Properties

Label 825.4.a.l
Level $825$
Weight $4$
Character orbit 825.a
Self dual yes
Analytic conductor $48.677$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{97}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{97})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 3 q^{3} + (\beta + 16) q^{4} - 3 \beta q^{6} + (4 \beta - 14) q^{7} + ( - 9 \beta - 24) q^{8} + 9 q^{9} - 11 q^{11} + (3 \beta + 48) q^{12} + ( - 2 \beta - 14) q^{13} + (10 \beta - 96) q^{14} + \cdots - 99 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 6 q^{3} + 33 q^{4} - 3 q^{6} - 24 q^{7} - 57 q^{8} + 18 q^{9} - 22 q^{11} + 99 q^{12} - 30 q^{13} - 182 q^{14} + 201 q^{16} - 106 q^{17} - 9 q^{18} + 50 q^{19} - 72 q^{21} + 11 q^{22} - 134 q^{23}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.42443
−4.42443
−5.42443 3.00000 21.4244 0 −16.2733 7.69772 −72.8199 9.00000 0
1.2 4.42443 3.00000 11.5756 0 13.2733 −31.6977 15.8199 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.a.l 2
3.b odd 2 1 2475.4.a.p 2
5.b even 2 1 33.4.a.c 2
5.c odd 4 2 825.4.c.h 4
15.d odd 2 1 99.4.a.f 2
20.d odd 2 1 528.4.a.p 2
35.c odd 2 1 1617.4.a.k 2
40.e odd 2 1 2112.4.a.bg 2
40.f even 2 1 2112.4.a.bn 2
55.d odd 2 1 363.4.a.i 2
60.h even 2 1 1584.4.a.bj 2
165.d even 2 1 1089.4.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.a.c 2 5.b even 2 1
99.4.a.f 2 15.d odd 2 1
363.4.a.i 2 55.d odd 2 1
528.4.a.p 2 20.d odd 2 1
825.4.a.l 2 1.a even 1 1 trivial
825.4.c.h 4 5.c odd 4 2
1089.4.a.u 2 165.d even 2 1
1584.4.a.bj 2 60.h even 2 1
1617.4.a.k 2 35.c odd 2 1
2112.4.a.bg 2 40.e odd 2 1
2112.4.a.bn 2 40.f even 2 1
2475.4.a.p 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(825))\):

\( T_{2}^{2} + T_{2} - 24 \) Copy content Toggle raw display
\( T_{7}^{2} + 24T_{7} - 244 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 24 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 24T - 244 \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 30T + 128 \) Copy content Toggle raw display
$17$ \( T^{2} + 106T - 1944 \) Copy content Toggle raw display
$19$ \( T^{2} - 50T + 528 \) Copy content Toggle raw display
$23$ \( T^{2} + 134T + 2064 \) Copy content Toggle raw display
$29$ \( T^{2} + 198T + 8928 \) Copy content Toggle raw display
$31$ \( T^{2} - 360T + 30848 \) Copy content Toggle raw display
$37$ \( T^{2} - 328T - 38676 \) Copy content Toggle raw display
$41$ \( T^{2} + 782T + 148128 \) Copy content Toggle raw display
$43$ \( T^{2} + 386T + 20856 \) Copy content Toggle raw display
$47$ \( T^{2} + 266T - 115104 \) Copy content Toggle raw display
$53$ \( T^{2} - 522T - 2592 \) Copy content Toggle raw display
$59$ \( T^{2} + 172T - 235104 \) Copy content Toggle raw display
$61$ \( T^{2} + 778T + 123288 \) Copy content Toggle raw display
$67$ \( T^{2} - 776T - 72944 \) Copy content Toggle raw display
$71$ \( T^{2} - 630T + 28512 \) Copy content Toggle raw display
$73$ \( T^{2} + 1296 T + 400892 \) Copy content Toggle raw display
$79$ \( T^{2} - 652T - 396572 \) Copy content Toggle raw display
$83$ \( T^{2} - 324T - 563904 \) Copy content Toggle raw display
$89$ \( T^{2} + 756T + 17172 \) Copy content Toggle raw display
$97$ \( T^{2} - 452T - 842876 \) Copy content Toggle raw display
show more
show less