Properties

Label 825.2.n.l.751.2
Level $825$
Weight $2$
Character 825.751
Analytic conductor $6.588$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(301,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.819390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 10x^{6} - 13x^{5} + 29x^{4} - 7x^{3} + 80x^{2} + 143x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 751.2
Root \(2.06426 - 1.49977i\) of defining polynomial
Character \(\chi\) \(=\) 825.751
Dual form 825.2.n.l.301.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.06426 - 1.49977i) q^{2} +(0.309017 + 0.951057i) q^{3} +(1.39382 - 4.28973i) q^{4} +(2.06426 + 1.49977i) q^{6} +(1.44623 - 4.45102i) q^{7} +(-1.97946 - 6.09215i) q^{8} +(-0.809017 + 0.587785i) q^{9} +(-2.54508 - 2.12663i) q^{11} +4.51049 q^{12} +(-2.89382 + 2.10248i) q^{13} +(-3.69014 - 11.3571i) q^{14} +(-5.92484 - 4.30465i) q^{16} +(1.02054 + 0.741466i) q^{17} +(-0.788477 + 2.42668i) q^{18} +(2.18229 + 6.71641i) q^{19} +4.68008 q^{21} +(-8.44317 - 0.572862i) q^{22} +3.08744 q^{23} +(5.18229 - 3.76516i) q^{24} +(-2.82035 + 8.68013i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(-17.0779 - 12.4078i) q^{28} +(1.91436 - 5.89178i) q^{29} +(0.0537743 - 0.0390693i) q^{31} -5.87507 q^{32} +(1.23607 - 3.07768i) q^{33} +3.21869 q^{34} +(1.39382 + 4.28973i) q^{36} +(-1.22422 + 3.76775i) q^{37} +(14.5779 + 10.5915i) q^{38} +(-2.89382 - 2.10248i) q^{39} +(1.62204 + 4.99212i) q^{41} +(9.66091 - 7.01906i) q^{42} +9.77194 q^{43} +(-12.6700 + 7.95359i) q^{44} +(6.37328 - 4.63046i) q^{46} +(1.67044 + 5.14110i) q^{47} +(2.26309 - 6.96507i) q^{48} +(-12.0569 - 8.75988i) q^{49} +(-0.389812 + 1.19972i) q^{51} +(4.98562 + 15.3442i) q^{52} +(10.6404 - 7.73068i) q^{53} -2.55157 q^{54} -29.9791 q^{56} +(-5.71332 + 4.15097i) q^{57} +(-4.88461 - 15.0333i) q^{58} +(-0.163963 + 0.504625i) q^{59} +(-4.96165 - 3.60485i) q^{61} +(0.0524091 - 0.161298i) q^{62} +(1.44623 + 4.45102i) q^{63} +(-0.277992 + 0.201973i) q^{64} +(-2.06426 - 8.20696i) q^{66} +3.10841 q^{67} +(4.60313 - 3.34437i) q^{68} +(0.954071 + 2.93633i) q^{69} +(-6.73650 - 4.89435i) q^{71} +(5.18229 + 3.76516i) q^{72} +(-5.15554 + 15.8671i) q^{73} +(3.12367 + 9.61367i) q^{74} +31.8533 q^{76} +(-13.1464 + 8.25265i) q^{77} -9.12683 q^{78} +(-6.10150 + 4.43300i) q^{79} +(0.309017 - 0.951057i) q^{81} +(10.8354 + 7.87235i) q^{82} +(3.90209 + 2.83504i) q^{83} +(6.52318 - 20.0763i) q^{84} +(20.1718 - 14.6557i) q^{86} +6.19499 q^{87} +(-7.91784 + 19.7146i) q^{88} -6.05763 q^{89} +(5.17308 + 15.9211i) q^{91} +(4.30332 - 13.2443i) q^{92} +(0.0537743 + 0.0390693i) q^{93} +(11.1587 + 8.10727i) q^{94} +(-1.81550 - 5.58753i) q^{96} +(-2.46029 + 1.78750i) q^{97} -38.0265 q^{98} +(3.30902 + 0.224514i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 2 q^{3} - 7 q^{4} + 3 q^{6} + 7 q^{7} - 16 q^{8} - 2 q^{9} + 2 q^{11} + 18 q^{12} - 5 q^{13} - 2 q^{14} - 11 q^{16} + 8 q^{17} - 2 q^{18} - 5 q^{19} - 8 q^{21} - 8 q^{22} - 2 q^{23} + 19 q^{24}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.06426 1.49977i 1.45965 1.06050i 0.476199 0.879338i \(-0.342014\pi\)
0.983453 0.181162i \(-0.0579857\pi\)
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 1.39382 4.28973i 0.696908 2.14486i
\(5\) 0 0
\(6\) 2.06426 + 1.49977i 0.842730 + 0.612280i
\(7\) 1.44623 4.45102i 0.546622 1.68233i −0.170480 0.985361i \(-0.554532\pi\)
0.717102 0.696968i \(-0.245468\pi\)
\(8\) −1.97946 6.09215i −0.699845 2.15390i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) −2.54508 2.12663i −0.767372 0.641202i
\(12\) 4.51049 1.30206
\(13\) −2.89382 + 2.10248i −0.802600 + 0.583123i −0.911676 0.410910i \(-0.865211\pi\)
0.109075 + 0.994033i \(0.465211\pi\)
\(14\) −3.69014 11.3571i −0.986231 3.03531i
\(15\) 0 0
\(16\) −5.92484 4.30465i −1.48121 1.07616i
\(17\) 1.02054 + 0.741466i 0.247517 + 0.179832i 0.704626 0.709579i \(-0.251115\pi\)
−0.457108 + 0.889411i \(0.651115\pi\)
\(18\) −0.788477 + 2.42668i −0.185846 + 0.571975i
\(19\) 2.18229 + 6.71641i 0.500653 + 1.54085i 0.807959 + 0.589239i \(0.200572\pi\)
−0.307306 + 0.951611i \(0.599428\pi\)
\(20\) 0 0
\(21\) 4.68008 1.02128
\(22\) −8.44317 0.572862i −1.80009 0.122135i
\(23\) 3.08744 0.643776 0.321888 0.946778i \(-0.395683\pi\)
0.321888 + 0.946778i \(0.395683\pi\)
\(24\) 5.18229 3.76516i 1.05783 0.768559i
\(25\) 0 0
\(26\) −2.82035 + 8.68013i −0.553115 + 1.70231i
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) −17.0779 12.4078i −3.22742 2.34486i
\(29\) 1.91436 5.89178i 0.355487 1.09408i −0.600239 0.799820i \(-0.704928\pi\)
0.955727 0.294256i \(-0.0950720\pi\)
\(30\) 0 0
\(31\) 0.0537743 0.0390693i 0.00965815 0.00701706i −0.582946 0.812511i \(-0.698100\pi\)
0.592604 + 0.805494i \(0.298100\pi\)
\(32\) −5.87507 −1.03858
\(33\) 1.23607 3.07768i 0.215172 0.535756i
\(34\) 3.21869 0.552001
\(35\) 0 0
\(36\) 1.39382 + 4.28973i 0.232303 + 0.714954i
\(37\) −1.22422 + 3.76775i −0.201260 + 0.619415i 0.798586 + 0.601880i \(0.205582\pi\)
−0.999846 + 0.0175344i \(0.994418\pi\)
\(38\) 14.5779 + 10.5915i 2.36485 + 1.71816i
\(39\) −2.89382 2.10248i −0.463382 0.336666i
\(40\) 0 0
\(41\) 1.62204 + 4.99212i 0.253320 + 0.779639i 0.994156 + 0.107953i \(0.0344295\pi\)
−0.740836 + 0.671686i \(0.765570\pi\)
\(42\) 9.66091 7.01906i 1.49071 1.08306i
\(43\) 9.77194 1.49021 0.745104 0.666949i \(-0.232400\pi\)
0.745104 + 0.666949i \(0.232400\pi\)
\(44\) −12.6700 + 7.95359i −1.91008 + 1.19905i
\(45\) 0 0
\(46\) 6.37328 4.63046i 0.939688 0.682724i
\(47\) 1.67044 + 5.14110i 0.243659 + 0.749906i 0.995854 + 0.0909651i \(0.0289952\pi\)
−0.752195 + 0.658941i \(0.771005\pi\)
\(48\) 2.26309 6.96507i 0.326649 1.00532i
\(49\) −12.0569 8.75988i −1.72242 1.25141i
\(50\) 0 0
\(51\) −0.389812 + 1.19972i −0.0545845 + 0.167994i
\(52\) 4.98562 + 15.3442i 0.691381 + 2.12785i
\(53\) 10.6404 7.73068i 1.46157 1.06189i 0.478616 0.878024i \(-0.341139\pi\)
0.982951 0.183866i \(-0.0588614\pi\)
\(54\) −2.55157 −0.347224
\(55\) 0 0
\(56\) −29.9791 −4.00612
\(57\) −5.71332 + 4.15097i −0.756748 + 0.549809i
\(58\) −4.88461 15.0333i −0.641380 1.97397i
\(59\) −0.163963 + 0.504625i −0.0213461 + 0.0656966i −0.961162 0.275984i \(-0.910996\pi\)
0.939816 + 0.341681i \(0.110996\pi\)
\(60\) 0 0
\(61\) −4.96165 3.60485i −0.635274 0.461554i 0.222949 0.974830i \(-0.428432\pi\)
−0.858223 + 0.513276i \(0.828432\pi\)
\(62\) 0.0524091 0.161298i 0.00665596 0.0204849i
\(63\) 1.44623 + 4.45102i 0.182207 + 0.560776i
\(64\) −0.277992 + 0.201973i −0.0347490 + 0.0252466i
\(65\) 0 0
\(66\) −2.06426 8.20696i −0.254093 1.01021i
\(67\) 3.10841 0.379753 0.189876 0.981808i \(-0.439191\pi\)
0.189876 + 0.981808i \(0.439191\pi\)
\(68\) 4.60313 3.34437i 0.558212 0.405564i
\(69\) 0.954071 + 2.93633i 0.114857 + 0.353493i
\(70\) 0 0
\(71\) −6.73650 4.89435i −0.799475 0.580853i 0.111285 0.993789i \(-0.464503\pi\)
−0.910760 + 0.412936i \(0.864503\pi\)
\(72\) 5.18229 + 3.76516i 0.610739 + 0.443728i
\(73\) −5.15554 + 15.8671i −0.603410 + 1.85711i −0.0960405 + 0.995377i \(0.530618\pi\)
−0.507370 + 0.861728i \(0.669382\pi\)
\(74\) 3.12367 + 9.61367i 0.363119 + 1.11757i
\(75\) 0 0
\(76\) 31.8533 3.65382
\(77\) −13.1464 + 8.25265i −1.49818 + 0.940477i
\(78\) −9.12683 −1.03341
\(79\) −6.10150 + 4.43300i −0.686472 + 0.498751i −0.875499 0.483221i \(-0.839467\pi\)
0.189026 + 0.981972i \(0.439467\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 10.8354 + 7.87235i 1.19657 + 0.869355i
\(83\) 3.90209 + 2.83504i 0.428310 + 0.311186i 0.780973 0.624565i \(-0.214724\pi\)
−0.352663 + 0.935751i \(0.614724\pi\)
\(84\) 6.52318 20.0763i 0.711737 2.19050i
\(85\) 0 0
\(86\) 20.1718 14.6557i 2.17518 1.58036i
\(87\) 6.19499 0.664172
\(88\) −7.91784 + 19.7146i −0.844045 + 2.10159i
\(89\) −6.05763 −0.642108 −0.321054 0.947061i \(-0.604037\pi\)
−0.321054 + 0.947061i \(0.604037\pi\)
\(90\) 0 0
\(91\) 5.17308 + 15.9211i 0.542286 + 1.66899i
\(92\) 4.30332 13.2443i 0.448653 1.38081i
\(93\) 0.0537743 + 0.0390693i 0.00557614 + 0.00405130i
\(94\) 11.1587 + 8.10727i 1.15093 + 0.836201i
\(95\) 0 0
\(96\) −1.81550 5.58753i −0.185293 0.570274i
\(97\) −2.46029 + 1.78750i −0.249804 + 0.181493i −0.705640 0.708571i \(-0.749340\pi\)
0.455836 + 0.890064i \(0.349340\pi\)
\(98\) −38.0265 −3.84125
\(99\) 3.30902 + 0.224514i 0.332569 + 0.0225645i
\(100\) 0 0
\(101\) 0.815928 0.592806i 0.0811879 0.0589864i −0.546451 0.837491i \(-0.684021\pi\)
0.627639 + 0.778505i \(0.284021\pi\)
\(102\) 0.994630 + 3.06116i 0.0984830 + 0.303100i
\(103\) −2.07047 + 6.37226i −0.204010 + 0.627878i 0.795743 + 0.605635i \(0.207081\pi\)
−0.999753 + 0.0222430i \(0.992919\pi\)
\(104\) 18.5368 + 13.4678i 1.81769 + 1.32063i
\(105\) 0 0
\(106\) 10.3702 31.9163i 1.00725 3.09998i
\(107\) −2.40488 7.40146i −0.232488 0.715526i −0.997445 0.0714436i \(-0.977239\pi\)
0.764956 0.644082i \(-0.222761\pi\)
\(108\) −3.64906 + 2.65120i −0.351131 + 0.255112i
\(109\) −8.65028 −0.828546 −0.414273 0.910153i \(-0.635964\pi\)
−0.414273 + 0.910153i \(0.635964\pi\)
\(110\) 0 0
\(111\) −3.96165 −0.376023
\(112\) −27.7288 + 20.1461i −2.62012 + 1.90363i
\(113\) 2.32487 + 7.15522i 0.218706 + 0.673107i 0.998870 + 0.0475318i \(0.0151355\pi\)
−0.780164 + 0.625575i \(0.784864\pi\)
\(114\) −5.56826 + 17.1374i −0.521516 + 1.60506i
\(115\) 0 0
\(116\) −22.6059 16.4241i −2.09890 1.52494i
\(117\) 1.10534 3.40189i 0.102189 0.314504i
\(118\) 0.418362 + 1.28758i 0.0385133 + 0.118532i
\(119\) 4.77621 3.47012i 0.437835 0.318106i
\(120\) 0 0
\(121\) 1.95492 + 10.8249i 0.177720 + 0.984081i
\(122\) −15.6486 −1.41676
\(123\) −4.24655 + 3.08530i −0.382899 + 0.278192i
\(124\) −0.0926452 0.285133i −0.00831978 0.0256057i
\(125\) 0 0
\(126\) 9.66091 + 7.01906i 0.860662 + 0.625308i
\(127\) 10.9523 + 7.95731i 0.971859 + 0.706097i 0.955874 0.293775i \(-0.0949118\pi\)
0.0159844 + 0.999872i \(0.494912\pi\)
\(128\) 3.36006 10.3412i 0.296990 0.914042i
\(129\) 3.01970 + 9.29367i 0.265869 + 0.818262i
\(130\) 0 0
\(131\) −1.96165 −0.171390 −0.0856951 0.996321i \(-0.527311\pi\)
−0.0856951 + 0.996321i \(0.527311\pi\)
\(132\) −11.4796 9.59212i −0.999168 0.834887i
\(133\) 33.0510 2.86588
\(134\) 6.41657 4.66191i 0.554307 0.402727i
\(135\) 0 0
\(136\) 2.49700 7.68499i 0.214116 0.658982i
\(137\) 10.2483 + 7.44586i 0.875576 + 0.636143i 0.932077 0.362260i \(-0.117995\pi\)
−0.0565017 + 0.998403i \(0.517995\pi\)
\(138\) 6.37328 + 4.63046i 0.542529 + 0.394171i
\(139\) −1.10371 + 3.39686i −0.0936153 + 0.288118i −0.986890 0.161392i \(-0.948402\pi\)
0.893275 + 0.449511i \(0.148402\pi\)
\(140\) 0 0
\(141\) −4.37328 + 3.17737i −0.368296 + 0.267583i
\(142\) −21.2463 −1.78295
\(143\) 11.8362 + 0.803076i 0.989793 + 0.0671566i
\(144\) 7.32351 0.610292
\(145\) 0 0
\(146\) 13.1547 + 40.4860i 1.08869 + 3.35064i
\(147\) 4.60534 14.1738i 0.379842 1.16903i
\(148\) 14.4563 + 10.5031i 1.18830 + 0.863351i
\(149\) −16.1266 11.7166i −1.32114 0.959864i −0.999917 0.0128604i \(-0.995906\pi\)
−0.321222 0.947004i \(-0.604094\pi\)
\(150\) 0 0
\(151\) 0.926207 + 2.85057i 0.0753737 + 0.231976i 0.981644 0.190722i \(-0.0610829\pi\)
−0.906270 + 0.422698i \(0.861083\pi\)
\(152\) 36.5976 26.5897i 2.96846 2.15671i
\(153\) −1.26146 −0.101983
\(154\) −14.7606 + 36.7523i −1.18944 + 2.96158i
\(155\) 0 0
\(156\) −13.0525 + 9.48321i −1.04504 + 0.759264i
\(157\) −2.05320 6.31909i −0.163863 0.504318i 0.835088 0.550117i \(-0.185417\pi\)
−0.998951 + 0.0457985i \(0.985417\pi\)
\(158\) −5.94659 + 18.3017i −0.473085 + 1.45601i
\(159\) 10.6404 + 7.73068i 0.843836 + 0.613083i
\(160\) 0 0
\(161\) 4.46513 13.7423i 0.351902 1.08304i
\(162\) −0.788477 2.42668i −0.0619486 0.190658i
\(163\) −5.30475 + 3.85412i −0.415500 + 0.301878i −0.775825 0.630949i \(-0.782666\pi\)
0.360325 + 0.932827i \(0.382666\pi\)
\(164\) 23.6757 1.84876
\(165\) 0 0
\(166\) 12.3068 0.955196
\(167\) −17.6509 + 12.8241i −1.36586 + 0.992358i −0.367817 + 0.929898i \(0.619895\pi\)
−0.998047 + 0.0624601i \(0.980105\pi\)
\(168\) −9.26404 28.5118i −0.714736 2.19973i
\(169\) −0.0634720 + 0.195347i −0.00488246 + 0.0150267i
\(170\) 0 0
\(171\) −5.71332 4.15097i −0.436908 0.317433i
\(172\) 13.6203 41.9190i 1.03854 3.19629i
\(173\) −7.72296 23.7688i −0.587166 1.80711i −0.590393 0.807116i \(-0.701027\pi\)
0.00322738 0.999995i \(-0.498973\pi\)
\(174\) 12.7881 9.29107i 0.969461 0.704354i
\(175\) 0 0
\(176\) 5.92484 + 23.5556i 0.446602 + 1.77557i
\(177\) −0.530595 −0.0398819
\(178\) −12.5045 + 9.08507i −0.937254 + 0.680955i
\(179\) −4.37107 13.4528i −0.326709 1.00551i −0.970663 0.240443i \(-0.922707\pi\)
0.643954 0.765064i \(-0.277293\pi\)
\(180\) 0 0
\(181\) −8.71154 6.32930i −0.647524 0.470454i 0.214903 0.976635i \(-0.431056\pi\)
−0.862427 + 0.506182i \(0.831056\pi\)
\(182\) 34.5566 + 25.1069i 2.56151 + 1.86104i
\(183\) 1.89518 5.83277i 0.140096 0.431171i
\(184\) −6.11146 18.8091i −0.450543 1.38663i
\(185\) 0 0
\(186\) 0.169599 0.0124356
\(187\) −1.02054 4.05740i −0.0746293 0.296707i
\(188\) 24.3822 1.77825
\(189\) −3.78627 + 2.75088i −0.275410 + 0.200097i
\(190\) 0 0
\(191\) 0.739552 2.27611i 0.0535121 0.164693i −0.920729 0.390203i \(-0.872405\pi\)
0.974241 + 0.225510i \(0.0724048\pi\)
\(192\) −0.277992 0.201973i −0.0200623 0.0145761i
\(193\) 10.1469 + 7.37212i 0.730386 + 0.530657i 0.889686 0.456574i \(-0.150924\pi\)
−0.159299 + 0.987230i \(0.550924\pi\)
\(194\) −2.39782 + 7.37974i −0.172154 + 0.529834i
\(195\) 0 0
\(196\) −54.3826 + 39.5113i −3.88447 + 2.82224i
\(197\) −16.3419 −1.16431 −0.582157 0.813076i \(-0.697791\pi\)
−0.582157 + 0.813076i \(0.697791\pi\)
\(198\) 7.16739 4.49932i 0.509364 0.319753i
\(199\) 3.55103 0.251726 0.125863 0.992048i \(-0.459830\pi\)
0.125863 + 0.992048i \(0.459830\pi\)
\(200\) 0 0
\(201\) 0.960552 + 2.95627i 0.0677521 + 0.208519i
\(202\) 0.795213 2.44741i 0.0559510 0.172199i
\(203\) −23.4559 17.0417i −1.64628 1.19609i
\(204\) 4.60313 + 3.34437i 0.322284 + 0.234153i
\(205\) 0 0
\(206\) 5.28295 + 16.2592i 0.368080 + 1.13284i
\(207\) −2.49779 + 1.81475i −0.173608 + 0.126134i
\(208\) 26.1958 1.81636
\(209\) 8.72917 21.7348i 0.603810 1.50342i
\(210\) 0 0
\(211\) −21.4425 + 15.5789i −1.47616 + 1.07249i −0.497394 + 0.867525i \(0.665710\pi\)
−0.978768 + 0.204970i \(0.934290\pi\)
\(212\) −18.3318 56.4194i −1.25903 3.87490i
\(213\) 2.57311 7.91923i 0.176307 0.542617i
\(214\) −16.0648 11.6718i −1.09817 0.797865i
\(215\) 0 0
\(216\) −1.97946 + 6.09215i −0.134685 + 0.414518i
\(217\) −0.0961288 0.295854i −0.00652565 0.0200839i
\(218\) −17.8564 + 12.9734i −1.20939 + 0.878673i
\(219\) −16.6837 −1.12738
\(220\) 0 0
\(221\) −4.51217 −0.303522
\(222\) −8.17788 + 5.94157i −0.548863 + 0.398772i
\(223\) −5.01902 15.4469i −0.336098 1.03440i −0.966179 0.257874i \(-0.916978\pi\)
0.630080 0.776530i \(-0.283022\pi\)
\(224\) −8.49668 + 26.1501i −0.567708 + 1.74723i
\(225\) 0 0
\(226\) 15.5303 + 11.2835i 1.03306 + 0.750564i
\(227\) 1.45023 4.46335i 0.0962552 0.296243i −0.891324 0.453368i \(-0.850222\pi\)
0.987579 + 0.157125i \(0.0502225\pi\)
\(228\) 9.84320 + 30.2943i 0.651882 + 2.00629i
\(229\) 16.8388 12.2341i 1.11274 0.808452i 0.129646 0.991560i \(-0.458616\pi\)
0.983093 + 0.183109i \(0.0586160\pi\)
\(230\) 0 0
\(231\) −11.9112 9.95279i −0.783700 0.654846i
\(232\) −39.6830 −2.60532
\(233\) −4.23540 + 3.07720i −0.277470 + 0.201594i −0.717813 0.696236i \(-0.754857\pi\)
0.440343 + 0.897830i \(0.354857\pi\)
\(234\) −2.82035 8.68013i −0.184372 0.567438i
\(235\) 0 0
\(236\) 1.93617 + 1.40671i 0.126034 + 0.0915691i
\(237\) −6.10150 4.43300i −0.396335 0.287954i
\(238\) 4.65495 14.3265i 0.301736 0.928647i
\(239\) 3.93438 + 12.1088i 0.254494 + 0.783251i 0.993929 + 0.110023i \(0.0350925\pi\)
−0.739435 + 0.673227i \(0.764907\pi\)
\(240\) 0 0
\(241\) −7.26505 −0.467983 −0.233991 0.972239i \(-0.575179\pi\)
−0.233991 + 0.972239i \(0.575179\pi\)
\(242\) 20.2703 + 19.4135i 1.30303 + 1.24794i
\(243\) 1.00000 0.0641500
\(244\) −22.3795 + 16.2596i −1.43270 + 1.04092i
\(245\) 0 0
\(246\) −4.13874 + 12.7377i −0.263876 + 0.812128i
\(247\) −20.4363 14.8478i −1.30033 0.944745i
\(248\) −0.344460 0.250265i −0.0218733 0.0158919i
\(249\) −1.49047 + 4.58719i −0.0944545 + 0.290701i
\(250\) 0 0
\(251\) −0.630031 + 0.457745i −0.0397672 + 0.0288926i −0.607491 0.794326i \(-0.707824\pi\)
0.567724 + 0.823219i \(0.307824\pi\)
\(252\) 21.1095 1.32977
\(253\) −7.85780 6.56583i −0.494015 0.412790i
\(254\) 34.5425 2.16739
\(255\) 0 0
\(256\) −8.78578 27.0399i −0.549111 1.68999i
\(257\) 1.16380 3.58180i 0.0725957 0.223427i −0.908175 0.418591i \(-0.862524\pi\)
0.980771 + 0.195164i \(0.0625240\pi\)
\(258\) 20.1718 + 14.6557i 1.25584 + 0.912423i
\(259\) 14.9999 + 10.8980i 0.932047 + 0.677172i
\(260\) 0 0
\(261\) 1.91436 + 5.89178i 0.118496 + 0.364692i
\(262\) −4.04936 + 2.94203i −0.250170 + 0.181759i
\(263\) −4.75625 −0.293283 −0.146641 0.989190i \(-0.546846\pi\)
−0.146641 + 0.989190i \(0.546846\pi\)
\(264\) −21.1965 1.43816i −1.30455 0.0885127i
\(265\) 0 0
\(266\) 68.2258 49.5690i 4.18319 3.03927i
\(267\) −1.87191 5.76115i −0.114559 0.352577i
\(268\) 4.33255 13.3342i 0.264653 0.814518i
\(269\) 20.7208 + 15.0545i 1.26337 + 0.917890i 0.998918 0.0465103i \(-0.0148100\pi\)
0.264449 + 0.964400i \(0.414810\pi\)
\(270\) 0 0
\(271\) −2.52155 + 7.76053i −0.153173 + 0.471418i −0.997971 0.0636668i \(-0.979721\pi\)
0.844798 + 0.535085i \(0.179721\pi\)
\(272\) −2.85479 8.78613i −0.173097 0.532738i
\(273\) −13.5433 + 9.83979i −0.819678 + 0.595531i
\(274\) 32.3224 1.95266
\(275\) 0 0
\(276\) 13.9259 0.838238
\(277\) 13.2479 9.62518i 0.795990 0.578321i −0.113745 0.993510i \(-0.536285\pi\)
0.909735 + 0.415189i \(0.136285\pi\)
\(278\) 2.81618 + 8.66732i 0.168903 + 0.519831i
\(279\) −0.0205400 + 0.0632155i −0.00122970 + 0.00378461i
\(280\) 0 0
\(281\) 6.97214 + 5.06555i 0.415923 + 0.302186i 0.775995 0.630739i \(-0.217248\pi\)
−0.360072 + 0.932924i \(0.617248\pi\)
\(282\) −4.26224 + 13.1178i −0.253813 + 0.781156i
\(283\) 1.42689 + 4.39150i 0.0848196 + 0.261048i 0.984467 0.175569i \(-0.0561765\pi\)
−0.899648 + 0.436617i \(0.856177\pi\)
\(284\) −30.3849 + 22.0759i −1.80301 + 1.30996i
\(285\) 0 0
\(286\) 25.6374 16.0939i 1.51597 0.951649i
\(287\) 24.5659 1.45008
\(288\) 4.75303 3.45328i 0.280075 0.203487i
\(289\) −4.76156 14.6546i −0.280092 0.862034i
\(290\) 0 0
\(291\) −2.46029 1.78750i −0.144224 0.104785i
\(292\) 60.8797 + 44.2317i 3.56272 + 2.58847i
\(293\) 8.87006 27.2992i 0.518194 1.59484i −0.259199 0.965824i \(-0.583459\pi\)
0.777394 0.629014i \(-0.216541\pi\)
\(294\) −11.7508 36.1653i −0.685322 2.10920i
\(295\) 0 0
\(296\) 25.3770 1.47501
\(297\) 0.809017 + 3.21644i 0.0469439 + 0.186637i
\(298\) −50.8617 −2.94634
\(299\) −8.93448 + 6.49128i −0.516695 + 0.375401i
\(300\) 0 0
\(301\) 14.1324 43.4952i 0.814580 2.50702i
\(302\) 6.18714 + 4.49522i 0.356030 + 0.258671i
\(303\) 0.815928 + 0.592806i 0.0468738 + 0.0340558i
\(304\) 15.9820 49.1877i 0.916633 2.82111i
\(305\) 0 0
\(306\) −2.60397 + 1.89190i −0.148859 + 0.108153i
\(307\) −16.0240 −0.914540 −0.457270 0.889328i \(-0.651173\pi\)
−0.457270 + 0.889328i \(0.651173\pi\)
\(308\) 17.0779 + 67.8973i 0.973104 + 3.86881i
\(309\) −6.70019 −0.381161
\(310\) 0 0
\(311\) 2.62367 + 8.07483i 0.148775 + 0.457881i 0.997477 0.0709893i \(-0.0226156\pi\)
−0.848702 + 0.528871i \(0.822616\pi\)
\(312\) −7.08044 + 21.7913i −0.400851 + 1.23369i
\(313\) −6.73522 4.89343i −0.380697 0.276593i 0.380935 0.924602i \(-0.375602\pi\)
−0.761633 + 0.648009i \(0.775602\pi\)
\(314\) −13.7155 9.96491i −0.774012 0.562353i
\(315\) 0 0
\(316\) 10.5120 + 32.3525i 0.591345 + 1.81997i
\(317\) 23.9680 17.4138i 1.34618 0.978055i 0.346985 0.937871i \(-0.387206\pi\)
0.999192 0.0401842i \(-0.0127945\pi\)
\(318\) 33.5587 1.88188
\(319\) −17.4018 + 10.9240i −0.974315 + 0.611625i
\(320\) 0 0
\(321\) 6.29606 4.57435i 0.351412 0.255315i
\(322\) −11.3931 35.0643i −0.634912 1.95406i
\(323\) −2.75287 + 8.47246i −0.153174 + 0.471420i
\(324\) −3.64906 2.65120i −0.202726 0.147289i
\(325\) 0 0
\(326\) −5.17006 + 15.9118i −0.286343 + 0.881274i
\(327\) −2.67308 8.22690i −0.147822 0.454949i
\(328\) 27.2020 19.7634i 1.50198 1.09125i
\(329\) 25.2990 1.39478
\(330\) 0 0
\(331\) 15.5731 0.855973 0.427987 0.903785i \(-0.359223\pi\)
0.427987 + 0.903785i \(0.359223\pi\)
\(332\) 17.6003 12.7874i 0.965944 0.701799i
\(333\) −1.22422 3.76775i −0.0670867 0.206472i
\(334\) −17.2027 + 52.9445i −0.941291 + 2.89700i
\(335\) 0 0
\(336\) −27.7288 20.1461i −1.51273 1.09906i
\(337\) −6.85189 + 21.0880i −0.373246 + 1.14873i 0.571408 + 0.820666i \(0.306398\pi\)
−0.944654 + 0.328068i \(0.893602\pi\)
\(338\) 0.161953 + 0.498440i 0.00880908 + 0.0271115i
\(339\) −6.08660 + 4.42217i −0.330578 + 0.240179i
\(340\) 0 0
\(341\) −0.219946 0.0149232i −0.0119107 0.000808134i
\(342\) −18.0193 −0.974371
\(343\) −29.9236 + 21.7408i −1.61572 + 1.17389i
\(344\) −19.3432 59.5322i −1.04291 3.20976i
\(345\) 0 0
\(346\) −51.5900 37.4824i −2.77350 2.01506i
\(347\) −21.2348 15.4280i −1.13994 0.828218i −0.152833 0.988252i \(-0.548840\pi\)
−0.987112 + 0.160034i \(0.948840\pi\)
\(348\) 8.63468 26.5748i 0.462867 1.42456i
\(349\) 2.83135 + 8.71401i 0.151559 + 0.466450i 0.997796 0.0663563i \(-0.0211374\pi\)
−0.846237 + 0.532806i \(0.821137\pi\)
\(350\) 0 0
\(351\) 3.57695 0.190924
\(352\) 14.9526 + 12.4941i 0.796974 + 0.665937i
\(353\) 8.20404 0.436657 0.218329 0.975875i \(-0.429940\pi\)
0.218329 + 0.975875i \(0.429940\pi\)
\(354\) −1.09528 + 0.795771i −0.0582137 + 0.0422948i
\(355\) 0 0
\(356\) −8.44323 + 25.9856i −0.447490 + 1.37723i
\(357\) 4.77621 + 3.47012i 0.252784 + 0.183658i
\(358\) −29.1991 21.2144i −1.54322 1.12122i
\(359\) 1.51338 4.65771i 0.0798732 0.245824i −0.903144 0.429338i \(-0.858747\pi\)
0.983017 + 0.183513i \(0.0587470\pi\)
\(360\) 0 0
\(361\) −24.9764 + 18.1464i −1.31455 + 0.955076i
\(362\) −27.4754 −1.44407
\(363\) −9.69098 + 5.20431i −0.508645 + 0.273155i
\(364\) 75.5075 3.95767
\(365\) 0 0
\(366\) −4.83568 14.8827i −0.252765 0.777931i
\(367\) −2.53803 + 7.81124i −0.132484 + 0.407744i −0.995190 0.0979618i \(-0.968768\pi\)
0.862706 + 0.505705i \(0.168768\pi\)
\(368\) −18.2926 13.2903i −0.953567 0.692807i
\(369\) −4.24655 3.08530i −0.221067 0.160614i
\(370\) 0 0
\(371\) −19.0211 58.5409i −0.987525 3.03929i
\(372\) 0.242548 0.176222i 0.0125755 0.00913667i
\(373\) 2.37553 0.123000 0.0615002 0.998107i \(-0.480412\pi\)
0.0615002 + 0.998107i \(0.480412\pi\)
\(374\) −8.19184 6.84495i −0.423590 0.353944i
\(375\) 0 0
\(376\) 28.0138 20.3532i 1.44470 1.04964i
\(377\) 6.84757 + 21.0746i 0.352668 + 1.08540i
\(378\) −3.69014 + 11.3571i −0.189800 + 0.584145i
\(379\) 12.9398 + 9.40129i 0.664671 + 0.482912i 0.868237 0.496149i \(-0.165253\pi\)
−0.203566 + 0.979061i \(0.565253\pi\)
\(380\) 0 0
\(381\) −4.18340 + 12.8752i −0.214322 + 0.659616i
\(382\) −1.88701 5.80763i −0.0965480 0.297144i
\(383\) −9.25413 + 6.72352i −0.472864 + 0.343556i −0.798556 0.601920i \(-0.794403\pi\)
0.325692 + 0.945476i \(0.394403\pi\)
\(384\) 10.8734 0.554880
\(385\) 0 0
\(386\) 32.0022 1.62887
\(387\) −7.90567 + 5.74380i −0.401868 + 0.291974i
\(388\) 4.23871 + 13.0454i 0.215188 + 0.662280i
\(389\) −1.46609 + 4.51215i −0.0743335 + 0.228775i −0.981319 0.192386i \(-0.938377\pi\)
0.906986 + 0.421161i \(0.138377\pi\)
\(390\) 0 0
\(391\) 3.15086 + 2.28923i 0.159346 + 0.115771i
\(392\) −29.5003 + 90.7925i −1.48999 + 4.58571i
\(393\) −0.606183 1.86564i −0.0305779 0.0941091i
\(394\) −33.7340 + 24.5092i −1.69949 + 1.23475i
\(395\) 0 0
\(396\) 5.57527 13.8818i 0.280168 0.697589i
\(397\) 14.5521 0.730349 0.365174 0.930939i \(-0.381009\pi\)
0.365174 + 0.930939i \(0.381009\pi\)
\(398\) 7.33025 5.32574i 0.367432 0.266955i
\(399\) 10.2133 + 31.4334i 0.511305 + 1.57364i
\(400\) 0 0
\(401\) 3.28406 + 2.38601i 0.163998 + 0.119152i 0.666757 0.745275i \(-0.267682\pi\)
−0.502759 + 0.864426i \(0.667682\pi\)
\(402\) 6.41657 + 4.66191i 0.320029 + 0.232515i
\(403\) −0.0734705 + 0.226119i −0.00365983 + 0.0112638i
\(404\) −1.40572 4.32637i −0.0699373 0.215245i
\(405\) 0 0
\(406\) −73.9777 −3.67145
\(407\) 11.1283 6.98580i 0.551612 0.346273i
\(408\) 8.08047 0.400043
\(409\) 30.5098 22.1666i 1.50861 1.09607i 0.541821 0.840494i \(-0.317735\pi\)
0.966789 0.255575i \(-0.0822649\pi\)
\(410\) 0 0
\(411\) −3.91452 + 12.0477i −0.193089 + 0.594267i
\(412\) 24.4494 + 17.7635i 1.20454 + 0.875146i
\(413\) 2.00897 + 1.45960i 0.0988551 + 0.0718224i
\(414\) −2.43438 + 7.49224i −0.119643 + 0.368223i
\(415\) 0 0
\(416\) 17.0014 12.3522i 0.833561 0.605618i
\(417\) −3.57167 −0.174906
\(418\) −14.5779 57.9580i −0.713029 2.83482i
\(419\) −22.2849 −1.08869 −0.544343 0.838862i \(-0.683221\pi\)
−0.544343 + 0.838862i \(0.683221\pi\)
\(420\) 0 0
\(421\) 3.05146 + 9.39144i 0.148719 + 0.457711i 0.997471 0.0710815i \(-0.0226451\pi\)
−0.848751 + 0.528792i \(0.822645\pi\)
\(422\) −20.8981 + 64.3177i −1.01730 + 3.13094i
\(423\) −4.37328 3.17737i −0.212636 0.154489i
\(424\) −68.1587 49.5202i −3.31008 2.40491i
\(425\) 0 0
\(426\) −6.56547 20.2064i −0.318098 0.979005i
\(427\) −23.2209 + 16.8710i −1.12374 + 0.816445i
\(428\) −35.1022 −1.69673
\(429\) 2.89382 + 11.5051i 0.139715 + 0.555470i
\(430\) 0 0
\(431\) −17.1940 + 12.4922i −0.828206 + 0.601727i −0.919051 0.394138i \(-0.871043\pi\)
0.0908454 + 0.995865i \(0.471043\pi\)
\(432\) 2.26309 + 6.96507i 0.108883 + 0.335107i
\(433\) −3.50401 + 10.7842i −0.168392 + 0.518256i −0.999270 0.0381974i \(-0.987838\pi\)
0.830878 + 0.556454i \(0.187838\pi\)
\(434\) −0.642148 0.466548i −0.0308241 0.0223950i
\(435\) 0 0
\(436\) −12.0569 + 37.1073i −0.577421 + 1.77712i
\(437\) 6.73770 + 20.7365i 0.322308 + 0.991962i
\(438\) −34.4394 + 25.0217i −1.64558 + 1.19558i
\(439\) −35.1241 −1.67638 −0.838192 0.545376i \(-0.816387\pi\)
−0.838192 + 0.545376i \(0.816387\pi\)
\(440\) 0 0
\(441\) 14.9032 0.709676
\(442\) −9.31430 + 6.76723i −0.443036 + 0.321884i
\(443\) 3.39408 + 10.4459i 0.161258 + 0.496300i 0.998741 0.0501626i \(-0.0159740\pi\)
−0.837483 + 0.546463i \(0.815974\pi\)
\(444\) −5.52181 + 16.9944i −0.262054 + 0.806518i
\(445\) 0 0
\(446\) −33.5275 24.3591i −1.58757 1.15344i
\(447\) 6.15980 18.9579i 0.291349 0.896679i
\(448\) 0.496947 + 1.52945i 0.0234785 + 0.0722595i
\(449\) 17.0288 12.3722i 0.803640 0.583879i −0.108339 0.994114i \(-0.534553\pi\)
0.911980 + 0.410235i \(0.134553\pi\)
\(450\) 0 0
\(451\) 6.48816 16.1548i 0.305515 0.760702i
\(452\) 33.9344 1.59614
\(453\) −2.42484 + 1.76175i −0.113929 + 0.0827743i
\(454\) −3.70036 11.3885i −0.173666 0.534490i
\(455\) 0 0
\(456\) 36.5976 + 26.5897i 1.71384 + 1.24518i
\(457\) 1.86346 + 1.35388i 0.0871690 + 0.0633320i 0.630516 0.776176i \(-0.282843\pi\)
−0.543347 + 0.839508i \(0.682843\pi\)
\(458\) 16.4113 50.5087i 0.766848 2.36012i
\(459\) −0.389812 1.19972i −0.0181948 0.0559980i
\(460\) 0 0
\(461\) −26.4118 −1.23012 −0.615060 0.788480i \(-0.710868\pi\)
−0.615060 + 0.788480i \(0.710868\pi\)
\(462\) −39.5148 2.68104i −1.83839 0.124733i
\(463\) 3.54115 0.164571 0.0822857 0.996609i \(-0.473778\pi\)
0.0822857 + 0.996609i \(0.473778\pi\)
\(464\) −36.7043 + 26.6673i −1.70396 + 1.23800i
\(465\) 0 0
\(466\) −4.12787 + 12.7043i −0.191220 + 0.588514i
\(467\) −4.90157 3.56120i −0.226818 0.164793i 0.468573 0.883425i \(-0.344768\pi\)
−0.695390 + 0.718632i \(0.744768\pi\)
\(468\) −13.0525 9.48321i −0.603353 0.438361i
\(469\) 4.49546 13.8356i 0.207581 0.638869i
\(470\) 0 0
\(471\) 5.37534 3.90541i 0.247683 0.179952i
\(472\) 3.39881 0.156443
\(473\) −24.8704 20.7813i −1.14354 0.955524i
\(474\) −19.2436 −0.883886
\(475\) 0 0
\(476\) −8.22871 25.3254i −0.377162 1.16079i
\(477\) −4.06426 + 12.5085i −0.186090 + 0.572725i
\(478\) 26.2820 + 19.0950i 1.20211 + 0.873383i
\(479\) 20.8807 + 15.1707i 0.954065 + 0.693169i 0.951765 0.306829i \(-0.0992679\pi\)
0.00230002 + 0.999997i \(0.499268\pi\)
\(480\) 0 0
\(481\) −4.37897 13.4771i −0.199664 0.614502i
\(482\) −14.9969 + 10.8959i −0.683092 + 0.496296i
\(483\) 14.4495 0.657474
\(484\) 49.1606 + 6.70186i 2.23457 + 0.304630i
\(485\) 0 0
\(486\) 2.06426 1.49977i 0.0936367 0.0680311i
\(487\) −3.13584 9.65113i −0.142099 0.437335i 0.854528 0.519406i \(-0.173847\pi\)
−0.996626 + 0.0820709i \(0.973847\pi\)
\(488\) −12.1399 + 37.3628i −0.549548 + 1.69133i
\(489\) −5.30475 3.85412i −0.239889 0.174289i
\(490\) 0 0
\(491\) −8.23976 + 25.3594i −0.371855 + 1.14445i 0.573721 + 0.819051i \(0.305500\pi\)
−0.945576 + 0.325402i \(0.894500\pi\)
\(492\) 7.31618 + 22.5169i 0.329839 + 1.01514i
\(493\) 6.32223 4.59337i 0.284739 0.206875i
\(494\) −64.4541 −2.89993
\(495\) 0 0
\(496\) −0.486784 −0.0218573
\(497\) −31.5274 + 22.9060i −1.41420 + 1.02747i
\(498\) 3.80302 + 11.7045i 0.170418 + 0.524491i
\(499\) 4.12879 12.7071i 0.184830 0.568848i −0.815116 0.579298i \(-0.803327\pi\)
0.999945 + 0.0104507i \(0.00332661\pi\)
\(500\) 0 0
\(501\) −17.6509 12.8241i −0.788582 0.572938i
\(502\) −0.614036 + 1.88981i −0.0274058 + 0.0843462i
\(503\) −9.94239 30.5995i −0.443309 1.36436i −0.884328 0.466867i \(-0.845383\pi\)
0.441019 0.897498i \(-0.354617\pi\)
\(504\) 24.2536 17.6213i 1.08034 0.784913i
\(505\) 0 0
\(506\) −26.0678 1.76868i −1.15885 0.0786273i
\(507\) −0.205400 −0.00912212
\(508\) 49.4002 35.8913i 2.19178 1.59242i
\(509\) −8.13704 25.0432i −0.360668 1.11002i −0.952649 0.304071i \(-0.901654\pi\)
0.591981 0.805952i \(-0.298346\pi\)
\(510\) 0 0
\(511\) 63.1689 + 45.8949i 2.79443 + 2.03027i
\(512\) −41.0963 29.8582i −1.81622 1.31956i
\(513\) 2.18229 6.71641i 0.0963506 0.296537i
\(514\) −2.96951 9.13920i −0.130979 0.403113i
\(515\) 0 0
\(516\) 44.0762 1.94035
\(517\) 6.68177 16.6369i 0.293864 0.731691i
\(518\) 47.3082 2.07860
\(519\) 20.2190 14.6899i 0.887514 0.644817i
\(520\) 0 0
\(521\) 2.60439 8.01548i 0.114100 0.351165i −0.877658 0.479287i \(-0.840895\pi\)
0.991758 + 0.128123i \(0.0408952\pi\)
\(522\) 12.7881 + 9.29107i 0.559718 + 0.406659i
\(523\) 35.8647 + 26.0572i 1.56825 + 1.13940i 0.928805 + 0.370569i \(0.120837\pi\)
0.639449 + 0.768834i \(0.279163\pi\)
\(524\) −2.73418 + 8.41494i −0.119443 + 0.367609i
\(525\) 0 0
\(526\) −9.81814 + 7.13329i −0.428091 + 0.311026i
\(527\) 0.0838474 0.00365245
\(528\) −20.5719 + 12.9139i −0.895275 + 0.562007i
\(529\) −13.4677 −0.585553
\(530\) 0 0
\(531\) −0.163963 0.504625i −0.00711538 0.0218989i
\(532\) 46.0670 141.780i 1.99726 6.14693i
\(533\) −15.1897 11.0360i −0.657940 0.478021i
\(534\) −12.5045 9.08507i −0.541124 0.393149i
\(535\) 0 0
\(536\) −6.15297 18.9369i −0.265768 0.817950i
\(537\) 11.4436 8.31426i 0.493828 0.358787i
\(538\) 65.3513 2.81750
\(539\) 12.0569 + 47.9352i 0.519329 + 2.06472i
\(540\) 0 0
\(541\) −15.7376 + 11.4340i −0.676612 + 0.491588i −0.872232 0.489092i \(-0.837328\pi\)
0.195620 + 0.980680i \(0.437328\pi\)
\(542\) 6.43390 + 19.8015i 0.276359 + 0.850547i
\(543\) 3.32751 10.2410i 0.142797 0.439485i
\(544\) −5.99575 4.35616i −0.257066 0.186769i
\(545\) 0 0
\(546\) −13.1995 + 40.6238i −0.564885 + 1.73854i
\(547\) 9.65655 + 29.7198i 0.412884 + 1.27073i 0.914130 + 0.405422i \(0.132875\pi\)
−0.501246 + 0.865305i \(0.667125\pi\)
\(548\) 46.2250 33.5844i 1.97464 1.43466i
\(549\) 6.13294 0.261747
\(550\) 0 0
\(551\) 43.7493 1.86378
\(552\) 16.0000 11.6247i 0.681006 0.494780i
\(553\) 10.9072 + 33.5690i 0.463823 + 1.42750i
\(554\) 12.9116 39.7377i 0.548560 1.68829i
\(555\) 0 0
\(556\) 13.0333 + 9.46921i 0.552733 + 0.401584i
\(557\) 0.0834344 0.256785i 0.00353523 0.0108803i −0.949273 0.314452i \(-0.898179\pi\)
0.952809 + 0.303572i \(0.0981792\pi\)
\(558\) 0.0524091 + 0.161298i 0.00221865 + 0.00682831i
\(559\) −28.2782 + 20.5453i −1.19604 + 0.868974i
\(560\) 0 0
\(561\) 3.54345 2.22440i 0.149605 0.0939141i
\(562\) 21.9895 0.927570
\(563\) 7.85538 5.70727i 0.331065 0.240533i −0.409818 0.912167i \(-0.634408\pi\)
0.740882 + 0.671635i \(0.234408\pi\)
\(564\) 7.53451 + 23.1888i 0.317260 + 0.976426i
\(565\) 0 0
\(566\) 9.53172 + 6.92520i 0.400648 + 0.291088i
\(567\) −3.78627 2.75088i −0.159008 0.115526i
\(568\) −16.4825 + 50.7279i −0.691591 + 2.12850i
\(569\) −8.23881 25.3564i −0.345389 1.06300i −0.961375 0.275241i \(-0.911242\pi\)
0.615986 0.787757i \(-0.288758\pi\)
\(570\) 0 0
\(571\) 13.1870 0.551858 0.275929 0.961178i \(-0.411015\pi\)
0.275929 + 0.961178i \(0.411015\pi\)
\(572\) 19.9425 49.6547i 0.833837 2.07617i
\(573\) 2.39324 0.0999790
\(574\) 50.7104 36.8433i 2.11661 1.53781i
\(575\) 0 0
\(576\) 0.106183 0.326799i 0.00442431 0.0136166i
\(577\) 1.04024 + 0.755776i 0.0433056 + 0.0314634i 0.609227 0.792996i \(-0.291480\pi\)
−0.565922 + 0.824459i \(0.691480\pi\)
\(578\) −31.8076 23.1096i −1.32302 0.961232i
\(579\) −3.87575 + 11.9283i −0.161071 + 0.495725i
\(580\) 0 0
\(581\) 18.2621 13.2682i 0.757641 0.550458i
\(582\) −7.75951 −0.321642
\(583\) −43.5209 2.95286i −1.80245 0.122295i
\(584\) 106.870 4.42232
\(585\) 0 0
\(586\) −22.6325 69.6558i −0.934941 2.87745i
\(587\) 8.64897 26.6188i 0.356981 1.09867i −0.597871 0.801593i \(-0.703986\pi\)
0.954852 0.297082i \(-0.0960136\pi\)
\(588\) −54.3826 39.5113i −2.24270 1.62942i
\(589\) 0.379757 + 0.275910i 0.0156476 + 0.0113687i
\(590\) 0 0
\(591\) −5.04993 15.5421i −0.207727 0.639316i
\(592\) 23.4722 17.0535i 0.964700 0.700895i
\(593\) −0.0168463 −0.000691794 −0.000345897 1.00000i \(-0.500110\pi\)
−0.000345897 1.00000i \(0.500110\pi\)
\(594\) 6.49395 + 5.42623i 0.266450 + 0.222641i
\(595\) 0 0
\(596\) −72.7386 + 52.8477i −2.97949 + 2.16473i
\(597\) 1.09733 + 3.37723i 0.0449107 + 0.138221i
\(598\) −8.70765 + 26.7994i −0.356082 + 1.09591i
\(599\) −2.73720 1.98869i −0.111839 0.0812556i 0.530460 0.847710i \(-0.322019\pi\)
−0.642299 + 0.766454i \(0.722019\pi\)
\(600\) 0 0
\(601\) 10.1001 31.0848i 0.411991 1.26798i −0.502924 0.864331i \(-0.667743\pi\)
0.914915 0.403647i \(-0.132257\pi\)
\(602\) −36.0598 110.981i −1.46969 4.52324i
\(603\) −2.51476 + 1.82708i −0.102409 + 0.0744044i
\(604\) 13.5191 0.550086
\(605\) 0 0
\(606\) 2.57336 0.104536
\(607\) 2.99601 2.17673i 0.121604 0.0883508i −0.525321 0.850904i \(-0.676055\pi\)
0.646925 + 0.762554i \(0.276055\pi\)
\(608\) −12.8211 39.4594i −0.519966 1.60029i
\(609\) 8.95935 27.5740i 0.363051 1.11736i
\(610\) 0 0
\(611\) −15.6430 11.3653i −0.632848 0.459791i
\(612\) −1.75824 + 5.41130i −0.0710726 + 0.218739i
\(613\) −5.19689 15.9944i −0.209900 0.646007i −0.999476 0.0323540i \(-0.989700\pi\)
0.789576 0.613652i \(-0.210300\pi\)
\(614\) −33.0778 + 24.0324i −1.33491 + 0.969869i
\(615\) 0 0
\(616\) 76.2993 + 63.7543i 3.07419 + 2.56873i
\(617\) −21.3317 −0.858782 −0.429391 0.903119i \(-0.641272\pi\)
−0.429391 + 0.903119i \(0.641272\pi\)
\(618\) −13.8309 + 10.0488i −0.556362 + 0.404221i
\(619\) −8.06437 24.8196i −0.324134 0.997583i −0.971830 0.235684i \(-0.924267\pi\)
0.647696 0.761899i \(-0.275733\pi\)
\(620\) 0 0
\(621\) −2.49779 1.81475i −0.100233 0.0728235i
\(622\) 17.5263 + 12.7336i 0.702742 + 0.510572i
\(623\) −8.76070 + 26.9627i −0.350990 + 1.08024i
\(624\) 8.09496 + 24.9137i 0.324058 + 0.997348i
\(625\) 0 0
\(626\) −21.2423 −0.849012
\(627\) 23.3684 + 1.58553i 0.933246 + 0.0633199i
\(628\) −29.9689 −1.19589
\(629\) −4.04302 + 2.93743i −0.161206 + 0.117123i
\(630\) 0 0
\(631\) −1.89929 + 5.84541i −0.0756095 + 0.232702i −0.981717 0.190345i \(-0.939039\pi\)
0.906108 + 0.423047i \(0.139039\pi\)
\(632\) 39.0842 + 28.3963i 1.55468 + 1.12954i
\(633\) −21.4425 15.5789i −0.852263 0.619205i
\(634\) 23.3595 71.8931i 0.927724 2.85524i
\(635\) 0 0
\(636\) 47.9932 34.8691i 1.90306 1.38265i
\(637\) 53.3080 2.11214
\(638\) −19.5384 + 48.6487i −0.773534 + 1.92602i
\(639\) 8.32677 0.329402
\(640\) 0 0
\(641\) 5.02090 + 15.4527i 0.198314 + 0.610346i 0.999922 + 0.0124968i \(0.00397795\pi\)
−0.801608 + 0.597849i \(0.796022\pi\)
\(642\) 6.13621 18.8853i 0.242177 0.745343i
\(643\) 24.2596 + 17.6256i 0.956706 + 0.695088i 0.952383 0.304903i \(-0.0986240\pi\)
0.00432270 + 0.999991i \(0.498624\pi\)
\(644\) −52.7270 38.3084i −2.07773 1.50956i
\(645\) 0 0
\(646\) 7.02413 + 21.6180i 0.276361 + 0.850550i
\(647\) 6.02094 4.37447i 0.236708 0.171978i −0.463108 0.886302i \(-0.653266\pi\)
0.699815 + 0.714324i \(0.253266\pi\)
\(648\) −6.40567 −0.251638
\(649\) 1.49045 0.935627i 0.0585052 0.0367266i
\(650\) 0 0
\(651\) 0.251668 0.182848i 0.00986366 0.00716637i
\(652\) 9.13929 + 28.1278i 0.357922 + 1.10157i
\(653\) −4.74939 + 14.6171i −0.185858 + 0.572012i −0.999962 0.00870717i \(-0.997228\pi\)
0.814104 + 0.580719i \(0.197228\pi\)
\(654\) −17.8564 12.9734i −0.698241 0.507302i
\(655\) 0 0
\(656\) 11.8790 36.5598i 0.463798 1.42742i
\(657\) −5.15554 15.8671i −0.201137 0.619035i
\(658\) 52.2237 37.9427i 2.03589 1.47916i
\(659\) 28.5540 1.11231 0.556153 0.831080i \(-0.312277\pi\)
0.556153 + 0.831080i \(0.312277\pi\)
\(660\) 0 0
\(661\) 4.57096 0.177790 0.0888949 0.996041i \(-0.471666\pi\)
0.0888949 + 0.996041i \(0.471666\pi\)
\(662\) 32.1469 23.3561i 1.24942 0.907759i
\(663\) −1.39434 4.29133i −0.0541516 0.166662i
\(664\) 9.54743 29.3840i 0.370512 1.14032i
\(665\) 0 0
\(666\) −8.17788 5.94157i −0.316886 0.230231i
\(667\) 5.91046 18.1905i 0.228854 0.704340i
\(668\) 30.4098 + 93.5918i 1.17659 + 3.62117i
\(669\) 13.1400 9.54674i 0.508020 0.369098i
\(670\) 0 0
\(671\) 4.96165 + 19.7262i 0.191542 + 0.761523i
\(672\) −27.4958 −1.06067
\(673\) 25.5314 18.5497i 0.984165 0.715038i 0.0255293 0.999674i \(-0.491873\pi\)
0.958636 + 0.284636i \(0.0918729\pi\)
\(674\) 17.4831 + 53.8073i 0.673422 + 2.07258i
\(675\) 0 0
\(676\) 0.749515 + 0.544555i 0.0288275 + 0.0209444i
\(677\) −23.5996 17.1461i −0.907005 0.658978i 0.0332504 0.999447i \(-0.489414\pi\)
−0.940256 + 0.340469i \(0.889414\pi\)
\(678\) −5.93206 + 18.2570i −0.227820 + 0.701157i
\(679\) 4.39809 + 13.5359i 0.168783 + 0.519461i
\(680\) 0 0
\(681\) 4.69305 0.179838
\(682\) −0.476407 + 0.299064i −0.0182426 + 0.0114517i
\(683\) −19.1870 −0.734171 −0.367085 0.930187i \(-0.619644\pi\)
−0.367085 + 0.930187i \(0.619644\pi\)
\(684\) −25.7698 + 18.7229i −0.985335 + 0.715887i
\(685\) 0 0
\(686\) −29.1639 + 89.7572i −1.11348 + 3.42695i
\(687\) 16.8388 + 12.2341i 0.642440 + 0.466760i
\(688\) −57.8972 42.0648i −2.20731 1.60370i
\(689\) −14.5377 + 44.7423i −0.553841 + 1.70455i
\(690\) 0 0
\(691\) −23.9225 + 17.3807i −0.910054 + 0.661193i −0.941028 0.338327i \(-0.890139\pi\)
0.0309746 + 0.999520i \(0.490139\pi\)
\(692\) −112.726 −4.28521
\(693\) 5.78490 14.4038i 0.219750 0.547156i
\(694\) −66.9726 −2.54225
\(695\) 0 0
\(696\) −12.2627 37.7408i −0.464818 1.43056i
\(697\) −2.04613 + 6.29735i −0.0775028 + 0.238529i
\(698\) 18.9137 + 13.7416i 0.715893 + 0.520127i
\(699\) −4.23540 3.07720i −0.160198 0.116390i
\(700\) 0 0
\(701\) −3.99294 12.2890i −0.150811 0.464150i 0.846901 0.531750i \(-0.178466\pi\)
−0.997712 + 0.0676008i \(0.978466\pi\)
\(702\) 7.38376 5.36462i 0.278682 0.202474i
\(703\) −27.9774 −1.05519
\(704\) 1.13703 + 0.0771467i 0.0428536 + 0.00290758i
\(705\) 0 0
\(706\) 16.9353 12.3042i 0.637367 0.463074i
\(707\) −1.45858 4.48905i −0.0548555 0.168828i
\(708\) −0.739552 + 2.27611i −0.0277940 + 0.0855413i
\(709\) 31.5066 + 22.8909i 1.18325 + 0.859685i 0.992535 0.121960i \(-0.0389180\pi\)
0.190719 + 0.981645i \(0.438918\pi\)
\(710\) 0 0
\(711\) 2.33057 7.17274i 0.0874030 0.268999i
\(712\) 11.9908 + 36.9040i 0.449376 + 1.38304i
\(713\) 0.166025 0.120624i 0.00621768 0.00451741i
\(714\) 15.0637 0.563746
\(715\) 0 0
\(716\) −63.8011 −2.38436
\(717\) −10.3003 + 7.48363i −0.384673 + 0.279481i
\(718\) −3.86149 11.8844i −0.144109 0.443523i
\(719\) 2.76283 8.50313i 0.103036 0.317113i −0.886228 0.463249i \(-0.846684\pi\)
0.989265 + 0.146136i \(0.0466836\pi\)
\(720\) 0 0
\(721\) 25.3687 + 18.4315i 0.944781 + 0.686423i
\(722\) −24.3423 + 74.9179i −0.905927 + 2.78816i
\(723\) −2.24502 6.90947i −0.0834933 0.256966i
\(724\) −39.2933 + 28.5482i −1.46032 + 1.06099i
\(725\) 0 0
\(726\) −12.1994 + 25.2773i −0.452763 + 0.938129i
\(727\) 21.8843 0.811645 0.405822 0.913952i \(-0.366985\pi\)
0.405822 + 0.913952i \(0.366985\pi\)
\(728\) 86.7539 63.0304i 3.21531 2.33606i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) 9.97266 + 7.24556i 0.368852 + 0.267987i
\(732\) −22.3795 16.2596i −0.827168 0.600973i
\(733\) 6.65654 20.4867i 0.245865 0.756695i −0.749628 0.661859i \(-0.769768\pi\)
0.995493 0.0948352i \(-0.0302324\pi\)
\(734\) 6.47594 + 19.9309i 0.239031 + 0.735663i
\(735\) 0 0
\(736\) −18.1389 −0.668610
\(737\) −7.91117 6.61043i −0.291412 0.243498i
\(738\) −13.3932 −0.493012
\(739\) −10.2697 + 7.46140i −0.377778 + 0.274472i −0.760429 0.649421i \(-0.775011\pi\)
0.382651 + 0.923893i \(0.375011\pi\)
\(740\) 0 0
\(741\) 7.80596 24.0243i 0.286759 0.882554i
\(742\) −127.062 92.3163i −4.66461 3.38904i
\(743\) 35.0121 + 25.4378i 1.28447 + 0.933222i 0.999678 0.0253671i \(-0.00807546\pi\)
0.284792 + 0.958589i \(0.408075\pi\)
\(744\) 0.131572 0.404937i 0.00482367 0.0148457i
\(745\) 0 0
\(746\) 4.90371 3.56276i 0.179538 0.130442i
\(747\) −4.82325 −0.176474
\(748\) −18.8276 1.27744i −0.688405 0.0467077i
\(749\) −36.4221 −1.33083
\(750\) 0 0
\(751\) −3.87381 11.9224i −0.141357 0.435053i 0.855167 0.518352i \(-0.173454\pi\)
−0.996525 + 0.0832991i \(0.973454\pi\)
\(752\) 12.2335 37.6508i 0.446110 1.37299i
\(753\) −0.630031 0.457745i −0.0229596 0.0166811i
\(754\) 45.7423 + 33.2337i 1.66584 + 1.21030i
\(755\) 0 0
\(756\) 6.52318 + 20.0763i 0.237246 + 0.730167i
\(757\) 5.19634 3.77536i 0.188864 0.137218i −0.489335 0.872096i \(-0.662761\pi\)
0.678199 + 0.734878i \(0.262761\pi\)
\(758\) 40.8108 1.48232
\(759\) 3.81628 9.50216i 0.138522 0.344907i
\(760\) 0 0
\(761\) 9.25080 6.72110i 0.335341 0.243640i −0.407352 0.913271i \(-0.633548\pi\)
0.742694 + 0.669631i \(0.233548\pi\)
\(762\) 10.6742 + 32.8519i 0.386686 + 1.19010i
\(763\) −12.5103 + 38.5026i −0.452902 + 1.39389i
\(764\) −8.73307 6.34495i −0.315951 0.229552i
\(765\) 0 0
\(766\) −9.01918 + 27.7582i −0.325876 + 1.00294i
\(767\) −0.586487 1.80502i −0.0211768 0.0651756i
\(768\) 23.0015 16.7115i 0.829994 0.603026i
\(769\) −4.53314 −0.163469 −0.0817347 0.996654i \(-0.526046\pi\)
−0.0817347 + 0.996654i \(0.526046\pi\)
\(770\) 0 0
\(771\) 3.76613 0.135634
\(772\) 45.7672 33.2518i 1.64720 1.19676i
\(773\) 8.50349 + 26.1711i 0.305849 + 0.941307i 0.979359 + 0.202129i \(0.0647860\pi\)
−0.673510 + 0.739178i \(0.735214\pi\)
\(774\) −7.70495 + 23.7134i −0.276949 + 0.852361i
\(775\) 0 0
\(776\) 15.7598 + 11.4501i 0.565743 + 0.411036i
\(777\) −5.72944 + 17.6334i −0.205543 + 0.632595i
\(778\) 3.74082 + 11.5130i 0.134115 + 0.412763i
\(779\) −29.9894 + 21.7886i −1.07448 + 0.780656i
\(780\) 0 0
\(781\) 6.73650 + 26.7826i 0.241051 + 0.958355i
\(782\) 9.93751 0.355365
\(783\) −5.01185 + 3.64132i −0.179109 + 0.130130i
\(784\) 33.7272 + 103.802i 1.20454 + 3.70721i
\(785\) 0 0
\(786\) −4.04936 2.94203i −0.144436 0.104939i
\(787\) −15.2852 11.1054i −0.544860 0.395864i 0.281027 0.959700i \(-0.409325\pi\)
−0.825887 + 0.563836i \(0.809325\pi\)
\(788\) −22.7777 + 70.1024i −0.811420 + 2.49729i
\(789\) −1.46976 4.52346i −0.0523249 0.161040i
\(790\) 0 0
\(791\) 35.2104 1.25194
\(792\) −5.18229 20.6034i −0.184145 0.732112i
\(793\) 21.9372 0.779014
\(794\) 30.0393 21.8248i 1.06606 0.774534i
\(795\) 0 0
\(796\) 4.94949 15.2330i 0.175430 0.539918i
\(797\) 42.4072 + 30.8106i 1.50214 + 1.09137i 0.969520 + 0.245012i \(0.0787920\pi\)
0.532619 + 0.846355i \(0.321208\pi\)
\(798\) 68.2258 + 49.5690i 2.41517 + 1.75472i
\(799\) −2.10719 + 6.48527i −0.0745471 + 0.229432i
\(800\) 0 0
\(801\) 4.90073 3.56059i 0.173159 0.125807i
\(802\) 10.3576 0.365740
\(803\) 46.8647 29.4193i 1.65382 1.03818i
\(804\) 14.0204 0.494463
\(805\) 0 0
\(806\) 0.187465 + 0.576957i 0.00660317 + 0.0203225i
\(807\) −7.91462 + 24.3587i −0.278608 + 0.857467i
\(808\) −5.22656 3.79732i −0.183870 0.133589i
\(809\) −33.7974 24.5552i −1.18825 0.863316i −0.195174 0.980769i \(-0.562527\pi\)
−0.993079 + 0.117452i \(0.962527\pi\)
\(810\) 0 0
\(811\) 0.863901 + 2.65881i 0.0303357 + 0.0933636i 0.965078 0.261963i \(-0.0843697\pi\)
−0.934742 + 0.355326i \(0.884370\pi\)
\(812\) −105.797 + 76.8663i −3.71276 + 2.69748i
\(813\) −8.15990 −0.286180
\(814\) 12.4947 31.1105i 0.437938 1.09042i
\(815\) 0 0
\(816\) 7.47393 5.43013i 0.261640 0.190093i
\(817\) 21.3252 + 65.6324i 0.746076 + 2.29619i
\(818\) 29.7351 91.5154i 1.03966 3.19976i
\(819\) −13.5433 9.83979i −0.473241 0.343830i
\(820\) 0 0
\(821\) 10.6038 32.6350i 0.370074 1.13897i −0.576669 0.816978i \(-0.695648\pi\)
0.946742 0.321992i \(-0.104352\pi\)
\(822\) 9.98816 + 30.7404i 0.348377 + 1.07219i
\(823\) −16.5505 + 12.0246i −0.576913 + 0.419152i −0.837610 0.546269i \(-0.816048\pi\)
0.260697 + 0.965421i \(0.416048\pi\)
\(824\) 42.9192 1.49516
\(825\) 0 0
\(826\) 6.33612 0.220462
\(827\) 24.0909 17.5030i 0.837721 0.608640i −0.0840120 0.996465i \(-0.526773\pi\)
0.921733 + 0.387825i \(0.126773\pi\)
\(828\) 4.30332 + 13.2443i 0.149551 + 0.460270i
\(829\) 7.09633 21.8403i 0.246466 0.758543i −0.748926 0.662653i \(-0.769430\pi\)
0.995392 0.0958900i \(-0.0305697\pi\)
\(830\) 0 0
\(831\) 13.2479 + 9.62518i 0.459565 + 0.333894i
\(832\) 0.379813 1.16894i 0.0131676 0.0405259i
\(833\) −5.80944 17.8796i −0.201285 0.619492i
\(834\) −7.37286 + 5.35670i −0.255301 + 0.185487i
\(835\) 0 0
\(836\) −81.0693 67.7400i −2.80384 2.34284i
\(837\) −0.0664687 −0.00229749
\(838\) −46.0017 + 33.4222i −1.58910 + 1.15455i
\(839\) 10.9370 + 33.6605i 0.377586 + 1.16209i 0.941718 + 0.336405i \(0.109211\pi\)
−0.564132 + 0.825685i \(0.690789\pi\)
\(840\) 0 0
\(841\) −7.58686 5.51218i −0.261616 0.190075i
\(842\) 20.3840 + 14.8099i 0.702480 + 0.510382i
\(843\) −2.66312 + 8.19624i −0.0917227 + 0.282293i
\(844\) 36.9422 + 113.697i 1.27160 + 3.91360i
\(845\) 0 0
\(846\) −13.7929 −0.474210
\(847\) 51.0091 + 6.95386i 1.75269 + 0.238938i
\(848\) −96.3204 −3.30766
\(849\) −3.73564 + 2.71410i −0.128207 + 0.0931476i
\(850\) 0 0
\(851\) −3.77970 + 11.6327i −0.129566 + 0.398764i
\(852\) −30.3849 22.0759i −1.04097 0.756308i
\(853\) −26.3017 19.1093i −0.900553 0.654290i 0.0380547 0.999276i \(-0.487884\pi\)
−0.938608 + 0.344985i \(0.887884\pi\)
\(854\) −22.6314 + 69.6523i −0.774430 + 2.38345i
\(855\) 0 0
\(856\) −40.3304 + 29.3018i −1.37847 + 1.00151i
\(857\) −27.6562 −0.944717 −0.472359 0.881406i \(-0.656597\pi\)
−0.472359 + 0.881406i \(0.656597\pi\)
\(858\) 23.2286 + 19.4094i 0.793010 + 0.662625i
\(859\) −22.5040 −0.767828 −0.383914 0.923369i \(-0.625424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(860\) 0 0
\(861\) 7.59128 + 23.3636i 0.258710 + 0.796228i
\(862\) −16.7575 + 51.5742i −0.570761 + 1.75662i
\(863\) 16.0229 + 11.6413i 0.545425 + 0.396275i 0.826096 0.563529i \(-0.190557\pi\)
−0.280671 + 0.959804i \(0.590557\pi\)
\(864\) 4.75303 + 3.45328i 0.161701 + 0.117483i
\(865\) 0 0
\(866\) 8.94070 + 27.5166i 0.303817 + 0.935053i
\(867\) 12.4659 9.05702i 0.423365 0.307593i
\(868\) −1.40312 −0.0476249
\(869\) 24.9562 + 1.69325i 0.846580 + 0.0574397i
\(870\) 0 0
\(871\) −8.99517 + 6.53537i −0.304790 + 0.221443i
\(872\) 17.1229 + 52.6988i 0.579854 + 1.78461i
\(873\) 0.939745 2.89224i 0.0318056 0.0978875i
\(874\) 45.0084 + 32.7005i 1.52243 + 1.10611i
\(875\) 0 0
\(876\) −23.2540 + 71.5684i −0.785679 + 2.41807i
\(877\) −5.28357 16.2612i −0.178414 0.549100i 0.821359 0.570411i \(-0.193216\pi\)
−0.999773 + 0.0213106i \(0.993216\pi\)
\(878\) −72.5053 + 52.6782i −2.44694 + 1.77780i
\(879\) 28.7041 0.968166
\(880\) 0 0
\(881\) −2.50707 −0.0844655 −0.0422327 0.999108i \(-0.513447\pi\)
−0.0422327 + 0.999108i \(0.513447\pi\)
\(882\) 30.7641 22.3514i 1.03588 0.752611i
\(883\) 4.72729 + 14.5491i 0.159086 + 0.489616i 0.998552 0.0537961i \(-0.0171321\pi\)
−0.839466 + 0.543412i \(0.817132\pi\)
\(884\) −6.28914 + 19.3560i −0.211527 + 0.651012i
\(885\) 0 0
\(886\) 22.6728 + 16.4727i 0.761706 + 0.553412i
\(887\) 11.7959 36.3041i 0.396068 1.21897i −0.532058 0.846708i \(-0.678581\pi\)
0.928127 0.372265i \(-0.121419\pi\)
\(888\) 7.84193 + 24.1350i 0.263158 + 0.809917i
\(889\) 51.2577 37.2409i 1.71913 1.24902i
\(890\) 0 0
\(891\) −2.80902 + 1.76336i −0.0941056 + 0.0590746i
\(892\) −73.2588 −2.45288
\(893\) −30.8843 + 22.4388i −1.03350 + 0.750884i
\(894\) −15.7171 48.3724i −0.525660 1.61781i
\(895\) 0 0
\(896\) −41.1695 29.9114i −1.37538 0.999271i
\(897\) −8.93448 6.49128i −0.298314 0.216738i
\(898\) 16.5965 51.0788i 0.553832 1.70452i
\(899\) −0.127245 0.391619i −0.00424385 0.0130612i
\(900\) 0 0
\(901\) 16.5910 0.552725
\(902\) −10.8354 43.0786i −0.360778 1.43436i
\(903\) 45.7335 1.52192
\(904\) 38.9887 28.3270i 1.29675 0.942140i
\(905\) 0 0
\(906\) −2.36328 + 7.27342i −0.0785147 + 0.241643i
\(907\) −30.2406 21.9711i −1.00412 0.729538i −0.0411548 0.999153i \(-0.513104\pi\)
−0.962968 + 0.269615i \(0.913104\pi\)
\(908\) −17.1252 12.4422i −0.568320 0.412908i
\(909\) −0.311657 + 0.959181i −0.0103370 + 0.0318140i
\(910\) 0 0
\(911\) −10.6651 + 7.74862i −0.353349 + 0.256723i −0.750273 0.661128i \(-0.770078\pi\)
0.396923 + 0.917852i \(0.370078\pi\)
\(912\) 51.7190 1.71259
\(913\) −3.90209 15.5137i −0.129140 0.513429i
\(914\) 5.87718 0.194400
\(915\) 0 0
\(916\) −29.0107 89.2859i −0.958542 2.95009i
\(917\) −2.83699 + 8.73136i −0.0936856 + 0.288335i
\(918\) −2.60397 1.89190i −0.0859440 0.0624419i
\(919\) −29.4640 21.4069i −0.971928 0.706147i −0.0160380 0.999871i \(-0.505105\pi\)
−0.955890 + 0.293724i \(0.905105\pi\)
\(920\) 0 0
\(921\) −4.95170 15.2398i −0.163164 0.502167i
\(922\) −54.5208 + 39.6117i −1.79555 + 1.30454i
\(923\) 29.7845 0.980368
\(924\) −59.2968 + 37.2235i −1.95072 + 1.22456i
\(925\) 0 0
\(926\) 7.30986 5.31092i 0.240217 0.174528i
\(927\) −2.07047 6.37226i −0.0680033 0.209293i
\(928\) −11.2470 + 34.6147i −0.369200 + 1.13628i
\(929\) −46.8900 34.0676i −1.53841 1.11772i −0.951321 0.308201i \(-0.900273\pi\)
−0.587091 0.809521i \(-0.699727\pi\)
\(930\) 0 0
\(931\) 32.5231 100.096i 1.06590 3.28051i
\(932\) 7.29697 + 22.4578i 0.239020 + 0.735628i
\(933\) −6.86886 + 4.99052i −0.224876 + 0.163382i
\(934\) −15.4591 −0.505837
\(935\) 0 0
\(936\) −22.9128 −0.748928
\(937\) −23.2210 + 16.8710i −0.758597 + 0.551153i −0.898480 0.439015i \(-0.855328\pi\)
0.139883 + 0.990168i \(0.455328\pi\)
\(938\) −11.4705 35.3025i −0.374524 1.15267i
\(939\) 2.57263 7.91773i 0.0839545 0.258385i
\(940\) 0 0
\(941\) 35.9126 + 26.0920i 1.17072 + 0.850576i 0.991095 0.133160i \(-0.0425123\pi\)
0.179623 + 0.983736i \(0.442512\pi\)
\(942\) 5.23887 16.1236i 0.170691 0.525334i
\(943\) 5.00795 + 15.4129i 0.163081 + 0.501912i
\(944\) 3.14369 2.28402i 0.102318 0.0743386i
\(945\) 0 0
\(946\) −82.5062 5.59798i −2.68251 0.182006i
\(947\) 45.1635 1.46762 0.733808 0.679357i \(-0.237741\pi\)
0.733808 + 0.679357i \(0.237741\pi\)
\(948\) −27.5207 + 19.9950i −0.893832 + 0.649407i
\(949\) −18.4411 56.7560i −0.598624 1.84238i
\(950\) 0 0
\(951\) 23.9680 + 17.4138i 0.777216 + 0.564680i
\(952\) −30.5948 22.2284i −0.991584 0.720428i
\(953\) −5.54050 + 17.0519i −0.179474 + 0.552366i −0.999810 0.0195176i \(-0.993787\pi\)
0.820335 + 0.571883i \(0.193787\pi\)
\(954\) 10.3702 + 31.9163i 0.335748 + 1.03333i
\(955\) 0 0
\(956\) 57.4271 1.85732
\(957\) −15.7668 13.1744i −0.509667 0.425869i
\(958\) 65.8559 2.12771
\(959\) 47.9631 34.8473i 1.54881 1.12528i
\(960\) 0 0
\(961\) −9.57816 + 29.4786i −0.308973 + 0.950921i
\(962\) −29.2519 21.2527i −0.943119 0.685216i
\(963\) 6.29606 + 4.57435i 0.202888 + 0.147406i
\(964\) −10.1261 + 31.1651i −0.326141 + 1.00376i
\(965\) 0 0
\(966\) 29.8275 21.6709i 0.959683 0.697251i
\(967\) −13.2272 −0.425359 −0.212680 0.977122i \(-0.568219\pi\)
−0.212680 + 0.977122i \(0.568219\pi\)
\(968\) 62.0772 33.3371i 1.99524 1.07149i
\(969\) −8.90847 −0.286181
\(970\) 0 0
\(971\) 7.03809 + 21.6610i 0.225863 + 0.695135i 0.998203 + 0.0599256i \(0.0190864\pi\)
−0.772340 + 0.635210i \(0.780914\pi\)
\(972\) 1.39382 4.28973i 0.0447067 0.137593i
\(973\) 13.5233 + 9.82526i 0.433538 + 0.314984i
\(974\) −20.9477 15.2194i −0.671208 0.487661i
\(975\) 0 0
\(976\) 13.8794 + 42.7163i 0.444268 + 1.36732i
\(977\) −2.42978 + 1.76534i −0.0777356 + 0.0564782i −0.625974 0.779844i \(-0.715299\pi\)
0.548239 + 0.836322i \(0.315299\pi\)
\(978\) −16.7307 −0.534988
\(979\) 15.4172 + 12.8823i 0.492736 + 0.411721i
\(980\) 0 0
\(981\) 6.99822 5.08451i 0.223436 0.162336i
\(982\) 21.0243 + 64.7061i 0.670912 + 2.06485i
\(983\) −3.20721 + 9.87077i −0.102294 + 0.314829i −0.989086 0.147341i \(-0.952929\pi\)
0.886792 + 0.462169i \(0.152929\pi\)
\(984\) 27.2020 + 19.7634i 0.867168 + 0.630035i
\(985\) 0 0
\(986\) 6.16172 18.9638i 0.196229 0.603931i
\(987\) 7.81781 + 24.0608i 0.248844 + 0.765862i
\(988\) −92.1775 + 66.9709i −2.93256 + 2.13063i
\(989\) 30.1703 0.959359
\(990\) 0 0
\(991\) 10.8144 0.343529 0.171765 0.985138i \(-0.445053\pi\)
0.171765 + 0.985138i \(0.445053\pi\)
\(992\) −0.315928 + 0.229535i −0.0100307 + 0.00728775i
\(993\) 4.81234 + 14.8109i 0.152715 + 0.470009i
\(994\) −30.7269 + 94.5678i −0.974599 + 2.99951i
\(995\) 0 0
\(996\) 17.6003 + 12.7874i 0.557688 + 0.405184i
\(997\) −1.55343 + 4.78096i −0.0491976 + 0.151415i −0.972637 0.232329i \(-0.925365\pi\)
0.923440 + 0.383744i \(0.125365\pi\)
\(998\) −10.5349 32.4230i −0.333475 1.02633i
\(999\) 3.20504 2.32860i 0.101403 0.0736736i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.n.l.751.2 yes 8
5.2 odd 4 825.2.bx.i.124.4 16
5.3 odd 4 825.2.bx.i.124.1 16
5.4 even 2 825.2.n.h.751.1 yes 8
11.2 odd 10 9075.2.a.dh.1.4 4
11.4 even 5 inner 825.2.n.l.301.2 yes 8
11.9 even 5 9075.2.a.cp.1.1 4
55.4 even 10 825.2.n.h.301.1 8
55.9 even 10 9075.2.a.de.1.4 4
55.24 odd 10 9075.2.a.cn.1.1 4
55.37 odd 20 825.2.bx.i.499.1 16
55.48 odd 20 825.2.bx.i.499.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.2.n.h.301.1 8 55.4 even 10
825.2.n.h.751.1 yes 8 5.4 even 2
825.2.n.l.301.2 yes 8 11.4 even 5 inner
825.2.n.l.751.2 yes 8 1.1 even 1 trivial
825.2.bx.i.124.1 16 5.3 odd 4
825.2.bx.i.124.4 16 5.2 odd 4
825.2.bx.i.499.1 16 55.37 odd 20
825.2.bx.i.499.4 16 55.48 odd 20
9075.2.a.cn.1.1 4 55.24 odd 10
9075.2.a.cp.1.1 4 11.9 even 5
9075.2.a.de.1.4 4 55.9 even 10
9075.2.a.dh.1.4 4 11.2 odd 10