.307243i
\(589\) 1.52271 4.68643i 0.0627422 0.193101i
\(590\) 0 0
\(591\) 5.61740 + 4.08128i 0.231069 + 0.167882i
\(592\) −2.86565 8.81957i −0.117778 0.362482i
\(593\) 11.4985 0.472188 0.236094 0.971730i \(-0.424133\pi\)
0.236094 + 0.971730i \(0.424133\pi\)
\(594\) −5.67010 + 2.44734i −0.232647 + 0.100416i
\(595\) 0 0
\(596\) 9.73901 + 29.9736i 0.398926 + 1.22777i
\(597\) 16.6992 + 12.1327i 0.683454 + 0.496559i
\(598\) 6.93572 5.03909i 0.283623 0.206064i
\(599\) 4.51027 13.8812i 0.184285 0.567170i −0.815651 0.578545i \(-0.803621\pi\)
0.999935 + 0.0113747i \(0.00362077\pi\)
\(600\) 0 0
\(601\) 4.76118 3.45920i 0.194213 0.141104i −0.486429 0.873720i \(-0.661701\pi\)
0.680642 + 0.732616i \(0.261701\pi\)
\(602\) 3.19122 + 2.31856i 0.130064 + 0.0944973i
\(603\) −3.27904 10.0918i −0.133533 0.410971i
\(604\) 9.60231 0.390712
\(605\) 0 0
\(606\) 16.0576 0.652296
\(607\) −6.45361 19.8622i −0.261944 0.806180i −0.992382 0.123201i \(-0.960684\pi\)
0.730438 0.682979i \(-0.239316\pi\)
\(608\) −18.6377 13.5411i −0.755857 0.549162i
\(609\) −0.657786 + 0.477910i −0.0266548 + 0.0193659i
\(610\) 0 0
\(611\) 0.623493 1.91892i 0.0252238 0.0776310i
\(612\) −8.44080 + 6.13260i −0.341199 + 0.247896i
\(613\) −20.1003 14.6037i −0.811843 0.589838i 0.102522 0.994731i \(-0.467309\pi\)
−0.914364 + 0.404893i \(0.867309\pi\)
\(614\) −18.2055 56.0307i −0.734714 2.26122i
\(615\) 0 0
\(616\) −3.89320 + 1.68039i −0.156862 + 0.0677050i
\(617\) 1.41531 0.0569783 0.0284892 0.999594i \(-0.490930\pi\)
0.0284892 + 0.999594i \(0.490930\pi\)
\(618\) 5.27739 + 16.2421i 0.212288 + 0.653354i
\(619\) 9.34582 + 6.79013i 0.375640 + 0.272918i 0.759546 0.650454i \(-0.225421\pi\)
−0.383906 + 0.923372i \(0.625421\pi\)
\(620\) 0 0
\(621\) −1.40468 + 4.32315i −0.0563678 + 0.173482i
\(622\) 1.72227 5.30061i 0.0690568 0.212535i
\(623\) −0.144539 + 0.105013i −0.00579082 + 0.00420728i
\(624\) −3.91822 2.84675i −0.156854 0.113961i
\(625\) 0 0
\(626\) −3.63747 −0.145383
\(627\) 7.29438 + 8.28955i 0.291310 + 0.331053i
\(628\) 20.5688 0.820785
\(629\) 4.26157 + 13.1158i 0.169920 + 0.522960i
\(630\) 0 0
\(631\) −20.3672 + 14.7976i −0.810806 + 0.589085i −0.914064 0.405570i \(-0.867073\pi\)
0.103258 + 0.994655i \(0.467073\pi\)
\(632\) 5.21359 16.0458i 0.207386 0.638267i
\(633\) 4.80256 14.7807i 0.190884 0.587482i
\(634\) 35.0770 25.4849i 1.39309 1.01214i
\(635\) 0 0
\(636\) 0.798386 + 2.45718i 0.0316581 + 0.0974335i
\(637\) 5.40774 0.214263
\(638\) −3.80157 0.853507i −0.150506 0.0337907i
\(639\) 16.1772 0.639960
\(640\) 0 0
\(641\) 20.5722 + 14.9466i 0.812554 + 0.590355i 0.914570 0.404427i \(-0.132529\pi\)
−0.102016 + 0.994783i \(0.532529\pi\)
\(642\) −22.5381 + 16.3749i −0.889507 + 0.646265i
\(643\) 11.7750 36.2398i 0.464361 1.42916i −0.395423 0.918499i \(-0.629402\pi\)
0.859784 0.510658i \(-0.170598\pi\)
\(644\) 2.65611 8.17466i 0.104665 0.322127i
\(645\) 0 0
\(646\) 35.6638 + 25.9112i 1.40317 + 1.01946i
\(647\) −10.8153 33.2862i −0.425195 1.30861i −0.902808 0.430044i \(-0.858498\pi\)
0.477613 0.878570i \(-0.341502\pi\)
\(648\) 0.992053 0.0389715
\(649\) 10.0235 16.9124i 0.393456 0.663872i
\(650\) 0 0
\(651\) −0.589441 1.81411i −0.0231020 0.0711007i
\(652\) 1.45649 + 1.05820i 0.0570406 + 0.0414424i
\(653\) −24.4530 + 17.7662i −0.956921 + 0.695244i −0.952434 0.304746i \(-0.901428\pi\)
−0.00448717 + 0.999990i \(0.501428\pi\)
\(654\) 2.52919 7.78405i 0.0988992 0.304381i
\(655\) 0 0
\(656\) 40.9215 29.7312i 1.59772 1.16081i
\(657\) −5.95374 4.32564i −0.232277 0.168759i
\(658\) −1.47722 4.54643i −0.0575882 0.177238i
\(659\) 27.5598 1.07358 0.536790 0.843716i \(-0.319637\pi\)
0.536790 + 0.843716i \(0.319637\pi\)
\(660\) 0 0
\(661\) −16.4272 −0.638945 −0.319472 0.947596i \(-0.603506\pi\)
−0.319472 + 0.947596i \(0.603506\pi\)
\(662\) −18.5855 57.2004i −0.722347 2.22316i
\(663\) 5.82687 + 4.23347i 0.226297 + 0.164414i
\(664\) 7.31148 5.31210i 0.283740 0.206149i
\(665\) 0 0
\(666\) −1.11592 + 3.43444i −0.0432409 + 0.133082i
\(667\) −2.32010 + 1.68565i −0.0898347 + 0.0652687i
\(668\) 17.3293 + 12.5905i 0.670490 + 0.487139i
\(669\) −7.08641 21.8097i −0.273976 0.843212i
\(670\) 0 0
\(671\) −0.939361 10.0381i −0.0362636 0.387518i
\(672\) −8.91778 −0.344011
\(673\) −11.7416 36.1370i −0.452606 1.39298i −0.873922 0.486065i \(-0.838432\pi\)
0.421316 0.906914i \(-0.361568\pi\)
\(674\) −1.76787 1.28444i −0.0680960 0.0494746i
\(675\) 0 0
\(676\) −5.42903 + 16.7088i −0.208809 + 0.642648i
\(677\) −5.50753 + 16.9504i −0.211671 + 0.651458i 0.787702 + 0.616057i \(0.211271\pi\)
−0.999373 + 0.0354010i \(0.988729\pi\)
\(678\) 21.5141 15.6309i 0.826242 0.600300i
\(679\) 5.62480 + 4.08666i 0.215860 + 0.156832i
\(680\) 0 0
\(681\) 8.52551 0.326698
\(682\) 4.66032 7.86329i 0.178453 0.301101i
\(683\) 6.53811 0.250174 0.125087 0.992146i \(-0.460079\pi\)
0.125087 + 0.992146i \(0.460079\pi\)
\(684\) 1.50948 + 4.64571i 0.0577166 + 0.177633i
\(685\) 0 0
\(686\) 23.9554 17.4047i 0.914623 0.664513i
\(687\) 0.857476 2.63904i 0.0327148 0.100686i
\(688\) 2.42885 7.47523i 0.0925990 0.284990i
\(689\) 1.44291 1.04834i 0.0549706 0.0399385i
\(690\) 0 0
\(691\) 8.13983 + 25.0518i 0.309654 + 0.953016i 0.977900 + 0.209075i \(0.0670454\pi\)
−0.668246 + 0.743940i \(0.732955\pi\)
\(692\) −8.93949 −0.339828
\(693\) 4.17052 + 0.936339i 0.158425 + 0.0355686i
\(694\) 22.6916 0.861360
\(695\) 0 0
\(696\) 0.506346 + 0.367882i 0.0191930 + 0.0139445i
\(697\) −60.8553 + 44.2140i −2.30506 + 1.67472i
\(698\) −4.37187 + 13.4552i −0.165478 + 0.509288i
\(699\) −6.02496 + 18.5429i −0.227885 + 0.701357i
\(700\) 0 0
\(701\) −7.97700 5.79563i −0.301287 0.218898i 0.426862 0.904317i \(-0.359619\pi\)
−0.728149 + 0.685419i \(0.759619\pi\)
\(702\) 0.582803 + 1.79368i 0.0219965 + 0.0676982i
\(703\) 6.45666 0.243518
\(704\) −7.27697 8.26977i −0.274261 0.311679i
\(705\) 0 0
\(706\) 13.6891 + 42.1308i 0.515197 + 1.58561i
\(707\) −8.99124 6.53252i −0.338150 0.245681i
\(708\) 7.03612 5.11204i 0.264433 0.192122i
\(709\) −6.50658 + 20.0252i −0.244360 + 0.752062i 0.751381 + 0.659868i \(0.229388\pi\)
−0.995741 + 0.0921936i \(0.970612\pi\)
\(710\) 0 0
\(711\) −13.7587 + 9.99628i −0.515991 + 0.374890i
\(712\) 0.111262 + 0.0808366i 0.00416972 + 0.00302948i
\(713\) −2.07904 6.39862i −0.0778606 0.239630i
\(714\) 17.0645 0.638621
\(715\) 0 0
\(716\) −0.870058 −0.0325156
\(717\) −3.18853 9.81328i −0.119078 0.366484i
\(718\) 44.8605 + 32.5930i 1.67418 + 1.21636i
\(719\) 20.7601 15.0831i 0.774219 0.562503i −0.129019 0.991642i \(-0.541183\pi\)
0.903239 + 0.429139i \(0.141183\pi\)
\(720\) 0 0
\(721\) 3.65259 11.2415i 0.136029 0.418655i
\(722\) −11.9248 + 8.66387i −0.443795 + 0.322436i
\(723\) −15.5181 11.2746i −0.577125 0.419306i
\(724\) 9.37129 + 28.8419i 0.348281 + 1.07190i
\(725\) 0 0
\(726\) 9.83376 + 17.9675i 0.364965 + 0.666837i
\(727\) 45.4536 1.68578 0.842891 0.538085i \(-0.180852\pi\)
0.842891 + 0.538085i \(0.180852\pi\)
\(728\) 0.400164 + 1.23158i 0.0148311 + 0.0456453i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) −3.61199 + 11.1166i −0.133594 + 0.411161i
\(732\) 1.37825 4.24183i 0.0509417 0.156782i
\(733\) 36.8435 26.7683i 1.36084 0.988711i 0.362453 0.932002i \(-0.381939\pi\)
0.998391 0.0567093i \(-0.0180608\pi\)
\(734\) 1.73526 + 1.26074i 0.0640498 + 0.0465349i
\(735\) 0 0
\(736\) −31.4542 −1.15942
\(737\) −32.3120 + 13.9466i −1.19023 + 0.513729i
\(738\) −19.6971 −0.725061
\(739\) 2.23907 + 6.89115i 0.0823656 + 0.253495i 0.983756 0.179513i \(-0.0574522\pi\)
−0.901390 + 0.433008i \(0.857452\pi\)
\(740\) 0 0
\(741\) 2.72807 1.98206i 0.100218 0.0728128i
\(742\) 1.30581 4.01887i 0.0479377 0.147537i
\(743\) −3.59014 + 11.0493i −0.131709 + 0.405360i −0.995064 0.0992384i \(-0.968359\pi\)
0.863354 + 0.504598i \(0.168359\pi\)
\(744\) −1.18790 + 0.863057i −0.0435504 + 0.0316412i
\(745\) 0 0
\(746\) −19.9790 61.4889i −0.731482 2.25127i
\(747\) −9.10988 −0.333313
\(748\) 22.8594 + 25.9781i 0.835822 + 0.949853i
\(749\) 19.2815 0.704530
\(750\) 0 0
\(751\) −23.6190 17.1602i −0.861870 0.626185i 0.0665229 0.997785i \(-0.478809\pi\)
−0.928393 + 0.371600i \(0.878809\pi\)
\(752\) −7.70621 + 5.59889i −0.281017 + 0.204171i
\(753\) 8.04424 24.7576i 0.293149 0.902219i
\(754\) −0.367686 + 1.13162i −0.0133903 + 0.0412112i
\(755\) 0 0
\(756\) 1.52977 + 1.11144i 0.0556373 + 0.0404228i
\(757\) 13.9904 + 43.0579i 0.508488 + 1.56497i 0.794826 + 0.606837i \(0.207562\pi\)
−0.286338 + 0.958129i \(0.592438\pi\)
\(758\) 58.7991 2.13568
\(759\) 14.7100 + 3.30260i 0.533938 + 0.119877i
\(760\) 0 0
\(761\) −5.20682 16.0249i −0.188747 0.580903i 0.811246 0.584705i \(-0.198790\pi\)
−0.999993 + 0.00380191i \(0.998790\pi\)
\(762\) 25.9306 + 18.8397i 0.939368 + 0.682491i
\(763\) −4.58288 + 3.32966i −0.165911 + 0.120542i
\(764\) 3.94325 12.1361i 0.142662 0.439068i
\(765\) 0 0
\(766\) 33.5671 24.3880i 1.21283 0.881172i
\(767\) −4.85719 3.52895i −0.175383 0.127423i
\(768\) 6.45732 + 19.8736i 0.233008 + 0.717126i
\(769\) −1.13686 −0.0409960 −0.0204980 0.999790i \(-0.506525\pi\)
−0.0204980 + 0.999790i \(0.506525\pi\)
\(770\) 0 0
\(771\) −18.8119 −0.677494
\(772\) 7.26464 + 22.3583i 0.261460 + 0.804692i
\(773\) −40.3369 29.3064i −1.45082 1.05408i −0.985640 0.168862i \(-0.945991\pi\)
−0.465176 0.885218i \(-0.654009\pi\)
\(774\) −2.47619 + 1.79906i −0.0890049 + 0.0646658i
\(775\) 0 0
\(776\) 1.65384 5.09001i 0.0593696 0.182721i
\(777\) 2.02203 1.46909i 0.0725401 0.0527035i
\(778\) −36.5748 26.5731i −1.31127 0.952693i
\(779\) 10.8829 + 33.4940i 0.389919 + 1.20005i
\(780\) 0 0
\(781\) −4.99903 53.4203i −0.178879 1.91153i
\(782\) 60.1886 2.15234
\(783\) −0.194956 0.600014i −0.00696717 0.0214427i
\(784\) −20.6542 15.0061i −0.737649 0.535933i
\(785\) 0 0
\(786\) −2.26673 + 6.97627i −0.0808515 + 0.248835i
\(787\) 0.0979582 0.301484i 0.00349183 0.0107468i −0.949295 0.314385i \(-0.898202\pi\)
0.952787 + 0.303639i \(0.0982016\pi\)
\(788\) 8.24199 5.98816i 0.293609 0.213319i
\(789\) −10.4472 7.59035i −0.371931 0.270224i
\(790\) 0 0
\(791\) −18.4054 −0.654422
\(792\) −0.306561 3.27596i −0.0108932 0.116406i
\(793\) −3.07892 −0.109336
\(794\) −21.5003 66.1710i −0.763016 2.34832i
\(795\) 0 0
\(796\) 24.5015 17.8014i 0.868434 0.630954i
\(797\) 1.07175 3.29851i 0.0379634 0.116839i −0.930279 0.366853i \(-0.880435\pi\)
0.968242 + 0.250014i \(0.0804352\pi\)
\(798\) 2.46885 7.59835i 0.0873964 0.268979i
\(799\) 11.4601 8.32624i 0.405429 0.294561i
\(800\) 0 0
\(801\) −0.0428387 0.131844i −0.00151363 0.00465848i
\(802\) 7.21322 0.254708
\(803\) −12.4443 + 20.9971i −0.439151 + 0.740972i
\(804\) −15.5690 −0.549076
\(805\) 0 0
\(806\) −2.25831 1.64076i −0.0795455 0.0577932i
\(807\) −18.2621 + 13.2682i −0.642857 + 0.467063i
\(808\) −2.64367 + 8.13638i −0.0930040 + 0.286237i
\(809\) −7.95520 + 24.4836i −0.279690 + 0.860797i 0.708250 + 0.705962i \(0.249485\pi\)
−0.987940 + 0.154836i \(0.950515\pi\)
\(810\) 0 0
\(811\) 14.7677 + 10.7293i 0.518563 + 0.376758i 0.816062 0.577964i \(-0.196153\pi\)
−0.297499 + 0.954722i \(0.596153\pi\)
\(812\) 0.368643 + 1.13457i 0.0129368 + 0.0398155i
\(813\) −15.3887 −0.539704
\(814\) 11.6860 + 2.62368i 0.409595 + 0.0919599i
\(815\) 0 0
\(816\) −10.5074 32.3384i −0.367831 1.13207i
\(817\) 4.42734 + 3.21665i 0.154893 + 0.112536i
\(818\) 47.9165 34.8134i 1.67536 1.21722i
\(819\) 0.403370 1.24144i 0.0140949 0.0433796i
\(820\) 0 0
\(821\) −10.1862 + 7.40069i −0.355500 + 0.258286i −0.751173 0.660106i \(-0.770511\pi\)
0.395673 + 0.918392i \(0.370511\pi\)
\(822\) −30.7318 22.3279i −1.07189 0.778776i
\(823\) −1.24274 3.82475i −0.0433191 0.133323i 0.927058 0.374918i \(-0.122329\pi\)
−0.970377 + 0.241596i \(0.922329\pi\)
\(824\) −9.09873 −0.316969
\(825\) 0 0
\(826\) −14.2247 −0.494939
\(827\) −10.7447 33.0688i −0.373630 1.14992i −0.944398 0.328804i \(-0.893354\pi\)
0.570768 0.821111i \(-0.306646\pi\)
\(828\) 5.39571 + 3.92021i 0.187514 + 0.136237i
\(829\) −6.69049 + 4.86092i −0.232370 + 0.168827i −0.697877 0.716217i \(-0.745872\pi\)
0.465507 + 0.885044i \(0.345872\pi\)
\(830\) 0 0
\(831\) 3.95889 12.1842i 0.137332 0.422665i
\(832\) −2.72156 + 1.97733i −0.0943531 + 0.0685515i
\(833\) 30.7153 + 22.3160i 1.06422 + 0.773202i
\(834\) 6.51497 + 20.0510i 0.225595 + 0.694310i
\(835\) 0 0
\(836\) 14.8746 6.42022i 0.514449 0.222048i
\(837\) 1.48008 0.0511591
\(838\) 4.32778 + 13.3195i 0.149501 + 0.460115i
\(839\) 13.4243 + 9.75333i 0.463458 + 0.336722i 0.794886 0.606758i \(-0.207530\pi\)
−0.331428 + 0.943481i \(0.607530\pi\)
\(840\) 0 0
\(841\) −8.83850 + 27.2021i −0.304776 + 0.938003i
\(842\) −20.2023 + 62.1763i −0.696217 + 2.14274i
\(843\) 5.16312 3.75123i 0.177827 0.129199i
\(844\) −18.4478 13.4031i −0.634999 0.461354i
\(845\) 0 0
\(846\) 3.70930 0.127528
\(847\) 1.80322 14.0612i 0.0619593 0.483149i
\(848\) −8.42008 −0.289147
\(849\) −6.52689 20.0877i −0.224002 0.689409i
\(850\) 0 0
\(851\) 7.13199 5.18169i 0.244481 0.177626i
\(852\) 7.33470 22.5739i 0.251283 0.773369i
\(853\) −0.0227434 + 0.0699971i −0.000778720 + 0.00239666i −0.951445 0.307818i \(-0.900401\pi\)
0.950666 + 0.310215i \(0.100401\pi\)
\(854\) −5.90162 + 4.28778i −0.201949 + 0.146725i
\(855\) 0 0
\(856\) −4.58654 14.1159i −0.156765 0.482473i
\(857\) 30.2115 1.03200 0.516002 0.856587i \(-0.327420\pi\)
0.516002 + 0.856587i \(0.327420\pi\)
\(858\) 5.74300 2.47881i 0.196063 0.0846252i
\(859\) 6.71583 0.229141 0.114571 0.993415i \(-0.463451\pi\)
0.114571 + 0.993415i \(0.463451\pi\)
\(860\) 0 0
\(861\) 11.0291 + 8.01314i 0.375872 + 0.273087i
\(862\) −44.4722 + 32.3110i −1.51473 + 1.10052i
\(863\) 14.2721 43.9250i 0.485828 1.49523i −0.344950 0.938621i \(-0.612104\pi\)
0.830778 0.556604i \(-0.187896\pi\)
\(864\) 2.13829 6.58098i 0.0727461 0.223890i
\(865\) 0 0
\(866\) −8.26733 6.00656i −0.280935 0.204111i
\(867\) 10.3725 + 31.9231i 0.352267 + 1.08417i
\(868\) −2.79869 −0.0949937
\(869\) 37.2614 + 42.3449i 1.26400 + 1.43645i
\(870\) 0 0
\(871\) 3.32120 + 10.2216i 0.112534 + 0.346346i
\(872\) 3.52778 + 2.56308i 0.119466 + 0.0867968i
\(873\) −4.36450 + 3.17100i −0.147716 + 0.107322i
\(874\) 8.70798 26.8004i 0.294552 0.906537i
\(875\) 0 0
\(876\) −8.73547 + 6.34669i −0.295144 + 0.214435i
\(877\) −12.3102 8.94385i −0.415685 0.302013i 0.360215 0.932869i \(-0.382703\pi\)
−0.775899 + 0.630857i \(0.782703\pi\)
\(878\) −4.10176 12.6239i −0.138428 0.426037i
\(879\) −24.9282 −0.840808
\(880\) 0 0
\(881\) −22.7839 −0.767609 −0.383804 0.923414i \(-0.625386\pi\)
−0.383804 + 0.923414i \(0.625386\pi\)
\(882\) 3.07214 + 9.45508i 0.103444 + 0.318369i
\(883\) −8.36163 6.07508i −0.281391 0.204443i 0.438133 0.898910i \(-0.355640\pi\)
−0.719524 + 0.694468i \(0.755640\pi\)
\(884\) 8.54933 6.21145i 0.287545 0.208914i
\(885\) 0 0
\(886\) 8.93652 27.5038i 0.300228 0.924007i
\(887\) −43.0389 + 31.2696i −1.44511 + 1.04993i −0.458162 + 0.888869i \(0.651492\pi\)
−0.986944 + 0.161062i \(0.948508\pi\)
\(888\) −1.55651 1.13087i −0.0522330 0.0379495i
\(889\) −6.85519 21.0981i −0.229916 0.707608i
\(890\) 0 0
\(891\) −1.69098 + 2.85317i −0.0566501 + 0.0955848i
\(892\) −33.6465 −1.12657
\(893\) −2.04943 6.30749i −0.0685815 0.211072i
\(894\) 32.3582 + 23.5096i 1.08222 + 0.786279i
\(895\) 0 0
\(896\) 3.04853 9.38241i 0.101844 0.313444i
\(897\) 1.42274 4.37874i 0.0475039 0.146202i
\(898\) −16.2052 + 11.7737i −0.540773 + 0.392895i
\(899\) 0.755437 + 0.548857i 0.0251952 + 0.0183054i
\(900\) 0 0
\(901\) 12.5217 0.417158
\(902\) 6.08674 + 65.0438i 0.202666 + 2.16572i
\(903\) 2.11840 0.0704959
\(904\) 4.37815 + 13.4746i 0.145615 + 0.448158i
\(905\) 0 0
\(906\) 9.85888 7.16290i 0.327539 0.237971i
\(907\) 4.20935 12.9551i 0.139769 0.430165i −0.856532 0.516094i \(-0.827386\pi\)
0.996301 + 0.0859283i \(0.0273856\pi\)
\(908\) 3.86544 11.8966i 0.128279 0.394803i
\(909\) 6.97666 5.06884i 0.231401 0.168123i
\(910\) 0 0
\(911\) 7.81952 + 24.0660i 0.259072 + 0.797342i 0.993000 + 0.118115i \(0.0376850\pi\)
−0.733928 + 0.679227i \(0.762315\pi\)
\(912\) −15.9196 −0.527150
\(913\) 2.81511 + 30.0826i 0.0931664 + 0.995589i
\(914\) 30.8075 1.01902
\(915\) 0 0
\(916\) −3.29377 2.39307i −0.108829 0.0790692i
\(917\) 4.10729 2.98412i 0.135635 0.0985444i
\(918\) −4.09169 + 12.5929i −0.135046 + 0.415628i
\(919\) −3.24182 + 9.97729i −0.106938 + 0.329120i −0.990180 0.139796i \(-0.955355\pi\)
0.883243 + 0.468916i \(0.155355\pi\)
\(920\) 0 0
\(921\) −25.5969 18.5972i −0.843445 0.612799i
\(922\) −4.51880 13.9074i −0.148819 0.458017i
\(923\) −16.3852 −0.539326
\(924\) 3.19748 5.39506i 0.105189 0.177485i
\(925\) 0 0
\(926\) 9.05857 + 27.8794i 0.297683 + 0.916175i
\(927\) 7.41999 + 5.39094i 0.243704 + 0.177062i
\(928\) 3.53181 2.56601i 0.115937 0.0842333i
\(929\) −5.31856 + 16.3688i −0.174496 + 0.537044i −0.999610 0.0279222i \(-0.991111\pi\)
0.825114 + 0.564967i \(0.191111\pi\)
\(930\) 0 0
\(931\) 14.3805 10.4481i 0.471303 0.342421i
\(932\) 23.1433 + 16.8146i 0.758085 + 0.550781i
\(933\) −0.924934 2.84665i −0.0302810 0.0931953i
\(934\) 17.0212 0.556949
\(935\) 0 0
\(936\) −1.00481 −0.0328432
\(937\) 6.91607 + 21.2855i 0.225938 + 0.695366i 0.998195 + 0.0600557i \(0.0191278\pi\)
−0.772257 + 0.635310i \(0.780872\pi\)
\(938\) 20.6008 + 14.9674i 0.672641 + 0.488702i
\(939\) −1.58040 + 1.14823i −0.0515744 + 0.0374710i
\(940\) 0 0
\(941\) 8.75860 26.9562i 0.285522 0.878747i −0.700719 0.713437i \(-0.747137\pi\)
0.986242 0.165310i \(-0.0528625\pi\)
\(942\) 21.1184 15.3434i 0.688075 0.499916i
\(943\) 38.9013 + 28.2634i 1.26680 + 0.920384i
\(944\) 8.75878 + 26.9568i 0.285074 + 0.877368i
\(945\) 0 0
\(946\) 6.70603 + 7.62094i 0.218032 + 0.247778i
\(947\) 34.3182 1.11519 0.557596 0.830113i \(-0.311724\pi\)
0.557596 + 0.830113i \(0.311724\pi\)
\(948\) 7.71079 + 23.7314i 0.250435 + 0.770759i
\(949\) 6.03029 + 4.38126i 0.195751 + 0.142222i
\(950\) 0 0
\(951\) 7.19542 22.1452i 0.233328 0.718109i
\(952\) −2.80943 + 8.64655i −0.0910543 + 0.280236i
\(953\) −16.7790 + 12.1906i −0.543524 + 0.394893i −0.825392 0.564560i \(-0.809046\pi\)
0.281868 + 0.959453i \(0.409046\pi\)
\(954\) 2.65267 + 1.92727i 0.0858832 + 0.0623978i
\(955\) 0 0
\(956\) −15.1393 −0.489638
\(957\) −1.92112 + 0.829199i −0.0621010 + 0.0268042i
\(958\) 43.8288 1.41604
\(959\) 8.12444 + 25.0045i 0.262352 + 0.807436i
\(960\) 0 0
\(961\) 23.3073 16.9337i 0.751847 0.546249i
\(962\) 1.13027 3.47860i 0.0364412 0.112155i
\(963\) −4.62328 + 14.2290i −0.148983 + 0.458523i
\(964\) −22.7686 + 16.5423i −0.733326 + 0.532792i
\(965\) 0 0
\(966\) −3.37085 10.3744i −0.108455 0.333792i
\(967\) −4.38264 −0.140936 −0.0704682 0.997514i \(-0.522449\pi\)
−0.0704682 + 0.997514i \(0.522449\pi\)
\(968\) −10.7231 + 2.02465i −0.344654 + 0.0650748i
\(969\) 23.6744 0.760531
\(970\) 0 0
\(971\) 29.3309 + 21.3102i 0.941275 + 0.683876i 0.948727 0.316096i \(-0.102372\pi\)
−0.00745250 + 0.999972i \(0.502372\pi\)
\(972\) −1.18701 + 0.862413i −0.0380734 + 0.0276619i
\(973\) 4.50914 13.8777i 0.144556 0.444899i
\(974\) −3.99995 + 12.3106i −0.128167 + 0.394456i
\(975\) 0 0
\(976\) 11.7595 + 8.54380i 0.376413 + 0.273480i
\(977\) 4.47159 + 13.7621i 0.143059 + 0.440290i 0.996756 0.0804796i \(-0.0256452\pi\)
−0.853697 + 0.520769i \(0.825645\pi\)
\(978\) 2.28478 0.0730592
\(979\) −0.422137 + 0.182204i −0.0134916 + 0.00582326i
\(980\) 0 0
\(981\) −1.35828 4.18037i −0.0433667 0.133469i
\(982\) 30.6491 + 22.2679i 0.978052 + 0.710596i
\(983\) −34.0822 + 24.7622i −1.08705 + 0.789790i −0.978899 0.204344i \(-0.934494\pi\)
−0.108154 + 0.994134i \(0.534494\pi\)
\(984\) 3.24287 9.98052i 0.103379 0.318167i
\(985\) 0 0
\(986\) −6.75822 + 4.91014i −0.215226 + 0.156371i
\(987\) −2.07697 1.50901i −0.0661108 0.0480323i
\(988\) −1.52889 4.70545i −0.0486405 0.149700i
\(989\) 7.47188 0.237592
\(990\) 0 0
\(991\) −10.7710 −0.342151 −0.171076 0.985258i \(-0.554724\pi\)
−0.171076 + 0.985258i \(0.554724\pi\)
\(992\) 3.16485 + 9.74039i 0.100484 + 0.309258i
\(993\) −26.1312 18.9854i −0.829249 0.602484i
\(994\) −31.4068 + 22.8184i −0.996165 + 0.723756i
\(995\) 0 0
\(996\) −4.13039 + 12.7120i −0.130877 + 0.402797i
\(997\) −15.7258 + 11.4255i −0.498043 + 0.361849i −0.808269 0.588814i \(-0.799595\pi\)
0.310226 + 0.950663i \(0.399595\pi\)
\(998\) −19.7394 14.3415i −0.624840 0.453973i
\(999\) 0.599295 + 1.84444i 0.0189609 + 0.0583555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.n.l.676.1 yes 8
5.2 odd 4 825.2.bx.i.49.3 16
5.3 odd 4 825.2.bx.i.49.2 16
5.4 even 2 825.2.n.h.676.2 yes 8
11.3 even 5 9075.2.a.cp.1.2 4
11.8 odd 10 9075.2.a.dh.1.3 4
11.9 even 5 inner 825.2.n.l.526.1 yes 8
55.9 even 10 825.2.n.h.526.2 8
55.14 even 10 9075.2.a.de.1.3 4
55.19 odd 10 9075.2.a.cn.1.2 4
55.42 odd 20 825.2.bx.i.724.2 16
55.53 odd 20 825.2.bx.i.724.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.2.n.h.526.2 8 55.9 even 10
825.2.n.h.676.2 yes 8 5.4 even 2
825.2.n.l.526.1 yes 8 11.9 even 5 inner
825.2.n.l.676.1 yes 8 1.1 even 1 trivial
825.2.bx.i.49.2 16 5.3 odd 4
825.2.bx.i.49.3 16 5.2 odd 4
825.2.bx.i.724.2 16 55.42 odd 20
825.2.bx.i.724.3 16 55.53 odd 20
9075.2.a.cn.1.2 4 55.19 odd 10
9075.2.a.cp.1.2 4 11.3 even 5
9075.2.a.de.1.3 4 55.14 even 10
9075.2.a.dh.1.3 4 11.8 odd 10