Properties

Label 825.2.n.n.676.3
Level $825$
Weight $2$
Character 825.676
Analytic conductor $6.588$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(301,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 9 x^{14} - 15 x^{13} + 44 x^{12} - 61 x^{11} + 208 x^{10} - 281 x^{9} + 851 x^{8} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 676.3
Root \(1.13858 - 0.827228i\) of defining polynomial
Character \(\chi\) \(=\) 825.676
Dual form 825.2.n.n.526.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.434899 + 1.33848i) q^{2} +(0.809017 + 0.587785i) q^{3} +(0.0156350 - 0.0113595i) q^{4} +(-0.434899 + 1.33848i) q^{6} +(1.75053 - 1.27183i) q^{7} +(2.29917 + 1.67044i) q^{8} +(0.309017 + 0.951057i) q^{9} +(-2.30777 - 2.38206i) q^{11} +0.0193259 q^{12} +(0.756861 + 2.32938i) q^{13} +(2.46363 + 1.78993i) q^{14} +(-1.22401 + 3.76711i) q^{16} +(0.750133 - 2.30867i) q^{17} +(-1.13858 + 0.827228i) q^{18} +(4.03915 + 2.93461i) q^{19} +2.16377 q^{21} +(2.18469 - 4.12487i) q^{22} +2.41686 q^{23} +(0.878204 + 2.70283i) q^{24} +(-2.78868 + 2.02609i) q^{26} +(-0.309017 + 0.951057i) q^{27} +(0.0129221 - 0.0397702i) q^{28} +(-4.39054 + 3.18992i) q^{29} +(0.713252 + 2.19517i) q^{31} +0.109320 q^{32} +(-0.466888 - 3.28360i) q^{33} +3.41635 q^{34} +(0.0156350 + 0.0113595i) q^{36} +(7.57149 - 5.50101i) q^{37} +(-2.17131 + 6.68259i) q^{38} +(-0.756861 + 2.32938i) q^{39} +(-4.78007 - 3.47293i) q^{41} +(0.941023 + 2.89617i) q^{42} +3.11043 q^{43} +(-0.0631409 - 0.0110283i) q^{44} +(1.05109 + 3.23493i) q^{46} +(-9.70136 - 7.04845i) q^{47} +(-3.20450 + 2.32820i) q^{48} +(-0.716330 + 2.20464i) q^{49} +(1.96387 - 1.42684i) q^{51} +(0.0382941 + 0.0278223i) q^{52} +(2.18021 + 6.71000i) q^{53} -1.40736 q^{54} +6.14928 q^{56} +(1.54282 + 4.74830i) q^{57} +(-6.17909 - 4.48937i) q^{58} +(-3.46225 + 2.51548i) q^{59} +(-1.59567 + 4.91096i) q^{61} +(-2.62800 + 1.90935i) q^{62} +(1.75053 + 1.27183i) q^{63} +(2.49556 + 7.68054i) q^{64} +(4.19199 - 2.05296i) q^{66} -14.0857 q^{67} +(-0.0144970 - 0.0446172i) q^{68} +(1.95528 + 1.42060i) q^{69} +(2.10763 - 6.48661i) q^{71} +(-0.878204 + 2.70283i) q^{72} +(2.91403 - 2.11717i) q^{73} +(10.6558 + 7.74193i) q^{74} +0.0964877 q^{76} +(-7.06940 - 1.23476i) q^{77} -3.44699 q^{78} +(-3.30738 - 10.1791i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(2.56960 - 7.90842i) q^{82} +(0.736627 - 2.26711i) q^{83} +(0.0338306 - 0.0245793i) q^{84} +(1.35272 + 4.16326i) q^{86} -5.42701 q^{87} +(-1.32686 - 9.33175i) q^{88} -10.3078 q^{89} +(4.28749 + 3.11504i) q^{91} +(0.0377877 - 0.0274543i) q^{92} +(-0.713252 + 2.19517i) q^{93} +(5.21511 - 16.0505i) q^{94} +(0.0884418 + 0.0642567i) q^{96} +(-1.63060 - 5.01848i) q^{97} -3.26240 q^{98} +(1.55233 - 2.93092i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 4 q^{3} - 6 q^{4} - 2 q^{6} - 4 q^{7} - 4 q^{8} - 4 q^{9} + 3 q^{11} - 14 q^{12} - 11 q^{13} + 4 q^{14} + 16 q^{16} - 17 q^{17} - 3 q^{18} + 8 q^{19} - 16 q^{21} - 23 q^{22} - 14 q^{23}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.434899 + 1.33848i 0.307520 + 0.946450i 0.978725 + 0.205178i \(0.0657773\pi\)
−0.671204 + 0.741272i \(0.734223\pi\)
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i
\(4\) 0.0156350 0.0113595i 0.00781750 0.00567974i
\(5\) 0 0
\(6\) −0.434899 + 1.33848i −0.177547 + 0.546433i
\(7\) 1.75053 1.27183i 0.661637 0.480708i −0.205578 0.978641i \(-0.565907\pi\)
0.867216 + 0.497933i \(0.165907\pi\)
\(8\) 2.29917 + 1.67044i 0.812878 + 0.590591i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) −2.30777 2.38206i −0.695819 0.718217i
\(12\) 0.0193259 0.00557891
\(13\) 0.756861 + 2.32938i 0.209915 + 0.646053i 0.999476 + 0.0323802i \(0.0103087\pi\)
−0.789560 + 0.613673i \(0.789691\pi\)
\(14\) 2.46363 + 1.78993i 0.658433 + 0.478380i
\(15\) 0 0
\(16\) −1.22401 + 3.76711i −0.306002 + 0.941778i
\(17\) 0.750133 2.30867i 0.181934 0.559935i −0.817948 0.575292i \(-0.804888\pi\)
0.999882 + 0.0153569i \(0.00488844\pi\)
\(18\) −1.13858 + 0.827228i −0.268366 + 0.194979i
\(19\) 4.03915 + 2.93461i 0.926644 + 0.673246i 0.945169 0.326582i \(-0.105897\pi\)
−0.0185249 + 0.999828i \(0.505897\pi\)
\(20\) 0 0
\(21\) 2.16377 0.472174
\(22\) 2.18469 4.12487i 0.465778 0.879425i
\(23\) 2.41686 0.503951 0.251976 0.967734i \(-0.418920\pi\)
0.251976 + 0.967734i \(0.418920\pi\)
\(24\) 0.878204 + 2.70283i 0.179263 + 0.551714i
\(25\) 0 0
\(26\) −2.78868 + 2.02609i −0.546904 + 0.397349i
\(27\) −0.309017 + 0.951057i −0.0594703 + 0.183031i
\(28\) 0.0129221 0.0397702i 0.00244205 0.00751586i
\(29\) −4.39054 + 3.18992i −0.815303 + 0.592352i −0.915363 0.402629i \(-0.868096\pi\)
0.100060 + 0.994981i \(0.468096\pi\)
\(30\) 0 0
\(31\) 0.713252 + 2.19517i 0.128104 + 0.394263i 0.994454 0.105174i \(-0.0335400\pi\)
−0.866350 + 0.499438i \(0.833540\pi\)
\(32\) 0.109320 0.0193252
\(33\) −0.466888 3.28360i −0.0812748 0.571601i
\(34\) 3.41635 0.585899
\(35\) 0 0
\(36\) 0.0156350 + 0.0113595i 0.00260583 + 0.00189325i
\(37\) 7.57149 5.50101i 1.24475 0.904361i 0.246841 0.969056i \(-0.420608\pi\)
0.997905 + 0.0646952i \(0.0206075\pi\)
\(38\) −2.17131 + 6.68259i −0.352232 + 1.08406i
\(39\) −0.756861 + 2.32938i −0.121195 + 0.372999i
\(40\) 0 0
\(41\) −4.78007 3.47293i −0.746522 0.542380i 0.148225 0.988954i \(-0.452644\pi\)
−0.894747 + 0.446574i \(0.852644\pi\)
\(42\) 0.941023 + 2.89617i 0.145203 + 0.446889i
\(43\) 3.11043 0.474336 0.237168 0.971469i \(-0.423781\pi\)
0.237168 + 0.971469i \(0.423781\pi\)
\(44\) −0.0631409 0.0110283i −0.00951885 0.00166259i
\(45\) 0 0
\(46\) 1.05109 + 3.23493i 0.154975 + 0.476965i
\(47\) −9.70136 7.04845i −1.41509 1.02812i −0.992558 0.121773i \(-0.961142\pi\)
−0.422531 0.906349i \(-0.638858\pi\)
\(48\) −3.20450 + 2.32820i −0.462529 + 0.336047i
\(49\) −0.716330 + 2.20464i −0.102333 + 0.314948i
\(50\) 0 0
\(51\) 1.96387 1.42684i 0.274997 0.199797i
\(52\) 0.0382941 + 0.0278223i 0.00531043 + 0.00385825i
\(53\) 2.18021 + 6.71000i 0.299475 + 0.921690i 0.981681 + 0.190530i \(0.0610206\pi\)
−0.682206 + 0.731160i \(0.738979\pi\)
\(54\) −1.40736 −0.191518
\(55\) 0 0
\(56\) 6.14928 0.821732
\(57\) 1.54282 + 4.74830i 0.204351 + 0.628928i
\(58\) −6.17909 4.48937i −0.811354 0.589484i
\(59\) −3.46225 + 2.51548i −0.450747 + 0.327487i −0.789891 0.613248i \(-0.789863\pi\)
0.339144 + 0.940735i \(0.389863\pi\)
\(60\) 0 0
\(61\) −1.59567 + 4.91096i −0.204304 + 0.628783i 0.795437 + 0.606036i \(0.207241\pi\)
−0.999741 + 0.0227473i \(0.992759\pi\)
\(62\) −2.62800 + 1.90935i −0.333756 + 0.242488i
\(63\) 1.75053 + 1.27183i 0.220546 + 0.160236i
\(64\) 2.49556 + 7.68054i 0.311945 + 0.960068i
\(65\) 0 0
\(66\) 4.19199 2.05296i 0.515998 0.252701i
\(67\) −14.0857 −1.72084 −0.860422 0.509582i \(-0.829800\pi\)
−0.860422 + 0.509582i \(0.829800\pi\)
\(68\) −0.0144970 0.0446172i −0.00175802 0.00541063i
\(69\) 1.95528 + 1.42060i 0.235389 + 0.171020i
\(70\) 0 0
\(71\) 2.10763 6.48661i 0.250129 0.769819i −0.744621 0.667488i \(-0.767370\pi\)
0.994750 0.102332i \(-0.0326303\pi\)
\(72\) −0.878204 + 2.70283i −0.103497 + 0.318532i
\(73\) 2.91403 2.11717i 0.341062 0.247796i −0.404048 0.914738i \(-0.632397\pi\)
0.745110 + 0.666942i \(0.232397\pi\)
\(74\) 10.6558 + 7.74193i 1.23872 + 0.899981i
\(75\) 0 0
\(76\) 0.0964877 0.0110679
\(77\) −7.06940 1.23476i −0.805632 0.140714i
\(78\) −3.44699 −0.390295
\(79\) −3.30738 10.1791i −0.372110 1.14524i −0.945408 0.325889i \(-0.894336\pi\)
0.573298 0.819347i \(-0.305664\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 2.56960 7.90842i 0.283765 0.873339i
\(83\) 0.736627 2.26711i 0.0808553 0.248847i −0.902455 0.430785i \(-0.858237\pi\)
0.983310 + 0.181937i \(0.0582369\pi\)
\(84\) 0.0338306 0.0245793i 0.00369122 0.00268183i
\(85\) 0 0
\(86\) 1.35272 + 4.16326i 0.145868 + 0.448935i
\(87\) −5.42701 −0.581836
\(88\) −1.32686 9.33175i −0.141444 0.994767i
\(89\) −10.3078 −1.09262 −0.546310 0.837583i \(-0.683968\pi\)
−0.546310 + 0.837583i \(0.683968\pi\)
\(90\) 0 0
\(91\) 4.28749 + 3.11504i 0.449451 + 0.326545i
\(92\) 0.0377877 0.0274543i 0.00393964 0.00286231i
\(93\) −0.713252 + 2.19517i −0.0739608 + 0.227628i
\(94\) 5.21511 16.0505i 0.537898 1.65548i
\(95\) 0 0
\(96\) 0.0884418 + 0.0642567i 0.00902655 + 0.00655817i
\(97\) −1.63060 5.01848i −0.165563 0.509549i 0.833515 0.552497i \(-0.186325\pi\)
−0.999077 + 0.0429481i \(0.986325\pi\)
\(98\) −3.26240 −0.329552
\(99\) 1.55233 2.93092i 0.156015 0.294568i
\(100\) 0 0
\(101\) −4.89032 15.0509i −0.486605 1.49762i −0.829643 0.558294i \(-0.811456\pi\)
0.343038 0.939322i \(-0.388544\pi\)
\(102\) 2.76388 + 2.00808i 0.273665 + 0.198830i
\(103\) −1.41403 + 1.02735i −0.139329 + 0.101228i −0.655266 0.755398i \(-0.727444\pi\)
0.515938 + 0.856626i \(0.327444\pi\)
\(104\) −2.15094 + 6.61992i −0.210917 + 0.649137i
\(105\) 0 0
\(106\) −8.03305 + 5.83635i −0.780239 + 0.566877i
\(107\) 7.22247 + 5.24743i 0.698222 + 0.507288i 0.879353 0.476171i \(-0.157976\pi\)
−0.181131 + 0.983459i \(0.557976\pi\)
\(108\) 0.00597204 + 0.0183800i 0.000574659 + 0.00176862i
\(109\) −18.8496 −1.80546 −0.902730 0.430207i \(-0.858441\pi\)
−0.902730 + 0.430207i \(0.858441\pi\)
\(110\) 0 0
\(111\) 9.35888 0.888306
\(112\) 2.64848 + 8.15117i 0.250257 + 0.770213i
\(113\) −0.568323 0.412911i −0.0534633 0.0388434i 0.560733 0.827997i \(-0.310520\pi\)
−0.614196 + 0.789154i \(0.710520\pi\)
\(114\) −5.68455 + 4.13007i −0.532407 + 0.386816i
\(115\) 0 0
\(116\) −0.0324103 + 0.0997486i −0.00300922 + 0.00926142i
\(117\) −1.98149 + 1.43964i −0.183189 + 0.133094i
\(118\) −4.87265 3.54019i −0.448564 0.325901i
\(119\) −1.62312 4.99544i −0.148791 0.457931i
\(120\) 0 0
\(121\) −0.348388 + 10.9945i −0.0316716 + 0.999498i
\(122\) −7.26718 −0.657940
\(123\) −1.82582 5.61931i −0.164629 0.506676i
\(124\) 0.0360876 + 0.0262192i 0.00324077 + 0.00235455i
\(125\) 0 0
\(126\) −0.941023 + 2.89617i −0.0838330 + 0.258011i
\(127\) 5.96078 18.3454i 0.528933 1.62789i −0.227471 0.973785i \(-0.573046\pi\)
0.756404 0.654104i \(-0.226954\pi\)
\(128\) −9.01808 + 6.55202i −0.797093 + 0.579122i
\(129\) 2.51639 + 1.82826i 0.221556 + 0.160970i
\(130\) 0 0
\(131\) −0.731549 −0.0639157 −0.0319579 0.999489i \(-0.510174\pi\)
−0.0319579 + 0.999489i \(0.510174\pi\)
\(132\) −0.0445998 0.0460354i −0.00388191 0.00400687i
\(133\) 10.8030 0.936737
\(134\) −6.12587 18.8535i −0.529195 1.62869i
\(135\) 0 0
\(136\) 5.58118 4.05497i 0.478583 0.347711i
\(137\) −4.17135 + 12.8381i −0.356382 + 1.09683i 0.598821 + 0.800883i \(0.295636\pi\)
−0.955204 + 0.295949i \(0.904364\pi\)
\(138\) −1.05109 + 3.23493i −0.0894750 + 0.275376i
\(139\) 13.1809 9.57648i 1.11799 0.812266i 0.134085 0.990970i \(-0.457190\pi\)
0.983903 + 0.178704i \(0.0571903\pi\)
\(140\) 0 0
\(141\) −3.70559 11.4046i −0.312067 0.960443i
\(142\) 9.59883 0.805516
\(143\) 3.80205 7.17856i 0.317943 0.600301i
\(144\) −3.96097 −0.330081
\(145\) 0 0
\(146\) 4.10111 + 2.97963i 0.339410 + 0.246596i
\(147\) −1.87538 + 1.36254i −0.154678 + 0.112380i
\(148\) 0.0558916 0.172017i 0.00459426 0.0141397i
\(149\) 0.607130 1.86855i 0.0497380 0.153078i −0.923103 0.384554i \(-0.874355\pi\)
0.972841 + 0.231476i \(0.0743554\pi\)
\(150\) 0 0
\(151\) −5.18994 3.77071i −0.422351 0.306856i 0.356232 0.934398i \(-0.384061\pi\)
−0.778583 + 0.627542i \(0.784061\pi\)
\(152\) 4.38457 + 13.4943i 0.355636 + 1.09453i
\(153\) 2.42748 0.196250
\(154\) −1.42177 9.99926i −0.114570 0.805763i
\(155\) 0 0
\(156\) 0.0146270 + 0.0450174i 0.00117110 + 0.00360427i
\(157\) 8.17196 + 5.93728i 0.652194 + 0.473846i 0.864018 0.503461i \(-0.167940\pi\)
−0.211824 + 0.977308i \(0.567940\pi\)
\(158\) 12.1862 8.85376i 0.969478 0.704367i
\(159\) −2.18021 + 6.71000i −0.172902 + 0.532138i
\(160\) 0 0
\(161\) 4.23079 3.07385i 0.333433 0.242253i
\(162\) −1.13858 0.827228i −0.0894554 0.0649932i
\(163\) 5.30383 + 16.3235i 0.415428 + 1.27856i 0.911868 + 0.410484i \(0.134640\pi\)
−0.496440 + 0.868071i \(0.665360\pi\)
\(164\) −0.114187 −0.00891651
\(165\) 0 0
\(166\) 3.35484 0.260386
\(167\) 3.99777 + 12.3039i 0.309357 + 0.952102i 0.978015 + 0.208532i \(0.0668687\pi\)
−0.668659 + 0.743569i \(0.733131\pi\)
\(168\) 4.97487 + 3.61446i 0.383820 + 0.278861i
\(169\) 5.66405 4.11518i 0.435697 0.316552i
\(170\) 0 0
\(171\) −1.54282 + 4.74830i −0.117982 + 0.363112i
\(172\) 0.0486315 0.0353329i 0.00370812 0.00269411i
\(173\) −0.150974 0.109689i −0.0114784 0.00833952i 0.582031 0.813166i \(-0.302258\pi\)
−0.593510 + 0.804827i \(0.702258\pi\)
\(174\) −2.36020 7.26396i −0.178927 0.550679i
\(175\) 0 0
\(176\) 11.7982 5.77797i 0.889323 0.435531i
\(177\) −4.27958 −0.321673
\(178\) −4.48284 13.7968i −0.336003 1.03411i
\(179\) −6.42258 4.66627i −0.480046 0.348774i 0.321298 0.946978i \(-0.395881\pi\)
−0.801343 + 0.598205i \(0.795881\pi\)
\(180\) 0 0
\(181\) 1.03612 3.18886i 0.0770145 0.237026i −0.905136 0.425121i \(-0.860231\pi\)
0.982151 + 0.188095i \(0.0602314\pi\)
\(182\) −2.30480 + 7.09346i −0.170843 + 0.525802i
\(183\) −4.17751 + 3.03514i −0.308810 + 0.224364i
\(184\) 5.55678 + 4.03723i 0.409651 + 0.297629i
\(185\) 0 0
\(186\) −3.24838 −0.238183
\(187\) −7.23052 + 3.54103i −0.528748 + 0.258945i
\(188\) −0.231747 −0.0169019
\(189\) 0.668642 + 2.05787i 0.0486366 + 0.149688i
\(190\) 0 0
\(191\) −19.1058 + 13.8812i −1.38245 + 1.00441i −0.385800 + 0.922582i \(0.626074\pi\)
−0.996647 + 0.0818239i \(0.973926\pi\)
\(192\) −2.49556 + 7.68054i −0.180102 + 0.554296i
\(193\) 4.16951 12.8324i 0.300128 0.923698i −0.681323 0.731983i \(-0.738595\pi\)
0.981451 0.191715i \(-0.0614050\pi\)
\(194\) 6.00800 4.36507i 0.431349 0.313393i
\(195\) 0 0
\(196\) 0.0138437 + 0.0426066i 0.000988838 + 0.00304333i
\(197\) 19.9986 1.42484 0.712422 0.701751i \(-0.247598\pi\)
0.712422 + 0.701751i \(0.247598\pi\)
\(198\) 4.59809 + 0.803113i 0.326772 + 0.0570748i
\(199\) 9.08289 0.643869 0.321934 0.946762i \(-0.395667\pi\)
0.321934 + 0.946762i \(0.395667\pi\)
\(200\) 0 0
\(201\) −11.3956 8.27938i −0.803783 0.583982i
\(202\) 18.0185 13.0912i 1.26778 0.921095i
\(203\) −3.62873 + 11.1681i −0.254687 + 0.783845i
\(204\) 0.0144970 0.0446172i 0.00101499 0.00312383i
\(205\) 0 0
\(206\) −1.99006 1.44586i −0.138654 0.100738i
\(207\) 0.746852 + 2.29858i 0.0519098 + 0.159762i
\(208\) −9.70143 −0.672673
\(209\) −2.33101 16.3939i −0.161240 1.13399i
\(210\) 0 0
\(211\) −8.29369 25.5254i −0.570961 1.75724i −0.649537 0.760330i \(-0.725037\pi\)
0.0785763 0.996908i \(-0.474963\pi\)
\(212\) 0.110310 + 0.0801447i 0.00757611 + 0.00550436i
\(213\) 5.51784 4.00895i 0.378076 0.274688i
\(214\) −3.88255 + 11.9493i −0.265405 + 0.816834i
\(215\) 0 0
\(216\) −2.29917 + 1.67044i −0.156439 + 0.113659i
\(217\) 4.04045 + 2.93556i 0.274284 + 0.199279i
\(218\) −8.19766 25.2298i −0.555216 1.70878i
\(219\) 3.60194 0.243397
\(220\) 0 0
\(221\) 5.94552 0.399939
\(222\) 4.07017 + 12.5267i 0.273172 + 0.840737i
\(223\) 4.71258 + 3.42389i 0.315578 + 0.229281i 0.734286 0.678840i \(-0.237517\pi\)
−0.418708 + 0.908121i \(0.637517\pi\)
\(224\) 0.191368 0.139037i 0.0127863 0.00928979i
\(225\) 0 0
\(226\) 0.305511 0.940265i 0.0203223 0.0625455i
\(227\) 14.7971 10.7507i 0.982118 0.713550i 0.0239368 0.999713i \(-0.492380\pi\)
0.958181 + 0.286163i \(0.0923800\pi\)
\(228\) 0.0780602 + 0.0567141i 0.00516966 + 0.00375598i
\(229\) −7.26308 22.3535i −0.479958 1.47716i −0.839153 0.543896i \(-0.816949\pi\)
0.359195 0.933263i \(-0.383051\pi\)
\(230\) 0 0
\(231\) −4.99349 5.15423i −0.328547 0.339123i
\(232\) −15.4232 −1.01258
\(233\) −8.46541 26.0538i −0.554587 1.70684i −0.697031 0.717041i \(-0.745496\pi\)
0.142443 0.989803i \(-0.454504\pi\)
\(234\) −2.78868 2.02609i −0.182301 0.132450i
\(235\) 0 0
\(236\) −0.0255578 + 0.0786589i −0.00166367 + 0.00512026i
\(237\) 3.30738 10.1791i 0.214838 0.661203i
\(238\) 5.98042 4.34503i 0.387653 0.281646i
\(239\) 17.7286 + 12.8806i 1.14677 + 0.833177i 0.988048 0.154146i \(-0.0492627\pi\)
0.158722 + 0.987323i \(0.449263\pi\)
\(240\) 0 0
\(241\) −22.7034 −1.46245 −0.731227 0.682134i \(-0.761052\pi\)
−0.731227 + 0.682134i \(0.761052\pi\)
\(242\) −14.8674 + 4.31518i −0.955715 + 0.277390i
\(243\) −1.00000 −0.0641500
\(244\) 0.0308377 + 0.0949087i 0.00197418 + 0.00607591i
\(245\) 0 0
\(246\) 6.72730 4.88767i 0.428917 0.311627i
\(247\) −3.77875 + 11.6298i −0.240436 + 0.739986i
\(248\) −2.02701 + 6.23850i −0.128715 + 0.396145i
\(249\) 1.92852 1.40115i 0.122215 0.0887942i
\(250\) 0 0
\(251\) 0.804148 + 2.47491i 0.0507573 + 0.156215i 0.973222 0.229866i \(-0.0738286\pi\)
−0.922465 + 0.386081i \(0.873829\pi\)
\(252\) 0.0418169 0.00263421
\(253\) −5.57757 5.75711i −0.350659 0.361946i
\(254\) 27.1473 1.70337
\(255\) 0 0
\(256\) 0.375205 + 0.272602i 0.0234503 + 0.0170376i
\(257\) 13.6890 9.94562i 0.853895 0.620391i −0.0723224 0.997381i \(-0.523041\pi\)
0.926217 + 0.376990i \(0.123041\pi\)
\(258\) −1.35272 + 4.16326i −0.0842169 + 0.259193i
\(259\) 6.25774 19.2594i 0.388837 1.19672i
\(260\) 0 0
\(261\) −4.39054 3.18992i −0.271768 0.197451i
\(262\) −0.318150 0.979166i −0.0196554 0.0604931i
\(263\) −17.8845 −1.10281 −0.551403 0.834239i \(-0.685907\pi\)
−0.551403 + 0.834239i \(0.685907\pi\)
\(264\) 4.41161 8.32945i 0.271516 0.512642i
\(265\) 0 0
\(266\) 4.69821 + 14.4596i 0.288066 + 0.886575i
\(267\) −8.33915 6.05875i −0.510348 0.370789i
\(268\) −0.220230 + 0.160007i −0.0134527 + 0.00977395i
\(269\) −8.89457 + 27.3747i −0.542312 + 1.66906i 0.184986 + 0.982741i \(0.440776\pi\)
−0.727298 + 0.686322i \(0.759224\pi\)
\(270\) 0 0
\(271\) −18.1181 + 13.1636i −1.10060 + 0.799629i −0.981157 0.193212i \(-0.938109\pi\)
−0.119438 + 0.992842i \(0.538109\pi\)
\(272\) 7.77885 + 5.65167i 0.471662 + 0.342683i
\(273\) 1.63767 + 5.04024i 0.0991166 + 0.305049i
\(274\) −18.9977 −1.14769
\(275\) 0 0
\(276\) 0.0467081 0.00281150
\(277\) −0.845202 2.60126i −0.0507833 0.156295i 0.922449 0.386119i \(-0.126185\pi\)
−0.973232 + 0.229825i \(0.926185\pi\)
\(278\) 18.5503 + 13.4776i 1.11257 + 0.808332i
\(279\) −1.86732 + 1.35669i −0.111793 + 0.0812227i
\(280\) 0 0
\(281\) 1.39517 4.29390i 0.0832291 0.256153i −0.900779 0.434279i \(-0.857003\pi\)
0.984008 + 0.178126i \(0.0570034\pi\)
\(282\) 13.6533 9.91974i 0.813045 0.590712i
\(283\) 11.0266 + 8.01127i 0.655462 + 0.476221i 0.865127 0.501552i \(-0.167238\pi\)
−0.209666 + 0.977773i \(0.567238\pi\)
\(284\) −0.0407318 0.125360i −0.00241699 0.00743873i
\(285\) 0 0
\(286\) 11.2619 + 1.96703i 0.665929 + 0.116313i
\(287\) −12.7846 −0.754653
\(288\) 0.0337817 + 0.103970i 0.00199061 + 0.00612646i
\(289\) 8.98602 + 6.52873i 0.528590 + 0.384043i
\(290\) 0 0
\(291\) 1.63060 5.01848i 0.0955876 0.294188i
\(292\) 0.0215109 0.0662039i 0.00125883 0.00387429i
\(293\) −8.68284 + 6.30845i −0.507257 + 0.368544i −0.811782 0.583961i \(-0.801502\pi\)
0.304525 + 0.952504i \(0.401502\pi\)
\(294\) −2.63934 1.91759i −0.153929 0.111836i
\(295\) 0 0
\(296\) 26.5973 1.54593
\(297\) 2.97861 1.45872i 0.172837 0.0846438i
\(298\) 2.76507 0.160176
\(299\) 1.82923 + 5.62979i 0.105787 + 0.325579i
\(300\) 0 0
\(301\) 5.44489 3.95595i 0.313838 0.228017i
\(302\) 2.78993 8.58652i 0.160542 0.494099i
\(303\) 4.89032 15.0509i 0.280941 0.864649i
\(304\) −15.9990 + 11.6239i −0.917603 + 0.666678i
\(305\) 0 0
\(306\) 1.05571 + 3.24914i 0.0603509 + 0.185741i
\(307\) 5.07712 0.289766 0.144883 0.989449i \(-0.453719\pi\)
0.144883 + 0.989449i \(0.453719\pi\)
\(308\) −0.124556 + 0.0609993i −0.00709725 + 0.00347576i
\(309\) −1.74784 −0.0994310
\(310\) 0 0
\(311\) 3.29852 + 2.39651i 0.187042 + 0.135894i 0.677366 0.735647i \(-0.263122\pi\)
−0.490324 + 0.871540i \(0.663122\pi\)
\(312\) −5.63124 + 4.09134i −0.318806 + 0.231626i
\(313\) −9.06243 + 27.8913i −0.512239 + 1.57651i 0.276011 + 0.961155i \(0.410987\pi\)
−0.788250 + 0.615355i \(0.789013\pi\)
\(314\) −4.39296 + 13.5202i −0.247909 + 0.762986i
\(315\) 0 0
\(316\) −0.167340 0.121580i −0.00941362 0.00683939i
\(317\) −0.359088 1.10516i −0.0201684 0.0620719i 0.940466 0.339888i \(-0.110389\pi\)
−0.960634 + 0.277816i \(0.910389\pi\)
\(318\) −9.92940 −0.556813
\(319\) 17.7309 + 3.09693i 0.992741 + 0.173395i
\(320\) 0 0
\(321\) 2.75874 + 8.49052i 0.153978 + 0.473894i
\(322\) 5.95426 + 4.32602i 0.331818 + 0.241080i
\(323\) 9.80495 7.12372i 0.545562 0.396374i
\(324\) −0.00597204 + 0.0183800i −0.000331780 + 0.00102111i
\(325\) 0 0
\(326\) −19.5421 + 14.1982i −1.08234 + 0.786364i
\(327\) −15.2496 11.0795i −0.843306 0.612697i
\(328\) −5.18886 15.9697i −0.286507 0.881778i
\(329\) −25.9470 −1.43050
\(330\) 0 0
\(331\) 14.8212 0.814644 0.407322 0.913285i \(-0.366463\pi\)
0.407322 + 0.913285i \(0.366463\pi\)
\(332\) −0.0142360 0.0438139i −0.000781302 0.00240460i
\(333\) 7.57149 + 5.50101i 0.414915 + 0.301454i
\(334\) −14.7299 + 10.7019i −0.805984 + 0.585581i
\(335\) 0 0
\(336\) −2.64848 + 8.15117i −0.144486 + 0.444683i
\(337\) −9.18829 + 6.67568i −0.500518 + 0.363648i −0.809215 0.587513i \(-0.800107\pi\)
0.308697 + 0.951161i \(0.400107\pi\)
\(338\) 7.97139 + 5.79155i 0.433586 + 0.315019i
\(339\) −0.217080 0.668104i −0.0117902 0.0362864i
\(340\) 0 0
\(341\) 3.58298 6.76495i 0.194030 0.366342i
\(342\) −7.02649 −0.379949
\(343\) 6.23047 + 19.1754i 0.336414 + 1.03538i
\(344\) 7.15140 + 5.19579i 0.385577 + 0.280138i
\(345\) 0 0
\(346\) 0.0811585 0.249780i 0.00436311 0.0134283i
\(347\) −2.16848 + 6.67390i −0.116410 + 0.358274i −0.992239 0.124349i \(-0.960316\pi\)
0.875828 + 0.482623i \(0.160316\pi\)
\(348\) −0.0848512 + 0.0616480i −0.00454850 + 0.00330468i
\(349\) −4.46308 3.24262i −0.238903 0.173573i 0.461891 0.886937i \(-0.347171\pi\)
−0.700795 + 0.713363i \(0.747171\pi\)
\(350\) 0 0
\(351\) −2.44925 −0.130731
\(352\) −0.252286 0.260406i −0.0134469 0.0138797i
\(353\) −14.6513 −0.779810 −0.389905 0.920855i \(-0.627492\pi\)
−0.389905 + 0.920855i \(0.627492\pi\)
\(354\) −1.86119 5.72815i −0.0989210 0.304448i
\(355\) 0 0
\(356\) −0.161162 + 0.117091i −0.00854155 + 0.00620580i
\(357\) 1.62312 4.99544i 0.0859044 0.264387i
\(358\) 3.45255 10.6259i 0.182473 0.561595i
\(359\) 7.16241 5.20380i 0.378018 0.274646i −0.382510 0.923951i \(-0.624940\pi\)
0.760528 + 0.649305i \(0.224940\pi\)
\(360\) 0 0
\(361\) 1.83144 + 5.63659i 0.0963915 + 0.296663i
\(362\) 4.71885 0.248017
\(363\) −6.74425 + 8.68995i −0.353981 + 0.456104i
\(364\) 0.102420 0.00536827
\(365\) 0 0
\(366\) −5.87928 4.27154i −0.307315 0.223277i
\(367\) −17.4330 + 12.6658i −0.909997 + 0.661152i −0.941014 0.338367i \(-0.890125\pi\)
0.0310170 + 0.999519i \(0.490125\pi\)
\(368\) −2.95826 + 9.10460i −0.154210 + 0.474610i
\(369\) 1.82582 5.61931i 0.0950486 0.292530i
\(370\) 0 0
\(371\) 12.3505 + 8.97318i 0.641207 + 0.465864i
\(372\) 0.0137843 + 0.0424236i 0.000714680 + 0.00219956i
\(373\) −4.26418 −0.220791 −0.110395 0.993888i \(-0.535212\pi\)
−0.110395 + 0.993888i \(0.535212\pi\)
\(374\) −7.88415 8.13794i −0.407680 0.420803i
\(375\) 0 0
\(376\) −10.5310 32.4111i −0.543096 1.67148i
\(377\) −10.7536 7.81291i −0.553836 0.402385i
\(378\) −2.46363 + 1.78993i −0.126715 + 0.0920642i
\(379\) −11.4369 + 35.1991i −0.587474 + 1.80806i 0.00162714 + 0.999999i \(0.499482\pi\)
−0.589101 + 0.808060i \(0.700518\pi\)
\(380\) 0 0
\(381\) 15.6055 11.3381i 0.799495 0.580867i
\(382\) −26.8888 19.5359i −1.37575 0.999542i
\(383\) 3.04211 + 9.36267i 0.155445 + 0.478410i 0.998206 0.0598782i \(-0.0190712\pi\)
−0.842761 + 0.538288i \(0.819071\pi\)
\(384\) −11.1470 −0.568841
\(385\) 0 0
\(386\) 18.9893 0.966530
\(387\) 0.961175 + 2.95819i 0.0488593 + 0.150373i
\(388\) −0.0825018 0.0599410i −0.00418839 0.00304305i
\(389\) 2.37865 1.72819i 0.120603 0.0876229i −0.525849 0.850578i \(-0.676252\pi\)
0.646451 + 0.762955i \(0.276252\pi\)
\(390\) 0 0
\(391\) 1.81297 5.57975i 0.0916858 0.282180i
\(392\) −5.32968 + 3.87224i −0.269190 + 0.195578i
\(393\) −0.591836 0.429994i −0.0298542 0.0216903i
\(394\) 8.69740 + 26.7678i 0.438168 + 1.34854i
\(395\) 0 0
\(396\) −0.00902304 0.0634585i −0.000453425 0.00318891i
\(397\) −34.7013 −1.74161 −0.870805 0.491629i \(-0.836402\pi\)
−0.870805 + 0.491629i \(0.836402\pi\)
\(398\) 3.95014 + 12.1573i 0.198003 + 0.609390i
\(399\) 8.73979 + 6.34983i 0.437537 + 0.317889i
\(400\) 0 0
\(401\) −3.32315 + 10.2276i −0.165950 + 0.510742i −0.999105 0.0422978i \(-0.986532\pi\)
0.833155 + 0.553040i \(0.186532\pi\)
\(402\) 6.12587 18.8535i 0.305531 0.940327i
\(403\) −4.57354 + 3.32287i −0.227824 + 0.165524i
\(404\) −0.247430 0.179768i −0.0123101 0.00894382i
\(405\) 0 0
\(406\) −16.5264 −0.820192
\(407\) −30.5770 5.34065i −1.51565 0.264726i
\(408\) 6.89872 0.341538
\(409\) −6.13095 18.8691i −0.303156 0.933018i −0.980359 0.197221i \(-0.936808\pi\)
0.677203 0.735796i \(-0.263192\pi\)
\(410\) 0 0
\(411\) −10.9207 + 7.93437i −0.538680 + 0.391374i
\(412\) −0.0104381 + 0.0321253i −0.000514251 + 0.00158270i
\(413\) −2.86151 + 8.80682i −0.140806 + 0.433355i
\(414\) −2.75180 + 1.99930i −0.135243 + 0.0982601i
\(415\) 0 0
\(416\) 0.0827401 + 0.254648i 0.00405667 + 0.0124851i
\(417\) 16.2925 0.797846
\(418\) 20.9292 10.2497i 1.02368 0.501330i
\(419\) 26.5771 1.29838 0.649189 0.760628i \(-0.275109\pi\)
0.649189 + 0.760628i \(0.275109\pi\)
\(420\) 0 0
\(421\) 32.3790 + 23.5247i 1.57806 + 1.14652i 0.918881 + 0.394536i \(0.129095\pi\)
0.659176 + 0.751989i \(0.270905\pi\)
\(422\) 30.5583 22.2019i 1.48756 1.08077i
\(423\) 3.70559 11.4046i 0.180172 0.554512i
\(424\) −6.19600 + 19.0693i −0.300905 + 0.926089i
\(425\) 0 0
\(426\) 7.76561 + 5.64205i 0.376245 + 0.273358i
\(427\) 3.45266 + 10.6262i 0.167086 + 0.514237i
\(428\) 0.172531 0.00833961
\(429\) 7.29537 3.57279i 0.352224 0.172496i
\(430\) 0 0
\(431\) 6.06629 + 18.6701i 0.292203 + 0.899308i 0.984147 + 0.177357i \(0.0567546\pi\)
−0.691944 + 0.721951i \(0.743245\pi\)
\(432\) −3.20450 2.32820i −0.154176 0.112016i
\(433\) −32.4200 + 23.5545i −1.55801 + 1.13196i −0.620385 + 0.784298i \(0.713023\pi\)
−0.937621 + 0.347660i \(0.886977\pi\)
\(434\) −2.17201 + 6.68475i −0.104260 + 0.320878i
\(435\) 0 0
\(436\) −0.294713 + 0.214121i −0.0141142 + 0.0102546i
\(437\) 9.76207 + 7.09256i 0.466983 + 0.339283i
\(438\) 1.56648 + 4.82114i 0.0748495 + 0.230363i
\(439\) 7.34629 0.350619 0.175310 0.984513i \(-0.443907\pi\)
0.175310 + 0.984513i \(0.443907\pi\)
\(440\) 0 0
\(441\) −2.31809 −0.110385
\(442\) 2.58570 + 7.95797i 0.122989 + 0.378522i
\(443\) −22.4169 16.2868i −1.06506 0.773811i −0.0900413 0.995938i \(-0.528700\pi\)
−0.975018 + 0.222127i \(0.928700\pi\)
\(444\) 0.146326 0.106312i 0.00694433 0.00504535i
\(445\) 0 0
\(446\) −2.53332 + 7.79675i −0.119956 + 0.369187i
\(447\) 1.58949 1.15483i 0.0751801 0.0546216i
\(448\) 14.1369 + 10.2711i 0.667907 + 0.485263i
\(449\) −1.02732 3.16178i −0.0484824 0.149214i 0.923884 0.382672i \(-0.124996\pi\)
−0.972367 + 0.233458i \(0.924996\pi\)
\(450\) 0 0
\(451\) 2.75860 + 19.4011i 0.129898 + 0.913563i
\(452\) −0.0135762 −0.000638570
\(453\) −1.98238 6.10114i −0.0931403 0.286656i
\(454\) 20.8249 + 15.1302i 0.977361 + 0.710094i
\(455\) 0 0
\(456\) −4.38457 + 13.4943i −0.205326 + 0.631930i
\(457\) 5.47865 16.8616i 0.256280 0.788750i −0.737294 0.675572i \(-0.763897\pi\)
0.993575 0.113178i \(-0.0361032\pi\)
\(458\) 26.7610 19.4430i 1.25046 0.908513i
\(459\) 1.96387 + 1.42684i 0.0916658 + 0.0665991i
\(460\) 0 0
\(461\) −24.4362 −1.13811 −0.569055 0.822300i \(-0.692691\pi\)
−0.569055 + 0.822300i \(0.692691\pi\)
\(462\) 4.72718 8.92527i 0.219928 0.415241i
\(463\) 23.1516 1.07594 0.537972 0.842963i \(-0.319191\pi\)
0.537972 + 0.842963i \(0.319191\pi\)
\(464\) −6.64270 20.4441i −0.308380 0.949095i
\(465\) 0 0
\(466\) 31.1910 22.6616i 1.44490 1.04978i
\(467\) 7.15067 22.0075i 0.330893 1.01839i −0.637816 0.770189i \(-0.720162\pi\)
0.968710 0.248197i \(-0.0798379\pi\)
\(468\) −0.0146270 + 0.0450174i −0.000676135 + 0.00208093i
\(469\) −24.6574 + 17.9147i −1.13858 + 0.827223i
\(470\) 0 0
\(471\) 3.12141 + 9.60672i 0.143827 + 0.442654i
\(472\) −12.1623 −0.559813
\(473\) −7.17816 7.40922i −0.330052 0.340676i
\(474\) 15.0629 0.691862
\(475\) 0 0
\(476\) −0.0821230 0.0596659i −0.00376410 0.00273478i
\(477\) −5.70787 + 4.14701i −0.261345 + 0.189879i
\(478\) −9.53030 + 29.3312i −0.435906 + 1.34158i
\(479\) −3.32793 + 10.2423i −0.152057 + 0.467984i −0.997851 0.0655263i \(-0.979127\pi\)
0.845794 + 0.533510i \(0.179127\pi\)
\(480\) 0 0
\(481\) 18.5445 + 13.4734i 0.845557 + 0.614333i
\(482\) −9.87370 30.3881i −0.449735 1.38414i
\(483\) 5.22954 0.237952
\(484\) 0.119445 + 0.175856i 0.00542930 + 0.00799346i
\(485\) 0 0
\(486\) −0.434899 1.33848i −0.0197274 0.0607148i
\(487\) 14.9600 + 10.8691i 0.677901 + 0.492524i 0.872661 0.488327i \(-0.162393\pi\)
−0.194759 + 0.980851i \(0.562393\pi\)
\(488\) −11.8722 + 8.62564i −0.537428 + 0.390464i
\(489\) −5.30383 + 16.3235i −0.239847 + 0.738174i
\(490\) 0 0
\(491\) 28.6296 20.8006i 1.29204 0.938720i 0.292192 0.956360i \(-0.405615\pi\)
0.999844 + 0.0176399i \(0.00561525\pi\)
\(492\) −0.0923792 0.0671174i −0.00416478 0.00302589i
\(493\) 4.07098 + 12.5292i 0.183348 + 0.564286i
\(494\) −17.2097 −0.774299
\(495\) 0 0
\(496\) −9.14246 −0.410508
\(497\) −4.56043 14.0355i −0.204563 0.629580i
\(498\) 2.71412 + 1.97193i 0.121623 + 0.0883641i
\(499\) 3.26309 2.37077i 0.146076 0.106130i −0.512347 0.858779i \(-0.671224\pi\)
0.658423 + 0.752648i \(0.271224\pi\)
\(500\) 0 0
\(501\) −3.99777 + 12.3039i −0.178607 + 0.549696i
\(502\) −2.96290 + 2.15268i −0.132241 + 0.0960786i
\(503\) 27.6841 + 20.1137i 1.23437 + 0.896825i 0.997210 0.0746449i \(-0.0237823\pi\)
0.237163 + 0.971470i \(0.423782\pi\)
\(504\) 1.90023 + 5.84831i 0.0846431 + 0.260505i
\(505\) 0 0
\(506\) 5.28011 9.96925i 0.234730 0.443187i
\(507\) 7.00116 0.310932
\(508\) −0.115197 0.354541i −0.00511106 0.0157302i
\(509\) −19.6456 14.2734i −0.870775 0.632655i 0.0600196 0.998197i \(-0.480884\pi\)
−0.930795 + 0.365542i \(0.880884\pi\)
\(510\) 0 0
\(511\) 2.40841 7.41233i 0.106542 0.327902i
\(512\) −7.09089 + 21.8235i −0.313376 + 0.964473i
\(513\) −4.03915 + 2.93461i −0.178333 + 0.129566i
\(514\) 19.2654 + 13.9971i 0.849759 + 0.617386i
\(515\) 0 0
\(516\) 0.0601119 0.00264628
\(517\) 5.59871 + 39.3754i 0.246231 + 1.73173i
\(518\) 28.4998 1.25221
\(519\) −0.0576670 0.177481i −0.00253130 0.00779055i
\(520\) 0 0
\(521\) −34.8505 + 25.3204i −1.52683 + 1.10931i −0.568861 + 0.822434i \(0.692616\pi\)
−0.957969 + 0.286873i \(0.907384\pi\)
\(522\) 2.36020 7.26396i 0.103303 0.317935i
\(523\) −10.4342 + 32.1131i −0.456254 + 1.40421i 0.413402 + 0.910548i \(0.364340\pi\)
−0.869656 + 0.493657i \(0.835660\pi\)
\(524\) −0.0114378 + 0.00831002i −0.000499661 + 0.000363025i
\(525\) 0 0
\(526\) −7.77796 23.9381i −0.339135 1.04375i
\(527\) 5.60295 0.244068
\(528\) 12.9412 + 2.26033i 0.563191 + 0.0983684i
\(529\) −17.1588 −0.746033
\(530\) 0 0
\(531\) −3.46225 2.51548i −0.150249 0.109162i
\(532\) 0.168904 0.122716i 0.00732294 0.00532043i
\(533\) 4.47191 13.7631i 0.193700 0.596147i
\(534\) 4.48284 13.7968i 0.193991 0.597044i
\(535\) 0 0
\(536\) −32.3854 23.5294i −1.39884 1.01631i
\(537\) −2.45321 7.55019i −0.105864 0.325815i
\(538\) −40.5088 −1.74646
\(539\) 6.90469 3.38146i 0.297406 0.145650i
\(540\) 0 0
\(541\) −1.48597 4.57334i −0.0638867 0.196623i 0.914018 0.405673i \(-0.132963\pi\)
−0.977905 + 0.209050i \(0.932963\pi\)
\(542\) −25.4987 18.5259i −1.09527 0.795757i
\(543\) 2.71261 1.97082i 0.116409 0.0845762i
\(544\) 0.0820045 0.252384i 0.00351592 0.0108209i
\(545\) 0 0
\(546\) −6.03406 + 4.38400i −0.258234 + 0.187618i
\(547\) 17.7494 + 12.8957i 0.758911 + 0.551381i 0.898576 0.438818i \(-0.144603\pi\)
−0.139665 + 0.990199i \(0.544603\pi\)
\(548\) 0.0806151 + 0.248108i 0.00344371 + 0.0105986i
\(549\) −5.16368 −0.220381
\(550\) 0 0
\(551\) −27.0952 −1.15429
\(552\) 2.12250 + 6.53238i 0.0903396 + 0.278037i
\(553\) −18.7358 13.6123i −0.796726 0.578855i
\(554\) 3.11417 2.26258i 0.132308 0.0961277i
\(555\) 0 0
\(556\) 0.0972992 0.299456i 0.00412641 0.0126998i
\(557\) 19.1426 13.9079i 0.811099 0.589298i −0.103050 0.994676i \(-0.532860\pi\)
0.914149 + 0.405379i \(0.132860\pi\)
\(558\) −2.62800 1.90935i −0.111252 0.0808293i
\(559\) 2.35416 + 7.24537i 0.0995705 + 0.306446i
\(560\) 0 0
\(561\) −7.93098 1.38524i −0.334846 0.0584850i
\(562\) 6.35408 0.268031
\(563\) −10.6290 32.7126i −0.447957 1.37867i −0.879208 0.476439i \(-0.841927\pi\)
0.431250 0.902232i \(-0.358073\pi\)
\(564\) −0.187488 0.136218i −0.00789465 0.00573580i
\(565\) 0 0
\(566\) −5.92750 + 18.2430i −0.249152 + 0.766810i
\(567\) −0.668642 + 2.05787i −0.0280803 + 0.0864224i
\(568\) 15.6813 11.3931i 0.657973 0.478045i
\(569\) 30.9052 + 22.4540i 1.29561 + 0.941319i 0.999903 0.0139586i \(-0.00444331\pi\)
0.295711 + 0.955277i \(0.404443\pi\)
\(570\) 0 0
\(571\) 18.0690 0.756165 0.378083 0.925772i \(-0.376584\pi\)
0.378083 + 0.925772i \(0.376584\pi\)
\(572\) −0.0220997 0.155426i −0.000924035 0.00649869i
\(573\) −23.6161 −0.986575
\(574\) −5.56003 17.1120i −0.232071 0.714242i
\(575\) 0 0
\(576\) −6.53346 + 4.74684i −0.272228 + 0.197785i
\(577\) 9.53797 29.3548i 0.397071 1.22206i −0.530266 0.847831i \(-0.677908\pi\)
0.927337 0.374227i \(-0.122092\pi\)
\(578\) −4.83057 + 14.8670i −0.200925 + 0.618385i
\(579\) 10.9159 7.93087i 0.453650 0.329596i
\(580\) 0 0
\(581\) −1.59389 4.90550i −0.0661258 0.203514i
\(582\) 7.42629 0.307830
\(583\) 10.9522 20.6785i 0.453593 0.856417i
\(584\) 10.2365 0.423588
\(585\) 0 0
\(586\) −12.2199 8.87829i −0.504800 0.366759i
\(587\) −18.2683 + 13.2727i −0.754015 + 0.547824i −0.897069 0.441891i \(-0.854308\pi\)
0.143054 + 0.989715i \(0.454308\pi\)
\(588\) −0.0138437 + 0.0426066i −0.000570906 + 0.00175707i
\(589\) −3.56103 + 10.9597i −0.146730 + 0.451587i
\(590\) 0 0
\(591\) 16.1792 + 11.7549i 0.665525 + 0.483532i
\(592\) 11.4553 + 35.2559i 0.470812 + 1.44901i
\(593\) 20.9313 0.859544 0.429772 0.902937i \(-0.358594\pi\)
0.429772 + 0.902937i \(0.358594\pi\)
\(594\) 3.24787 + 3.35242i 0.133262 + 0.137552i
\(595\) 0 0
\(596\) −0.0117333 0.0361115i −0.000480616 0.00147918i
\(597\) 7.34821 + 5.33879i 0.300742 + 0.218502i
\(598\) −6.73985 + 4.89679i −0.275613 + 0.200245i
\(599\) −0.789533 + 2.42993i −0.0322594 + 0.0992844i −0.965890 0.258954i \(-0.916622\pi\)
0.933630 + 0.358238i \(0.116622\pi\)
\(600\) 0 0
\(601\) 5.24063 3.80754i 0.213770 0.155313i −0.475748 0.879582i \(-0.657823\pi\)
0.689518 + 0.724269i \(0.257823\pi\)
\(602\) 7.66295 + 5.56746i 0.312318 + 0.226913i
\(603\) −4.35273 13.3963i −0.177257 0.545540i
\(604\) −0.123978 −0.00504459
\(605\) 0 0
\(606\) 22.2721 0.904743
\(607\) 10.9765 + 33.7821i 0.445522 + 1.37117i 0.881911 + 0.471416i \(0.156257\pi\)
−0.436389 + 0.899758i \(0.643743\pi\)
\(608\) 0.441560 + 0.320812i 0.0179076 + 0.0130106i
\(609\) −9.50013 + 6.90225i −0.384965 + 0.279693i
\(610\) 0 0
\(611\) 9.07593 27.9328i 0.367173 1.13004i
\(612\) 0.0379536 0.0275749i 0.00153418 0.00111465i
\(613\) −10.6521 7.73922i −0.430235 0.312584i 0.351508 0.936185i \(-0.385669\pi\)
−0.781743 + 0.623601i \(0.785669\pi\)
\(614\) 2.20803 + 6.79563i 0.0891090 + 0.274249i
\(615\) 0 0
\(616\) −14.1911 14.6479i −0.571777 0.590182i
\(617\) 30.6703 1.23474 0.617370 0.786673i \(-0.288198\pi\)
0.617370 + 0.786673i \(0.288198\pi\)
\(618\) −0.760134 2.33945i −0.0305771 0.0941065i
\(619\) 28.9236 + 21.0143i 1.16254 + 0.844634i 0.990097 0.140386i \(-0.0448342\pi\)
0.172442 + 0.985020i \(0.444834\pi\)
\(620\) 0 0
\(621\) −0.746852 + 2.29858i −0.0299702 + 0.0922386i
\(622\) −1.77317 + 5.45725i −0.0710976 + 0.218816i
\(623\) −18.0440 + 13.1097i −0.722918 + 0.525231i
\(624\) −7.84862 5.70236i −0.314196 0.228277i
\(625\) 0 0
\(626\) −41.2733 −1.64961
\(627\) 7.75026 14.6331i 0.309515 0.584389i
\(628\) 0.195213 0.00778985
\(629\) −7.02040 21.6066i −0.279922 0.861511i
\(630\) 0 0
\(631\) −3.17149 + 2.30422i −0.126255 + 0.0917295i −0.649121 0.760686i \(-0.724863\pi\)
0.522866 + 0.852415i \(0.324863\pi\)
\(632\) 9.39935 28.9282i 0.373886 1.15070i
\(633\) 8.29369 25.5254i 0.329645 1.01454i
\(634\) 1.32307 0.961265i 0.0525457 0.0381767i
\(635\) 0 0
\(636\) 0.0421346 + 0.129677i 0.00167074 + 0.00514202i
\(637\) −5.67759 −0.224954
\(638\) 3.56599 + 25.0794i 0.141179 + 0.992903i
\(639\) 6.82043 0.269812
\(640\) 0 0
\(641\) −18.0168 13.0900i −0.711622 0.517024i 0.172074 0.985084i \(-0.444953\pi\)
−0.883697 + 0.468060i \(0.844953\pi\)
\(642\) −10.1646 + 7.38504i −0.401166 + 0.291464i
\(643\) 4.55565 14.0209i 0.179657 0.552928i −0.820158 0.572137i \(-0.806115\pi\)
0.999816 + 0.0192085i \(0.00611462\pi\)
\(644\) 0.0312310 0.0961192i 0.00123067 0.00378763i
\(645\) 0 0
\(646\) 13.7991 + 10.0257i 0.542920 + 0.394454i
\(647\) −5.79882 17.8469i −0.227975 0.701635i −0.997976 0.0635925i \(-0.979744\pi\)
0.770001 0.638043i \(-0.220256\pi\)
\(648\) −2.84193 −0.111641
\(649\) 13.9821 + 2.44215i 0.548845 + 0.0958626i
\(650\) 0 0
\(651\) 1.54332 + 4.74984i 0.0604873 + 0.186161i
\(652\) 0.268352 + 0.194969i 0.0105095 + 0.00763558i
\(653\) −18.3120 + 13.3045i −0.716605 + 0.520644i −0.885298 0.465025i \(-0.846045\pi\)
0.168693 + 0.985669i \(0.446045\pi\)
\(654\) 8.19766 25.2298i 0.320554 0.986564i
\(655\) 0 0
\(656\) 18.9337 13.7562i 0.739238 0.537088i
\(657\) 2.91403 + 2.11717i 0.113687 + 0.0825987i
\(658\) −11.2843 34.7296i −0.439908 1.35390i
\(659\) 20.4233 0.795580 0.397790 0.917476i \(-0.369777\pi\)
0.397790 + 0.917476i \(0.369777\pi\)
\(660\) 0 0
\(661\) −12.4374 −0.483758 −0.241879 0.970306i \(-0.577764\pi\)
−0.241879 + 0.970306i \(0.577764\pi\)
\(662\) 6.44571 + 19.8379i 0.250520 + 0.771020i
\(663\) 4.81002 + 3.49469i 0.186806 + 0.135722i
\(664\) 5.48070 3.98196i 0.212692 0.154530i
\(665\) 0 0
\(666\) −4.07017 + 12.5267i −0.157716 + 0.485400i
\(667\) −10.6113 + 7.70959i −0.410873 + 0.298517i
\(668\) 0.202271 + 0.146958i 0.00782609 + 0.00568599i
\(669\) 1.80005 + 5.53997i 0.0695938 + 0.214188i
\(670\) 0 0
\(671\) 15.3806 7.53239i 0.593762 0.290785i
\(672\) 0.236544 0.00912487
\(673\) −7.13876 21.9708i −0.275179 0.846914i −0.989172 0.146761i \(-0.953115\pi\)
0.713993 0.700153i \(-0.246885\pi\)
\(674\) −12.9313 9.39512i −0.498094 0.361886i
\(675\) 0 0
\(676\) 0.0418112 0.128682i 0.00160812 0.00494929i
\(677\) −9.17658 + 28.2426i −0.352685 + 1.08545i 0.604655 + 0.796487i \(0.293311\pi\)
−0.957340 + 0.288965i \(0.906689\pi\)
\(678\) 0.799837 0.581116i 0.0307176 0.0223176i
\(679\) −9.23708 6.71113i −0.354487 0.257550i
\(680\) 0 0
\(681\) 18.2902 0.700883
\(682\) 10.6130 + 1.85369i 0.406393 + 0.0709816i
\(683\) 50.1762 1.91994 0.959969 0.280105i \(-0.0903694\pi\)
0.959969 + 0.280105i \(0.0903694\pi\)
\(684\) 0.0298163 + 0.0917653i 0.00114006 + 0.00350873i
\(685\) 0 0
\(686\) −22.9563 + 16.6788i −0.876477 + 0.636798i
\(687\) 7.26308 22.3535i 0.277104 0.852838i
\(688\) −3.80719 + 11.7173i −0.145148 + 0.446719i
\(689\) −13.9800 + 10.1571i −0.532596 + 0.386954i
\(690\) 0 0
\(691\) −7.36152 22.6564i −0.280046 0.861892i −0.987840 0.155473i \(-0.950310\pi\)
0.707795 0.706418i \(-0.249690\pi\)
\(692\) −0.00360649 −0.000137098
\(693\) −1.01024 7.10496i −0.0383758 0.269895i
\(694\) −9.87597 −0.374887
\(695\) 0 0
\(696\) −12.4776 9.06551i −0.472962 0.343627i
\(697\) −11.6035 + 8.43046i −0.439515 + 0.319326i
\(698\) 2.39920 7.38397i 0.0908110 0.279488i
\(699\) 8.46541 26.0538i 0.320191 0.985447i
\(700\) 0 0
\(701\) 9.21689 + 6.69646i 0.348117 + 0.252922i 0.748079 0.663610i \(-0.230977\pi\)
−0.399962 + 0.916532i \(0.630977\pi\)
\(702\) −1.06518 3.27828i −0.0402026 0.123731i
\(703\) 46.7257 1.76229
\(704\) 12.5363 23.6695i 0.472480 0.892078i
\(705\) 0 0
\(706\) −6.37184 19.6105i −0.239808 0.738052i
\(707\) −27.7028 20.1273i −1.04187 0.756964i
\(708\) −0.0669112 + 0.0486138i −0.00251468 + 0.00182702i
\(709\) 11.9398 36.7470i 0.448409 1.38006i −0.430293 0.902689i \(-0.641590\pi\)
0.878702 0.477371i \(-0.158410\pi\)
\(710\) 0 0
\(711\) 8.65885 6.29102i 0.324732 0.235932i
\(712\) −23.6992 17.2185i −0.888167 0.645291i
\(713\) 1.72383 + 5.30542i 0.0645581 + 0.198689i
\(714\) 7.39220 0.276646
\(715\) 0 0
\(716\) −0.153423 −0.00573370
\(717\) 6.77173 + 20.8413i 0.252895 + 0.778331i
\(718\) 10.0801 + 7.32364i 0.376187 + 0.273316i
\(719\) 8.83338 6.41783i 0.329430 0.239345i −0.410759 0.911744i \(-0.634736\pi\)
0.740189 + 0.672399i \(0.234736\pi\)
\(720\) 0 0
\(721\) −1.16868 + 3.59682i −0.0435239 + 0.133953i
\(722\) −6.74799 + 4.90270i −0.251134 + 0.182460i
\(723\) −18.3674 13.3447i −0.683092 0.496296i
\(724\) −0.0200240 0.0616276i −0.000744187 0.00229037i
\(725\) 0 0
\(726\) −14.5644 5.24781i −0.540536 0.194764i
\(727\) 9.96114 0.369438 0.184719 0.982791i \(-0.440862\pi\)
0.184719 + 0.982791i \(0.440862\pi\)
\(728\) 4.65415 + 14.3240i 0.172494 + 0.530883i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) 2.33323 7.18096i 0.0862978 0.265597i
\(732\) −0.0308377 + 0.0949087i −0.00113979 + 0.00350793i
\(733\) 4.28172 3.11085i 0.158149 0.114902i −0.505896 0.862594i \(-0.668838\pi\)
0.664045 + 0.747692i \(0.268838\pi\)
\(734\) −24.5346 17.8255i −0.905590 0.657950i
\(735\) 0 0
\(736\) 0.264212 0.00973897
\(737\) 32.5066 + 33.5530i 1.19740 + 1.23594i
\(738\) 8.31540 0.306094
\(739\) −4.01822 12.3668i −0.147813 0.454920i 0.849549 0.527509i \(-0.176874\pi\)
−0.997362 + 0.0725887i \(0.976874\pi\)
\(740\) 0 0
\(741\) −9.89290 + 7.18761i −0.363425 + 0.264043i
\(742\) −6.63921 + 20.4334i −0.243733 + 0.750134i
\(743\) 16.6940 51.3789i 0.612444 1.88491i 0.178599 0.983922i \(-0.442844\pi\)
0.433845 0.900987i \(-0.357156\pi\)
\(744\) −5.30678 + 3.85560i −0.194556 + 0.141353i
\(745\) 0 0
\(746\) −1.85449 5.70753i −0.0678977 0.208968i
\(747\) 2.38378 0.0872178
\(748\) −0.0728249 + 0.137499i −0.00266274 + 0.00502746i
\(749\) 19.3170 0.705827
\(750\) 0 0
\(751\) 35.5526 + 25.8305i 1.29733 + 0.942567i 0.999926 0.0121839i \(-0.00387834\pi\)
0.297407 + 0.954751i \(0.403878\pi\)
\(752\) 38.4268 27.9187i 1.40128 1.01809i
\(753\) −0.804148 + 2.47491i −0.0293048 + 0.0901908i
\(754\) 5.78074 17.7913i 0.210522 0.647920i
\(755\) 0 0
\(756\) 0.0338306 + 0.0245793i 0.00123041 + 0.000893942i
\(757\) 6.18371 + 19.0315i 0.224751 + 0.691712i 0.998317 + 0.0579961i \(0.0184711\pi\)
−0.773566 + 0.633716i \(0.781529\pi\)
\(758\) −52.0873 −1.89190
\(759\) −1.12841 7.93601i −0.0409585 0.288059i
\(760\) 0 0
\(761\) 5.44929 + 16.7712i 0.197536 + 0.607955i 0.999938 + 0.0111696i \(0.00355548\pi\)
−0.802401 + 0.596785i \(0.796445\pi\)
\(762\) 21.9626 + 15.9568i 0.795622 + 0.578054i
\(763\) −32.9967 + 23.9735i −1.19456 + 0.867899i
\(764\) −0.141036 + 0.434064i −0.00510250 + 0.0157039i
\(765\) 0 0
\(766\) −11.2088 + 8.14364i −0.404989 + 0.294242i
\(767\) −8.47994 6.16104i −0.306193 0.222462i
\(768\) 0.143315 + 0.441080i 0.00517145 + 0.0159161i
\(769\) −37.2865 −1.34458 −0.672292 0.740286i \(-0.734690\pi\)
−0.672292 + 0.740286i \(0.734690\pi\)
\(770\) 0 0
\(771\) 16.9205 0.609377
\(772\) −0.0805795 0.247998i −0.00290012 0.00892565i
\(773\) 16.5413 + 12.0180i 0.594949 + 0.432256i 0.844082 0.536213i \(-0.180146\pi\)
−0.249134 + 0.968469i \(0.580146\pi\)
\(774\) −3.54148 + 2.57303i −0.127296 + 0.0924858i
\(775\) 0 0
\(776\) 4.63405 14.2621i 0.166353 0.511981i
\(777\) 16.3830 11.9029i 0.587736 0.427015i
\(778\) 3.34763 + 2.43220i 0.120018 + 0.0871985i
\(779\) −9.11572 28.0553i −0.326605 1.00519i
\(780\) 0 0
\(781\) −20.3154 + 9.94912i −0.726942 + 0.356008i
\(782\) 8.25686 0.295265
\(783\) −1.67704 5.16139i −0.0599324 0.184453i
\(784\) −7.42832 5.39699i −0.265297 0.192750i
\(785\) 0 0
\(786\) 0.318150 0.979166i 0.0113480 0.0349257i
\(787\) −1.30809 + 4.02588i −0.0466283 + 0.143507i −0.971660 0.236383i \(-0.924038\pi\)
0.925032 + 0.379890i \(0.124038\pi\)
\(788\) 0.312678 0.227174i 0.0111387 0.00809275i
\(789\) −14.4689 10.5122i −0.515105 0.374246i
\(790\) 0 0
\(791\) −1.52002 −0.0540457
\(792\) 8.46499 4.14559i 0.300790 0.147307i
\(793\) −12.6472 −0.449114
\(794\) −15.0916 46.4471i −0.535580 1.64835i
\(795\) 0 0
\(796\) 0.142011 0.103177i 0.00503344 0.00365701i
\(797\) −5.24688 + 16.1482i −0.185854 + 0.572000i −0.999962 0.00871342i \(-0.997226\pi\)
0.814108 + 0.580714i \(0.197226\pi\)
\(798\) −4.69821 + 14.4596i −0.166315 + 0.511864i
\(799\) −23.5499 + 17.1100i −0.833134 + 0.605307i
\(800\) 0 0
\(801\) −3.18527 9.80326i −0.112546 0.346381i
\(802\) −15.1347 −0.534425
\(803\) −11.7681 2.05545i −0.415289 0.0725353i
\(804\) −0.272219 −0.00960044
\(805\) 0 0
\(806\) −6.43663 4.67649i −0.226721 0.164722i
\(807\) −23.2863 + 16.9185i −0.819716 + 0.595559i
\(808\) 13.8979 42.7734i 0.488927 1.50476i
\(809\) −4.32523 + 13.3117i −0.152067 + 0.468014i −0.997852 0.0655098i \(-0.979133\pi\)
0.845785 + 0.533524i \(0.179133\pi\)
\(810\) 0 0
\(811\) 39.4928 + 28.6932i 1.38678 + 1.00755i 0.996210 + 0.0869816i \(0.0277221\pi\)
0.390570 + 0.920573i \(0.372278\pi\)
\(812\) 0.0701285 + 0.215833i 0.00246103 + 0.00757426i
\(813\) −22.3952 −0.785434
\(814\) −6.14955 43.2494i −0.215542 1.51589i
\(815\) 0 0
\(816\) 2.97126 + 9.14459i 0.104015 + 0.320125i
\(817\) 12.5635 + 9.12790i 0.439541 + 0.319345i
\(818\) 22.5896 16.4123i 0.789828 0.573844i
\(819\) −1.63767 + 5.04024i −0.0572250 + 0.176120i
\(820\) 0 0
\(821\) 22.8707 16.6165i 0.798192 0.579920i −0.112191 0.993687i \(-0.535787\pi\)
0.910383 + 0.413766i \(0.135787\pi\)
\(822\) −15.3694 11.1666i −0.536071 0.389478i
\(823\) −5.14035 15.8204i −0.179181 0.551463i 0.820619 0.571476i \(-0.193629\pi\)
−0.999800 + 0.0200134i \(0.993629\pi\)
\(824\) −4.96723 −0.173042
\(825\) 0 0
\(826\) −13.0322 −0.453450
\(827\) −9.88523 30.4236i −0.343743 1.05793i −0.962253 0.272156i \(-0.912263\pi\)
0.618510 0.785777i \(-0.287737\pi\)
\(828\) 0.0377877 + 0.0274543i 0.00131321 + 0.000954104i
\(829\) −43.3871 + 31.5226i −1.50690 + 1.09482i −0.539366 + 0.842071i \(0.681336\pi\)
−0.967531 + 0.252754i \(0.918664\pi\)
\(830\) 0 0
\(831\) 0.845202 2.60126i 0.0293197 0.0902368i
\(832\) −16.0021 + 11.6262i −0.554773 + 0.403066i
\(833\) 4.55244 + 3.30754i 0.157733 + 0.114599i
\(834\) 7.08559 + 21.8072i 0.245354 + 0.755122i
\(835\) 0 0
\(836\) −0.222672 0.229839i −0.00770126 0.00794916i
\(837\) −2.30813 −0.0797808
\(838\) 11.5584 + 35.5730i 0.399277 + 1.22885i
\(839\) −30.6044 22.2354i −1.05658 0.767652i −0.0831294 0.996539i \(-0.526491\pi\)
−0.973453 + 0.228887i \(0.926491\pi\)
\(840\) 0 0
\(841\) 0.139804 0.430274i 0.00482084 0.0148370i
\(842\) −17.4058 + 53.5696i −0.599844 + 1.84613i
\(843\) 3.65261 2.65378i 0.125803 0.0914010i
\(844\) −0.419627 0.304877i −0.0144441 0.0104943i
\(845\) 0 0
\(846\) 16.8765 0.580225
\(847\) 13.3733 + 19.6892i 0.459511 + 0.676530i
\(848\) −27.9459 −0.959667
\(849\) 4.21178 + 12.9625i 0.144548 + 0.444872i
\(850\) 0 0
\(851\) 18.2993 13.2952i 0.627291 0.455754i
\(852\) 0.0407318 0.125360i 0.00139545 0.00429475i
\(853\) −6.85633 + 21.1016i −0.234756 + 0.722505i 0.762397 + 0.647109i \(0.224022\pi\)
−0.997154 + 0.0753962i \(0.975978\pi\)
\(854\) −12.7214 + 9.24265i −0.435318 + 0.316277i
\(855\) 0 0
\(856\) 7.84013 + 24.1294i 0.267970 + 0.824727i
\(857\) 13.7471 0.469592 0.234796 0.972045i \(-0.424558\pi\)
0.234796 + 0.972045i \(0.424558\pi\)
\(858\) 7.95487 + 8.21093i 0.271575 + 0.280317i
\(859\) 43.9972 1.50117 0.750583 0.660776i \(-0.229773\pi\)
0.750583 + 0.660776i \(0.229773\pi\)
\(860\) 0 0
\(861\) −10.3430 7.51462i −0.352488 0.256097i
\(862\) −22.3514 + 16.2393i −0.761292 + 0.553111i
\(863\) −1.62747 + 5.00883i −0.0553996 + 0.170502i −0.974928 0.222522i \(-0.928571\pi\)
0.919528 + 0.393024i \(0.128571\pi\)
\(864\) −0.0337817 + 0.103970i −0.00114928 + 0.00353712i
\(865\) 0 0
\(866\) −45.6267 33.1498i −1.55046 1.12647i
\(867\) 3.43236 + 10.5637i 0.116569 + 0.358762i
\(868\) 0.0965189 0.00327606
\(869\) −16.6145 + 31.3694i −0.563607 + 1.06413i
\(870\) 0 0
\(871\) −10.6609 32.8110i −0.361232 1.11176i
\(872\) −43.3383 31.4871i −1.46762 1.06629i
\(873\) 4.26897 3.10159i 0.144483 0.104973i
\(874\) −5.24775 + 16.1509i −0.177508 + 0.546313i
\(875\) 0 0
\(876\) 0.0563164 0.0409162i 0.00190275 0.00138243i
\(877\) −0.243619 0.177000i −0.00822643 0.00597685i 0.583664 0.811995i \(-0.301618\pi\)
−0.591891 + 0.806018i \(0.701618\pi\)
\(878\) 3.19490 + 9.83288i 0.107823 + 0.331844i
\(879\) −10.7326 −0.362001
\(880\) 0 0
\(881\) 24.5711 0.827821 0.413911 0.910318i \(-0.364163\pi\)
0.413911 + 0.910318i \(0.364163\pi\)
\(882\) −1.00814 3.10273i −0.0339457 0.104474i
\(883\) −1.68153 1.22170i −0.0565880 0.0411136i 0.559132 0.829079i \(-0.311135\pi\)
−0.615720 + 0.787965i \(0.711135\pi\)
\(884\) 0.0929581 0.0675380i 0.00312652 0.00227155i
\(885\) 0 0
\(886\) 12.0505 37.0878i 0.404846 1.24599i
\(887\) −24.7103 + 17.9531i −0.829689 + 0.602805i −0.919471 0.393157i \(-0.871383\pi\)
0.0897821 + 0.995961i \(0.471383\pi\)
\(888\) 21.5176 + 15.6335i 0.722084 + 0.524625i
\(889\) −12.8978 39.6952i −0.432577 1.33133i
\(890\) 0 0
\(891\) 3.26716 + 0.570651i 0.109454 + 0.0191175i
\(892\) 0.112575 0.00376928
\(893\) −18.5007 56.9395i −0.619104 1.90541i
\(894\) 2.23699 + 1.62527i 0.0748160 + 0.0543570i
\(895\) 0 0
\(896\) −7.45333 + 22.9390i −0.248998 + 0.766337i
\(897\) −1.82923 + 5.62979i −0.0610762 + 0.187973i
\(898\) 3.78521 2.75011i 0.126314 0.0917725i
\(899\) −10.1340 7.36275i −0.337986 0.245561i
\(900\) 0 0
\(901\) 17.1266 0.570571
\(902\) −24.7683 + 12.1299i −0.824696 + 0.403881i
\(903\) 6.73026 0.223969
\(904\) −0.616926 1.89870i −0.0205186 0.0631499i
\(905\) 0 0
\(906\) 7.30413 5.30676i 0.242664 0.176305i
\(907\) 11.0784 34.0958i 0.367852 1.13213i −0.580323 0.814386i \(-0.697074\pi\)
0.948176 0.317747i \(-0.102926\pi\)
\(908\) 0.109230 0.336175i 0.00362492 0.0111564i
\(909\) 12.8030 9.30194i 0.424649 0.308526i
\(910\) 0 0
\(911\) 2.90393 + 8.93737i 0.0962114 + 0.296108i 0.987568 0.157195i \(-0.0502453\pi\)
−0.891356 + 0.453304i \(0.850245\pi\)
\(912\) −19.7758 −0.654842
\(913\) −7.10034 + 3.47727i −0.234987 + 0.115081i
\(914\) 24.9516 0.825324
\(915\) 0 0
\(916\) −0.367482 0.266991i −0.0121420 0.00882164i
\(917\) −1.28060 + 0.930408i −0.0422890 + 0.0307248i
\(918\) −1.05571 + 3.24914i −0.0348436 + 0.107238i
\(919\) −0.265339 + 0.816629i −0.00875272 + 0.0269381i −0.955337 0.295517i \(-0.904508\pi\)
0.946585 + 0.322455i \(0.104508\pi\)
\(920\) 0 0
\(921\) 4.10747 + 2.98425i 0.135346 + 0.0983345i
\(922\) −10.6273 32.7075i −0.349992 1.07716i
\(923\) 16.7050 0.549850
\(924\) −0.136623 0.0238628i −0.00449455 0.000785029i
\(925\) 0 0
\(926\) 10.0686 + 30.9880i 0.330875 + 1.01833i
\(927\) −1.41403 1.02735i −0.0464429 0.0337427i
\(928\) −0.479974 + 0.348722i −0.0157559 + 0.0114473i
\(929\) 12.4105 38.1955i 0.407174 1.25315i −0.511892 0.859050i \(-0.671055\pi\)
0.919066 0.394103i \(-0.128945\pi\)
\(930\) 0 0
\(931\) −9.36311 + 6.80270i −0.306864 + 0.222950i
\(932\) −0.428315 0.311189i −0.0140299 0.0101933i
\(933\) 1.25992 + 3.87764i 0.0412480 + 0.126948i
\(934\) 32.5665 1.06561
\(935\) 0 0
\(936\) −6.96060 −0.227514
\(937\) −9.75230 30.0145i −0.318594 0.980530i −0.974250 0.225471i \(-0.927608\pi\)
0.655656 0.755060i \(-0.272392\pi\)
\(938\) −34.7020 25.2125i −1.13306 0.823217i
\(939\) −23.7258 + 17.2378i −0.774261 + 0.562534i
\(940\) 0 0
\(941\) 3.39145 10.4378i 0.110558 0.340263i −0.880437 0.474164i \(-0.842750\pi\)
0.990995 + 0.133901i \(0.0427504\pi\)
\(942\) −11.5009 + 8.35591i −0.374720 + 0.272250i
\(943\) −11.5528 8.39359i −0.376211 0.273333i
\(944\) −5.23824 16.1217i −0.170490 0.524715i
\(945\) 0 0
\(946\) 6.79534 12.8301i 0.220935 0.417143i
\(947\) 32.3272 1.05049 0.525246 0.850951i \(-0.323973\pi\)
0.525246 + 0.850951i \(0.323973\pi\)
\(948\) −0.0639182 0.196720i −0.00207597 0.00638917i
\(949\) 7.13721 + 5.18549i 0.231684 + 0.168328i
\(950\) 0 0
\(951\) 0.359088 1.10516i 0.0116442 0.0358372i
\(952\) 4.61278 14.1967i 0.149501 0.460117i
\(953\) −3.68704 + 2.67879i −0.119435 + 0.0867746i −0.645899 0.763423i \(-0.723517\pi\)
0.526464 + 0.850197i \(0.323517\pi\)
\(954\) −8.03305 5.83635i −0.260080 0.188959i
\(955\) 0 0
\(956\) 0.423504 0.0136971
\(957\) 12.5243 + 12.9274i 0.404853 + 0.417885i
\(958\) −15.1565 −0.489684
\(959\) 9.02584 + 27.7787i 0.291460 + 0.897021i
\(960\) 0 0
\(961\) 20.7695 15.0899i 0.669984 0.486772i
\(962\) −9.96888 + 30.6811i −0.321410 + 0.989197i
\(963\) −2.75874 + 8.49052i −0.0888990 + 0.273603i
\(964\) −0.354968 + 0.257899i −0.0114327 + 0.00830637i
\(965\) 0 0
\(966\) 2.27433 + 6.99966i 0.0731752 + 0.225210i
\(967\) 3.69371 0.118782 0.0593909 0.998235i \(-0.481084\pi\)
0.0593909 + 0.998235i \(0.481084\pi\)
\(968\) −19.1667 + 24.6962i −0.616040 + 0.793766i
\(969\) 12.1196 0.389337
\(970\) 0 0
\(971\) 43.1697 + 31.3646i 1.38538 + 1.00654i 0.996354 + 0.0853116i \(0.0271886\pi\)
0.389027 + 0.921227i \(0.372811\pi\)
\(972\) −0.0156350 + 0.0113595i −0.000501493 + 0.000364356i
\(973\) 10.8938 33.5278i 0.349240 1.07485i
\(974\) −8.04197 + 24.7506i −0.257681 + 0.793061i
\(975\) 0 0
\(976\) −16.5470 12.0221i −0.529657 0.384818i
\(977\) −11.2675 34.6777i −0.360479 1.10944i −0.952764 0.303711i \(-0.901774\pi\)
0.592286 0.805728i \(-0.298226\pi\)
\(978\) −24.1554 −0.772403
\(979\) 23.7879 + 24.5537i 0.760266 + 0.784738i
\(980\) 0 0
\(981\) −5.82483 17.9270i −0.185973 0.572365i
\(982\) 40.2923 + 29.2741i 1.28578 + 0.934173i
\(983\) 4.15822 3.02113i 0.132627 0.0963590i −0.519494 0.854474i \(-0.673880\pi\)
0.652121 + 0.758115i \(0.273880\pi\)
\(984\) 5.18886 15.9697i 0.165415 0.509095i
\(985\) 0 0
\(986\) −14.9996 + 10.8979i −0.477685 + 0.347059i
\(987\) −20.9915 15.2512i −0.668168 0.485452i
\(988\) 0.0730278 + 0.224756i 0.00232332 + 0.00715045i
\(989\) 7.51749 0.239042
\(990\) 0 0
\(991\) −57.4924 −1.82631 −0.913154 0.407616i \(-0.866360\pi\)
−0.913154 + 0.407616i \(0.866360\pi\)
\(992\) 0.0779728 + 0.239976i 0.00247564 + 0.00761923i
\(993\) 11.9906 + 8.71165i 0.380509 + 0.276456i
\(994\) 16.8030 12.2081i 0.532959 0.387218i
\(995\) 0 0
\(996\) 0.0142360 0.0438139i 0.000451085 0.00138830i
\(997\) 5.40487 3.92687i 0.171174 0.124365i −0.498900 0.866660i \(-0.666262\pi\)
0.670074 + 0.742295i \(0.266262\pi\)
\(998\) 4.59236 + 3.33654i 0.145368 + 0.105616i
\(999\) 2.89205 + 8.90082i 0.0915005 + 0.281610i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.n.n.676.3 yes 16
5.2 odd 4 825.2.bx.j.49.3 32
5.3 odd 4 825.2.bx.j.49.6 32
5.4 even 2 825.2.n.m.676.2 yes 16
11.3 even 5 9075.2.a.dv.1.6 8
11.8 odd 10 9075.2.a.dt.1.3 8
11.9 even 5 inner 825.2.n.n.526.3 yes 16
55.9 even 10 825.2.n.m.526.2 16
55.14 even 10 9075.2.a.du.1.3 8
55.19 odd 10 9075.2.a.dw.1.6 8
55.42 odd 20 825.2.bx.j.724.6 32
55.53 odd 20 825.2.bx.j.724.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.2.n.m.526.2 16 55.9 even 10
825.2.n.m.676.2 yes 16 5.4 even 2
825.2.n.n.526.3 yes 16 11.9 even 5 inner
825.2.n.n.676.3 yes 16 1.1 even 1 trivial
825.2.bx.j.49.3 32 5.2 odd 4
825.2.bx.j.49.6 32 5.3 odd 4
825.2.bx.j.724.3 32 55.53 odd 20
825.2.bx.j.724.6 32 55.42 odd 20
9075.2.a.dt.1.3 8 11.8 odd 10
9075.2.a.du.1.3 8 55.14 even 10
9075.2.a.dv.1.6 8 11.3 even 5
9075.2.a.dw.1.6 8 55.19 odd 10