Properties

Label 825.4.a.x.1.5
Level $825$
Weight $4$
Character 825.1
Self dual yes
Analytic conductor $48.677$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 21x^{3} + 17x^{2} + 78x - 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-3.98707\) of defining polynomial
Character \(\chi\) \(=\) 825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.98707 q^{2} +3.00000 q^{3} +7.89672 q^{4} +11.9612 q^{6} -12.5627 q^{7} -0.411800 q^{8} +9.00000 q^{9} -11.0000 q^{11} +23.6901 q^{12} -36.0726 q^{13} -50.0885 q^{14} -64.8156 q^{16} -39.7182 q^{17} +35.8836 q^{18} -148.094 q^{19} -37.6882 q^{21} -43.8578 q^{22} +35.0665 q^{23} -1.23540 q^{24} -143.824 q^{26} +27.0000 q^{27} -99.2043 q^{28} +88.2837 q^{29} -166.874 q^{31} -255.130 q^{32} -33.0000 q^{33} -158.359 q^{34} +71.0704 q^{36} -85.2847 q^{37} -590.460 q^{38} -108.218 q^{39} +329.944 q^{41} -150.265 q^{42} +278.695 q^{43} -86.8639 q^{44} +139.813 q^{46} +272.851 q^{47} -194.447 q^{48} -185.178 q^{49} -119.155 q^{51} -284.855 q^{52} -223.266 q^{53} +107.651 q^{54} +5.17334 q^{56} -444.282 q^{57} +351.993 q^{58} -467.463 q^{59} +752.249 q^{61} -665.338 q^{62} -113.065 q^{63} -498.695 q^{64} -131.573 q^{66} -733.563 q^{67} -313.643 q^{68} +105.200 q^{69} +537.226 q^{71} -3.70620 q^{72} -397.895 q^{73} -340.036 q^{74} -1169.46 q^{76} +138.190 q^{77} -431.471 q^{78} -1079.06 q^{79} +81.0000 q^{81} +1315.51 q^{82} -683.484 q^{83} -297.613 q^{84} +1111.18 q^{86} +264.851 q^{87} +4.52980 q^{88} -166.100 q^{89} +453.170 q^{91} +276.911 q^{92} -500.622 q^{93} +1087.87 q^{94} -765.390 q^{96} +694.031 q^{97} -738.317 q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 15 q^{3} + 3 q^{4} - 3 q^{6} - 18 q^{7} + 3 q^{8} + 45 q^{9} - 55 q^{11} + 9 q^{12} - 31 q^{13} + 8 q^{14} - 125 q^{16} - 38 q^{17} - 9 q^{18} - 57 q^{19} - 54 q^{21} + 11 q^{22} - 161 q^{23}+ \cdots - 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.98707 1.40964 0.704821 0.709385i \(-0.251027\pi\)
0.704821 + 0.709385i \(0.251027\pi\)
\(3\) 3.00000 0.577350
\(4\) 7.89672 0.987090
\(5\) 0 0
\(6\) 11.9612 0.813857
\(7\) −12.5627 −0.678324 −0.339162 0.940728i \(-0.610143\pi\)
−0.339162 + 0.940728i \(0.610143\pi\)
\(8\) −0.411800 −0.0181992
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 23.6901 0.569896
\(13\) −36.0726 −0.769594 −0.384797 0.923001i \(-0.625729\pi\)
−0.384797 + 0.923001i \(0.625729\pi\)
\(14\) −50.0885 −0.956193
\(15\) 0 0
\(16\) −64.8156 −1.01274
\(17\) −39.7182 −0.566652 −0.283326 0.959024i \(-0.591438\pi\)
−0.283326 + 0.959024i \(0.591438\pi\)
\(18\) 35.8836 0.469881
\(19\) −148.094 −1.78816 −0.894081 0.447906i \(-0.852170\pi\)
−0.894081 + 0.447906i \(0.852170\pi\)
\(20\) 0 0
\(21\) −37.6882 −0.391630
\(22\) −43.8578 −0.425023
\(23\) 35.0665 0.317908 0.158954 0.987286i \(-0.449188\pi\)
0.158954 + 0.987286i \(0.449188\pi\)
\(24\) −1.23540 −0.0105073
\(25\) 0 0
\(26\) −143.824 −1.08485
\(27\) 27.0000 0.192450
\(28\) −99.2043 −0.669566
\(29\) 88.2837 0.565306 0.282653 0.959222i \(-0.408785\pi\)
0.282653 + 0.959222i \(0.408785\pi\)
\(30\) 0 0
\(31\) −166.874 −0.966820 −0.483410 0.875394i \(-0.660602\pi\)
−0.483410 + 0.875394i \(0.660602\pi\)
\(32\) −255.130 −1.40941
\(33\) −33.0000 −0.174078
\(34\) −158.359 −0.798776
\(35\) 0 0
\(36\) 71.0704 0.329030
\(37\) −85.2847 −0.378939 −0.189469 0.981887i \(-0.560677\pi\)
−0.189469 + 0.981887i \(0.560677\pi\)
\(38\) −590.460 −2.52067
\(39\) −108.218 −0.444326
\(40\) 0 0
\(41\) 329.944 1.25679 0.628397 0.777893i \(-0.283711\pi\)
0.628397 + 0.777893i \(0.283711\pi\)
\(42\) −150.265 −0.552058
\(43\) 278.695 0.988386 0.494193 0.869352i \(-0.335464\pi\)
0.494193 + 0.869352i \(0.335464\pi\)
\(44\) −86.8639 −0.297619
\(45\) 0 0
\(46\) 139.813 0.448136
\(47\) 272.851 0.846795 0.423397 0.905944i \(-0.360837\pi\)
0.423397 + 0.905944i \(0.360837\pi\)
\(48\) −194.447 −0.584708
\(49\) −185.178 −0.539877
\(50\) 0 0
\(51\) −119.155 −0.327157
\(52\) −284.855 −0.759659
\(53\) −223.266 −0.578640 −0.289320 0.957232i \(-0.593429\pi\)
−0.289320 + 0.957232i \(0.593429\pi\)
\(54\) 107.651 0.271286
\(55\) 0 0
\(56\) 5.17334 0.0123449
\(57\) −444.282 −1.03240
\(58\) 351.993 0.796879
\(59\) −467.463 −1.03150 −0.515750 0.856739i \(-0.672487\pi\)
−0.515750 + 0.856739i \(0.672487\pi\)
\(60\) 0 0
\(61\) 752.249 1.57894 0.789472 0.613786i \(-0.210354\pi\)
0.789472 + 0.613786i \(0.210354\pi\)
\(62\) −665.338 −1.36287
\(63\) −113.065 −0.226108
\(64\) −498.695 −0.974014
\(65\) 0 0
\(66\) −131.573 −0.245387
\(67\) −733.563 −1.33760 −0.668798 0.743444i \(-0.733191\pi\)
−0.668798 + 0.743444i \(0.733191\pi\)
\(68\) −313.643 −0.559336
\(69\) 105.200 0.183544
\(70\) 0 0
\(71\) 537.226 0.897985 0.448993 0.893535i \(-0.351783\pi\)
0.448993 + 0.893535i \(0.351783\pi\)
\(72\) −3.70620 −0.00606639
\(73\) −397.895 −0.637947 −0.318974 0.947764i \(-0.603338\pi\)
−0.318974 + 0.947764i \(0.603338\pi\)
\(74\) −340.036 −0.534168
\(75\) 0 0
\(76\) −1169.46 −1.76508
\(77\) 138.190 0.204522
\(78\) −431.471 −0.626340
\(79\) −1079.06 −1.53675 −0.768375 0.640000i \(-0.778934\pi\)
−0.768375 + 0.640000i \(0.778934\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1315.51 1.77163
\(83\) −683.484 −0.903881 −0.451941 0.892048i \(-0.649268\pi\)
−0.451941 + 0.892048i \(0.649268\pi\)
\(84\) −297.613 −0.386574
\(85\) 0 0
\(86\) 1111.18 1.39327
\(87\) 264.851 0.326380
\(88\) 4.52980 0.00548726
\(89\) −166.100 −0.197826 −0.0989130 0.995096i \(-0.531537\pi\)
−0.0989130 + 0.995096i \(0.531537\pi\)
\(90\) 0 0
\(91\) 453.170 0.522034
\(92\) 276.911 0.313803
\(93\) −500.622 −0.558194
\(94\) 1087.87 1.19368
\(95\) 0 0
\(96\) −765.390 −0.813721
\(97\) 694.031 0.726476 0.363238 0.931696i \(-0.381671\pi\)
0.363238 + 0.931696i \(0.381671\pi\)
\(98\) −738.317 −0.761033
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) 447.846 0.441211 0.220605 0.975363i \(-0.429197\pi\)
0.220605 + 0.975363i \(0.429197\pi\)
\(102\) −475.078 −0.461174
\(103\) 1314.02 1.25703 0.628516 0.777797i \(-0.283663\pi\)
0.628516 + 0.777797i \(0.283663\pi\)
\(104\) 14.8547 0.0140060
\(105\) 0 0
\(106\) −890.176 −0.815675
\(107\) 1048.81 0.947594 0.473797 0.880634i \(-0.342883\pi\)
0.473797 + 0.880634i \(0.342883\pi\)
\(108\) 213.211 0.189965
\(109\) −1240.73 −1.09028 −0.545140 0.838345i \(-0.683523\pi\)
−0.545140 + 0.838345i \(0.683523\pi\)
\(110\) 0 0
\(111\) −255.854 −0.218780
\(112\) 814.261 0.686968
\(113\) −1331.27 −1.10828 −0.554138 0.832425i \(-0.686952\pi\)
−0.554138 + 0.832425i \(0.686952\pi\)
\(114\) −1771.38 −1.45531
\(115\) 0 0
\(116\) 697.152 0.558008
\(117\) −324.653 −0.256531
\(118\) −1863.81 −1.45405
\(119\) 498.969 0.384373
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 2999.27 2.22575
\(123\) 989.832 0.725611
\(124\) −1317.76 −0.954338
\(125\) 0 0
\(126\) −450.796 −0.318731
\(127\) −1250.59 −0.873791 −0.436896 0.899512i \(-0.643922\pi\)
−0.436896 + 0.899512i \(0.643922\pi\)
\(128\) 52.7060 0.0363953
\(129\) 836.085 0.570645
\(130\) 0 0
\(131\) −168.067 −0.112092 −0.0560460 0.998428i \(-0.517849\pi\)
−0.0560460 + 0.998428i \(0.517849\pi\)
\(132\) −260.592 −0.171830
\(133\) 1860.46 1.21295
\(134\) −2924.77 −1.88553
\(135\) 0 0
\(136\) 16.3560 0.0103126
\(137\) 1533.67 0.956428 0.478214 0.878243i \(-0.341284\pi\)
0.478214 + 0.878243i \(0.341284\pi\)
\(138\) 419.438 0.258731
\(139\) −961.259 −0.586568 −0.293284 0.956025i \(-0.594748\pi\)
−0.293284 + 0.956025i \(0.594748\pi\)
\(140\) 0 0
\(141\) 818.552 0.488897
\(142\) 2141.96 1.26584
\(143\) 396.798 0.232041
\(144\) −583.340 −0.337581
\(145\) 0 0
\(146\) −1586.44 −0.899277
\(147\) −555.534 −0.311698
\(148\) −673.469 −0.374046
\(149\) −70.0037 −0.0384894 −0.0192447 0.999815i \(-0.506126\pi\)
−0.0192447 + 0.999815i \(0.506126\pi\)
\(150\) 0 0
\(151\) 210.529 0.113461 0.0567306 0.998390i \(-0.481932\pi\)
0.0567306 + 0.998390i \(0.481932\pi\)
\(152\) 60.9851 0.0325431
\(153\) −357.464 −0.188884
\(154\) 550.973 0.288303
\(155\) 0 0
\(156\) −854.564 −0.438589
\(157\) 2239.44 1.13839 0.569193 0.822204i \(-0.307256\pi\)
0.569193 + 0.822204i \(0.307256\pi\)
\(158\) −4302.27 −2.16627
\(159\) −669.798 −0.334078
\(160\) 0 0
\(161\) −440.531 −0.215644
\(162\) 322.953 0.156627
\(163\) 1918.08 0.921692 0.460846 0.887480i \(-0.347546\pi\)
0.460846 + 0.887480i \(0.347546\pi\)
\(164\) 2605.47 1.24057
\(165\) 0 0
\(166\) −2725.10 −1.27415
\(167\) −3036.53 −1.40703 −0.703513 0.710682i \(-0.748386\pi\)
−0.703513 + 0.710682i \(0.748386\pi\)
\(168\) 15.5200 0.00712735
\(169\) −895.771 −0.407724
\(170\) 0 0
\(171\) −1332.84 −0.596054
\(172\) 2200.78 0.975625
\(173\) 1713.66 0.753104 0.376552 0.926396i \(-0.377110\pi\)
0.376552 + 0.926396i \(0.377110\pi\)
\(174\) 1055.98 0.460078
\(175\) 0 0
\(176\) 712.972 0.305354
\(177\) −1402.39 −0.595537
\(178\) −662.250 −0.278864
\(179\) −901.687 −0.376510 −0.188255 0.982120i \(-0.560283\pi\)
−0.188255 + 0.982120i \(0.560283\pi\)
\(180\) 0 0
\(181\) −2970.07 −1.21969 −0.609844 0.792521i \(-0.708768\pi\)
−0.609844 + 0.792521i \(0.708768\pi\)
\(182\) 1806.82 0.735881
\(183\) 2256.75 0.911604
\(184\) −14.4404 −0.00578566
\(185\) 0 0
\(186\) −1996.01 −0.786854
\(187\) 436.900 0.170852
\(188\) 2154.62 0.835862
\(189\) −339.194 −0.130543
\(190\) 0 0
\(191\) 611.910 0.231813 0.115906 0.993260i \(-0.463023\pi\)
0.115906 + 0.993260i \(0.463023\pi\)
\(192\) −1496.09 −0.562348
\(193\) 1902.58 0.709589 0.354795 0.934944i \(-0.384551\pi\)
0.354795 + 0.934944i \(0.384551\pi\)
\(194\) 2767.15 1.02407
\(195\) 0 0
\(196\) −1462.30 −0.532907
\(197\) 268.748 0.0971956 0.0485978 0.998818i \(-0.484525\pi\)
0.0485978 + 0.998818i \(0.484525\pi\)
\(198\) −394.720 −0.141674
\(199\) −229.583 −0.0817825 −0.0408912 0.999164i \(-0.513020\pi\)
−0.0408912 + 0.999164i \(0.513020\pi\)
\(200\) 0 0
\(201\) −2200.69 −0.772262
\(202\) 1785.59 0.621949
\(203\) −1109.08 −0.383460
\(204\) −940.930 −0.322933
\(205\) 0 0
\(206\) 5239.09 1.77196
\(207\) 315.599 0.105969
\(208\) 2338.06 0.779402
\(209\) 1629.03 0.539151
\(210\) 0 0
\(211\) −5111.79 −1.66782 −0.833910 0.551901i \(-0.813903\pi\)
−0.833910 + 0.551901i \(0.813903\pi\)
\(212\) −1763.07 −0.571170
\(213\) 1611.68 0.518452
\(214\) 4181.69 1.33577
\(215\) 0 0
\(216\) −11.1186 −0.00350243
\(217\) 2096.39 0.655817
\(218\) −4946.88 −1.53690
\(219\) −1193.69 −0.368319
\(220\) 0 0
\(221\) 1432.74 0.436092
\(222\) −1020.11 −0.308402
\(223\) 1393.60 0.418486 0.209243 0.977864i \(-0.432900\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(224\) 3205.13 0.956034
\(225\) 0 0
\(226\) −5307.86 −1.56227
\(227\) 6244.88 1.82593 0.912967 0.408032i \(-0.133785\pi\)
0.912967 + 0.408032i \(0.133785\pi\)
\(228\) −3508.37 −1.01907
\(229\) 3295.16 0.950873 0.475437 0.879750i \(-0.342290\pi\)
0.475437 + 0.879750i \(0.342290\pi\)
\(230\) 0 0
\(231\) 414.570 0.118081
\(232\) −36.3553 −0.0102881
\(233\) −961.850 −0.270442 −0.135221 0.990815i \(-0.543174\pi\)
−0.135221 + 0.990815i \(0.543174\pi\)
\(234\) −1294.41 −0.361617
\(235\) 0 0
\(236\) −3691.42 −1.01818
\(237\) −3237.17 −0.887242
\(238\) 1989.42 0.541829
\(239\) −4738.03 −1.28233 −0.641166 0.767402i \(-0.721549\pi\)
−0.641166 + 0.767402i \(0.721549\pi\)
\(240\) 0 0
\(241\) −3928.79 −1.05011 −0.525053 0.851070i \(-0.675954\pi\)
−0.525053 + 0.851070i \(0.675954\pi\)
\(242\) 482.435 0.128149
\(243\) 243.000 0.0641500
\(244\) 5940.30 1.55856
\(245\) 0 0
\(246\) 3946.53 1.02285
\(247\) 5342.12 1.37616
\(248\) 68.7187 0.0175953
\(249\) −2050.45 −0.521856
\(250\) 0 0
\(251\) 7733.06 1.94465 0.972324 0.233638i \(-0.0750632\pi\)
0.972324 + 0.233638i \(0.0750632\pi\)
\(252\) −892.839 −0.223189
\(253\) −385.732 −0.0958528
\(254\) −4986.17 −1.23173
\(255\) 0 0
\(256\) 4199.71 1.02532
\(257\) 1574.17 0.382079 0.191039 0.981582i \(-0.438814\pi\)
0.191039 + 0.981582i \(0.438814\pi\)
\(258\) 3333.53 0.804405
\(259\) 1071.41 0.257043
\(260\) 0 0
\(261\) 794.554 0.188435
\(262\) −670.093 −0.158009
\(263\) 3172.64 0.743853 0.371927 0.928262i \(-0.378697\pi\)
0.371927 + 0.928262i \(0.378697\pi\)
\(264\) 13.5894 0.00316807
\(265\) 0 0
\(266\) 7417.79 1.70983
\(267\) −498.299 −0.114215
\(268\) −5792.74 −1.32033
\(269\) −1238.83 −0.280791 −0.140396 0.990095i \(-0.544837\pi\)
−0.140396 + 0.990095i \(0.544837\pi\)
\(270\) 0 0
\(271\) −2257.02 −0.505920 −0.252960 0.967477i \(-0.581404\pi\)
−0.252960 + 0.967477i \(0.581404\pi\)
\(272\) 2574.36 0.573873
\(273\) 1359.51 0.301396
\(274\) 6114.86 1.34822
\(275\) 0 0
\(276\) 830.732 0.181175
\(277\) −8207.95 −1.78039 −0.890195 0.455580i \(-0.849432\pi\)
−0.890195 + 0.455580i \(0.849432\pi\)
\(278\) −3832.60 −0.826850
\(279\) −1501.87 −0.322273
\(280\) 0 0
\(281\) −3499.20 −0.742864 −0.371432 0.928460i \(-0.621133\pi\)
−0.371432 + 0.928460i \(0.621133\pi\)
\(282\) 3263.62 0.689170
\(283\) −8614.14 −1.80939 −0.904695 0.426059i \(-0.859901\pi\)
−0.904695 + 0.426059i \(0.859901\pi\)
\(284\) 4242.32 0.886392
\(285\) 0 0
\(286\) 1582.06 0.327095
\(287\) −4145.00 −0.852513
\(288\) −2296.17 −0.469802
\(289\) −3335.46 −0.678906
\(290\) 0 0
\(291\) 2082.09 0.419431
\(292\) −3142.07 −0.629711
\(293\) 1028.59 0.205088 0.102544 0.994728i \(-0.467302\pi\)
0.102544 + 0.994728i \(0.467302\pi\)
\(294\) −2214.95 −0.439383
\(295\) 0 0
\(296\) 35.1203 0.00689637
\(297\) −297.000 −0.0580259
\(298\) −279.109 −0.0542563
\(299\) −1264.94 −0.244660
\(300\) 0 0
\(301\) −3501.17 −0.670446
\(302\) 839.395 0.159940
\(303\) 1343.54 0.254733
\(304\) 9598.79 1.81095
\(305\) 0 0
\(306\) −1425.23 −0.266259
\(307\) −2168.83 −0.403197 −0.201599 0.979468i \(-0.564614\pi\)
−0.201599 + 0.979468i \(0.564614\pi\)
\(308\) 1091.25 0.201882
\(309\) 3942.06 0.725748
\(310\) 0 0
\(311\) 4318.45 0.787386 0.393693 0.919242i \(-0.371197\pi\)
0.393693 + 0.919242i \(0.371197\pi\)
\(312\) 44.5641 0.00808636
\(313\) 4785.34 0.864164 0.432082 0.901834i \(-0.357779\pi\)
0.432082 + 0.901834i \(0.357779\pi\)
\(314\) 8928.79 1.60472
\(315\) 0 0
\(316\) −8520.99 −1.51691
\(317\) −6680.52 −1.18364 −0.591822 0.806069i \(-0.701591\pi\)
−0.591822 + 0.806069i \(0.701591\pi\)
\(318\) −2670.53 −0.470930
\(319\) −971.121 −0.170446
\(320\) 0 0
\(321\) 3146.44 0.547094
\(322\) −1756.43 −0.303981
\(323\) 5882.02 1.01326
\(324\) 639.634 0.109677
\(325\) 0 0
\(326\) 7647.52 1.29926
\(327\) −3722.19 −0.629473
\(328\) −135.871 −0.0228726
\(329\) −3427.75 −0.574401
\(330\) 0 0
\(331\) 3428.85 0.569386 0.284693 0.958619i \(-0.408108\pi\)
0.284693 + 0.958619i \(0.408108\pi\)
\(332\) −5397.28 −0.892212
\(333\) −767.563 −0.126313
\(334\) −12106.8 −1.98340
\(335\) 0 0
\(336\) 2442.78 0.396621
\(337\) 7809.83 1.26240 0.631200 0.775620i \(-0.282563\pi\)
0.631200 + 0.775620i \(0.282563\pi\)
\(338\) −3571.50 −0.574745
\(339\) −3993.80 −0.639863
\(340\) 0 0
\(341\) 1835.61 0.291507
\(342\) −5314.14 −0.840222
\(343\) 6635.35 1.04453
\(344\) −114.767 −0.0179878
\(345\) 0 0
\(346\) 6832.47 1.06161
\(347\) −5860.34 −0.906627 −0.453314 0.891351i \(-0.649758\pi\)
−0.453314 + 0.891351i \(0.649758\pi\)
\(348\) 2091.45 0.322166
\(349\) 5833.65 0.894750 0.447375 0.894346i \(-0.352359\pi\)
0.447375 + 0.894346i \(0.352359\pi\)
\(350\) 0 0
\(351\) −973.959 −0.148109
\(352\) 2806.43 0.424952
\(353\) 4532.47 0.683397 0.341699 0.939810i \(-0.388998\pi\)
0.341699 + 0.939810i \(0.388998\pi\)
\(354\) −5591.42 −0.839494
\(355\) 0 0
\(356\) −1311.64 −0.195272
\(357\) 1496.91 0.221918
\(358\) −3595.09 −0.530744
\(359\) −8727.48 −1.28306 −0.641530 0.767098i \(-0.721700\pi\)
−0.641530 + 0.767098i \(0.721700\pi\)
\(360\) 0 0
\(361\) 15072.8 2.19752
\(362\) −11841.9 −1.71932
\(363\) 363.000 0.0524864
\(364\) 3578.55 0.515294
\(365\) 0 0
\(366\) 8997.80 1.28503
\(367\) −11397.8 −1.62114 −0.810572 0.585639i \(-0.800844\pi\)
−0.810572 + 0.585639i \(0.800844\pi\)
\(368\) −2272.86 −0.321959
\(369\) 2969.50 0.418932
\(370\) 0 0
\(371\) 2804.83 0.392505
\(372\) −3953.27 −0.550988
\(373\) 10698.2 1.48507 0.742535 0.669807i \(-0.233623\pi\)
0.742535 + 0.669807i \(0.233623\pi\)
\(374\) 1741.95 0.240840
\(375\) 0 0
\(376\) −112.360 −0.0154110
\(377\) −3184.62 −0.435056
\(378\) −1352.39 −0.184019
\(379\) 6055.57 0.820723 0.410361 0.911923i \(-0.365403\pi\)
0.410361 + 0.911923i \(0.365403\pi\)
\(380\) 0 0
\(381\) −3751.76 −0.504484
\(382\) 2439.73 0.326773
\(383\) −13989.5 −1.86640 −0.933198 0.359363i \(-0.882994\pi\)
−0.933198 + 0.359363i \(0.882994\pi\)
\(384\) 158.118 0.0210128
\(385\) 0 0
\(386\) 7585.72 1.00027
\(387\) 2508.26 0.329462
\(388\) 5480.56 0.717097
\(389\) 4223.88 0.550538 0.275269 0.961367i \(-0.411233\pi\)
0.275269 + 0.961367i \(0.411233\pi\)
\(390\) 0 0
\(391\) −1392.78 −0.180143
\(392\) 76.2563 0.00982532
\(393\) −504.200 −0.0647163
\(394\) 1071.52 0.137011
\(395\) 0 0
\(396\) −781.775 −0.0992062
\(397\) 3341.86 0.422476 0.211238 0.977435i \(-0.432250\pi\)
0.211238 + 0.977435i \(0.432250\pi\)
\(398\) −915.364 −0.115284
\(399\) 5581.39 0.700298
\(400\) 0 0
\(401\) −7167.91 −0.892639 −0.446320 0.894874i \(-0.647266\pi\)
−0.446320 + 0.894874i \(0.647266\pi\)
\(402\) −8774.30 −1.08861
\(403\) 6019.57 0.744060
\(404\) 3536.51 0.435515
\(405\) 0 0
\(406\) −4422.00 −0.540542
\(407\) 938.132 0.114254
\(408\) 49.0679 0.00595398
\(409\) −10360.7 −1.25257 −0.626287 0.779592i \(-0.715426\pi\)
−0.626287 + 0.779592i \(0.715426\pi\)
\(410\) 0 0
\(411\) 4601.02 0.552194
\(412\) 10376.4 1.24080
\(413\) 5872.61 0.699691
\(414\) 1258.31 0.149379
\(415\) 0 0
\(416\) 9203.19 1.08467
\(417\) −2883.78 −0.338655
\(418\) 6495.06 0.760009
\(419\) −7640.60 −0.890853 −0.445427 0.895318i \(-0.646948\pi\)
−0.445427 + 0.895318i \(0.646948\pi\)
\(420\) 0 0
\(421\) −1013.65 −0.117345 −0.0586724 0.998277i \(-0.518687\pi\)
−0.0586724 + 0.998277i \(0.518687\pi\)
\(422\) −20381.0 −2.35103
\(423\) 2455.66 0.282265
\(424\) 91.9410 0.0105308
\(425\) 0 0
\(426\) 6425.87 0.730831
\(427\) −9450.30 −1.07104
\(428\) 8282.18 0.935360
\(429\) 1190.39 0.133969
\(430\) 0 0
\(431\) −13161.9 −1.47097 −0.735485 0.677541i \(-0.763046\pi\)
−0.735485 + 0.677541i \(0.763046\pi\)
\(432\) −1750.02 −0.194903
\(433\) 3886.06 0.431298 0.215649 0.976471i \(-0.430813\pi\)
0.215649 + 0.976471i \(0.430813\pi\)
\(434\) 8358.46 0.924467
\(435\) 0 0
\(436\) −9797.70 −1.07620
\(437\) −5193.14 −0.568470
\(438\) −4759.31 −0.519198
\(439\) −384.942 −0.0418503 −0.0209252 0.999781i \(-0.506661\pi\)
−0.0209252 + 0.999781i \(0.506661\pi\)
\(440\) 0 0
\(441\) −1666.60 −0.179959
\(442\) 5712.42 0.614734
\(443\) 13324.7 1.42907 0.714533 0.699601i \(-0.246639\pi\)
0.714533 + 0.699601i \(0.246639\pi\)
\(444\) −2020.41 −0.215956
\(445\) 0 0
\(446\) 5556.38 0.589915
\(447\) −210.011 −0.0222219
\(448\) 6264.97 0.660697
\(449\) −3242.44 −0.340802 −0.170401 0.985375i \(-0.554506\pi\)
−0.170401 + 0.985375i \(0.554506\pi\)
\(450\) 0 0
\(451\) −3629.38 −0.378938
\(452\) −10512.6 −1.09397
\(453\) 631.588 0.0655068
\(454\) 24898.8 2.57391
\(455\) 0 0
\(456\) 182.955 0.0187887
\(457\) 3686.70 0.377366 0.188683 0.982038i \(-0.439578\pi\)
0.188683 + 0.982038i \(0.439578\pi\)
\(458\) 13138.0 1.34039
\(459\) −1072.39 −0.109052
\(460\) 0 0
\(461\) −19219.2 −1.94171 −0.970856 0.239664i \(-0.922963\pi\)
−0.970856 + 0.239664i \(0.922963\pi\)
\(462\) 1652.92 0.166452
\(463\) 1346.60 0.135166 0.0675832 0.997714i \(-0.478471\pi\)
0.0675832 + 0.997714i \(0.478471\pi\)
\(464\) −5722.16 −0.572510
\(465\) 0 0
\(466\) −3834.96 −0.381226
\(467\) 8913.27 0.883205 0.441603 0.897211i \(-0.354410\pi\)
0.441603 + 0.897211i \(0.354410\pi\)
\(468\) −2563.69 −0.253220
\(469\) 9215.55 0.907323
\(470\) 0 0
\(471\) 6718.31 0.657247
\(472\) 192.501 0.0187725
\(473\) −3065.65 −0.298010
\(474\) −12906.8 −1.25069
\(475\) 0 0
\(476\) 3940.22 0.379411
\(477\) −2009.39 −0.192880
\(478\) −18890.8 −1.80763
\(479\) −11726.8 −1.11860 −0.559300 0.828965i \(-0.688930\pi\)
−0.559300 + 0.828965i \(0.688930\pi\)
\(480\) 0 0
\(481\) 3076.44 0.291629
\(482\) −15664.3 −1.48027
\(483\) −1321.59 −0.124502
\(484\) 955.503 0.0897354
\(485\) 0 0
\(486\) 968.858 0.0904286
\(487\) 8115.91 0.755168 0.377584 0.925975i \(-0.376755\pi\)
0.377584 + 0.925975i \(0.376755\pi\)
\(488\) −309.776 −0.0287355
\(489\) 5754.25 0.532139
\(490\) 0 0
\(491\) −12161.5 −1.11780 −0.558901 0.829235i \(-0.688777\pi\)
−0.558901 + 0.829235i \(0.688777\pi\)
\(492\) 7816.42 0.716243
\(493\) −3506.47 −0.320332
\(494\) 21299.4 1.93989
\(495\) 0 0
\(496\) 10816.0 0.979141
\(497\) −6749.02 −0.609125
\(498\) −8175.30 −0.735630
\(499\) 5696.54 0.511046 0.255523 0.966803i \(-0.417752\pi\)
0.255523 + 0.966803i \(0.417752\pi\)
\(500\) 0 0
\(501\) −9109.58 −0.812347
\(502\) 30832.2 2.74126
\(503\) 9287.58 0.823286 0.411643 0.911345i \(-0.364955\pi\)
0.411643 + 0.911345i \(0.364955\pi\)
\(504\) 46.5600 0.00411498
\(505\) 0 0
\(506\) −1537.94 −0.135118
\(507\) −2687.31 −0.235400
\(508\) −9875.52 −0.862510
\(509\) −8316.30 −0.724192 −0.362096 0.932141i \(-0.617939\pi\)
−0.362096 + 0.932141i \(0.617939\pi\)
\(510\) 0 0
\(511\) 4998.65 0.432735
\(512\) 16322.9 1.40894
\(513\) −3998.53 −0.344132
\(514\) 6276.34 0.538594
\(515\) 0 0
\(516\) 6602.33 0.563278
\(517\) −3001.36 −0.255318
\(518\) 4271.78 0.362338
\(519\) 5140.97 0.434805
\(520\) 0 0
\(521\) −4349.68 −0.365764 −0.182882 0.983135i \(-0.558543\pi\)
−0.182882 + 0.983135i \(0.558543\pi\)
\(522\) 3167.94 0.265626
\(523\) 6877.36 0.575002 0.287501 0.957780i \(-0.407176\pi\)
0.287501 + 0.957780i \(0.407176\pi\)
\(524\) −1327.17 −0.110645
\(525\) 0 0
\(526\) 12649.5 1.04857
\(527\) 6627.93 0.547851
\(528\) 2138.91 0.176296
\(529\) −10937.3 −0.898935
\(530\) 0 0
\(531\) −4207.17 −0.343833
\(532\) 14691.5 1.19729
\(533\) −11901.9 −0.967222
\(534\) −1986.75 −0.161002
\(535\) 0 0
\(536\) 302.081 0.0243432
\(537\) −2705.06 −0.217378
\(538\) −4939.30 −0.395815
\(539\) 2036.96 0.162779
\(540\) 0 0
\(541\) 9908.33 0.787417 0.393708 0.919235i \(-0.371192\pi\)
0.393708 + 0.919235i \(0.371192\pi\)
\(542\) −8998.90 −0.713166
\(543\) −8910.21 −0.704187
\(544\) 10133.3 0.798643
\(545\) 0 0
\(546\) 5420.46 0.424861
\(547\) 8052.99 0.629472 0.314736 0.949179i \(-0.398084\pi\)
0.314736 + 0.949179i \(0.398084\pi\)
\(548\) 12111.0 0.944080
\(549\) 6770.24 0.526315
\(550\) 0 0
\(551\) −13074.3 −1.01086
\(552\) −43.3212 −0.00334035
\(553\) 13555.9 1.04241
\(554\) −32725.7 −2.50971
\(555\) 0 0
\(556\) −7590.79 −0.578995
\(557\) 22805.4 1.73482 0.867412 0.497591i \(-0.165782\pi\)
0.867412 + 0.497591i \(0.165782\pi\)
\(558\) −5988.04 −0.454290
\(559\) −10053.2 −0.760656
\(560\) 0 0
\(561\) 1310.70 0.0986414
\(562\) −13951.5 −1.04717
\(563\) −21527.6 −1.61151 −0.805754 0.592251i \(-0.798240\pi\)
−0.805754 + 0.592251i \(0.798240\pi\)
\(564\) 6463.87 0.482585
\(565\) 0 0
\(566\) −34345.2 −2.55059
\(567\) −1017.58 −0.0753693
\(568\) −221.230 −0.0163426
\(569\) −287.375 −0.0211729 −0.0105865 0.999944i \(-0.503370\pi\)
−0.0105865 + 0.999944i \(0.503370\pi\)
\(570\) 0 0
\(571\) −14297.5 −1.04787 −0.523934 0.851759i \(-0.675536\pi\)
−0.523934 + 0.851759i \(0.675536\pi\)
\(572\) 3133.40 0.229046
\(573\) 1835.73 0.133837
\(574\) −16526.4 −1.20174
\(575\) 0 0
\(576\) −4488.26 −0.324671
\(577\) 16408.0 1.18383 0.591917 0.805999i \(-0.298371\pi\)
0.591917 + 0.805999i \(0.298371\pi\)
\(578\) −13298.7 −0.957014
\(579\) 5707.74 0.409681
\(580\) 0 0
\(581\) 8586.43 0.613124
\(582\) 8301.45 0.591247
\(583\) 2455.92 0.174467
\(584\) 163.853 0.0116101
\(585\) 0 0
\(586\) 4101.06 0.289101
\(587\) 7700.65 0.541465 0.270732 0.962655i \(-0.412734\pi\)
0.270732 + 0.962655i \(0.412734\pi\)
\(588\) −4386.89 −0.307674
\(589\) 24713.0 1.72883
\(590\) 0 0
\(591\) 806.245 0.0561159
\(592\) 5527.78 0.383768
\(593\) −13161.1 −0.911402 −0.455701 0.890133i \(-0.650611\pi\)
−0.455701 + 0.890133i \(0.650611\pi\)
\(594\) −1184.16 −0.0817957
\(595\) 0 0
\(596\) −552.799 −0.0379925
\(597\) −688.749 −0.0472171
\(598\) −5043.40 −0.344883
\(599\) 11115.0 0.758175 0.379088 0.925361i \(-0.376238\pi\)
0.379088 + 0.925361i \(0.376238\pi\)
\(600\) 0 0
\(601\) −12069.2 −0.819155 −0.409578 0.912275i \(-0.634324\pi\)
−0.409578 + 0.912275i \(0.634324\pi\)
\(602\) −13959.4 −0.945088
\(603\) −6602.07 −0.445866
\(604\) 1662.49 0.111996
\(605\) 0 0
\(606\) 5356.77 0.359083
\(607\) −249.659 −0.0166941 −0.00834706 0.999965i \(-0.502657\pi\)
−0.00834706 + 0.999965i \(0.502657\pi\)
\(608\) 37783.2 2.52025
\(609\) −3327.25 −0.221391
\(610\) 0 0
\(611\) −9842.42 −0.651689
\(612\) −2822.79 −0.186445
\(613\) −19136.0 −1.26084 −0.630421 0.776253i \(-0.717118\pi\)
−0.630421 + 0.776253i \(0.717118\pi\)
\(614\) −8647.26 −0.568363
\(615\) 0 0
\(616\) −56.9067 −0.00372214
\(617\) −22119.6 −1.44327 −0.721637 0.692272i \(-0.756610\pi\)
−0.721637 + 0.692272i \(0.756610\pi\)
\(618\) 15717.3 1.02304
\(619\) 19523.8 1.26773 0.633867 0.773442i \(-0.281467\pi\)
0.633867 + 0.773442i \(0.281467\pi\)
\(620\) 0 0
\(621\) 946.797 0.0611814
\(622\) 17218.0 1.10993
\(623\) 2086.66 0.134190
\(624\) 7014.19 0.449988
\(625\) 0 0
\(626\) 19079.5 1.21816
\(627\) 4887.10 0.311279
\(628\) 17684.2 1.12369
\(629\) 3387.36 0.214726
\(630\) 0 0
\(631\) 13656.2 0.861562 0.430781 0.902457i \(-0.358238\pi\)
0.430781 + 0.902457i \(0.358238\pi\)
\(632\) 444.355 0.0279676
\(633\) −15335.4 −0.962916
\(634\) −26635.7 −1.66851
\(635\) 0 0
\(636\) −5289.20 −0.329765
\(637\) 6679.84 0.415486
\(638\) −3871.93 −0.240268
\(639\) 4835.03 0.299328
\(640\) 0 0
\(641\) −27823.7 −1.71446 −0.857230 0.514934i \(-0.827816\pi\)
−0.857230 + 0.514934i \(0.827816\pi\)
\(642\) 12545.1 0.771206
\(643\) 29045.0 1.78137 0.890687 0.454618i \(-0.150224\pi\)
0.890687 + 0.454618i \(0.150224\pi\)
\(644\) −3478.75 −0.212860
\(645\) 0 0
\(646\) 23452.0 1.42834
\(647\) −7596.84 −0.461612 −0.230806 0.973000i \(-0.574136\pi\)
−0.230806 + 0.973000i \(0.574136\pi\)
\(648\) −33.3558 −0.00202213
\(649\) 5142.10 0.311009
\(650\) 0 0
\(651\) 6289.17 0.378636
\(652\) 15146.5 0.909792
\(653\) −4744.20 −0.284310 −0.142155 0.989844i \(-0.545403\pi\)
−0.142155 + 0.989844i \(0.545403\pi\)
\(654\) −14840.6 −0.887332
\(655\) 0 0
\(656\) −21385.5 −1.27281
\(657\) −3581.06 −0.212649
\(658\) −13666.7 −0.809699
\(659\) 25736.9 1.52135 0.760674 0.649134i \(-0.224868\pi\)
0.760674 + 0.649134i \(0.224868\pi\)
\(660\) 0 0
\(661\) 14548.4 0.856080 0.428040 0.903760i \(-0.359204\pi\)
0.428040 + 0.903760i \(0.359204\pi\)
\(662\) 13671.1 0.802630
\(663\) 4298.21 0.251778
\(664\) 281.459 0.0164499
\(665\) 0 0
\(666\) −3060.33 −0.178056
\(667\) 3095.81 0.179715
\(668\) −23978.6 −1.38886
\(669\) 4180.80 0.241613
\(670\) 0 0
\(671\) −8274.74 −0.476070
\(672\) 9615.38 0.551966
\(673\) 2228.16 0.127621 0.0638106 0.997962i \(-0.479675\pi\)
0.0638106 + 0.997962i \(0.479675\pi\)
\(674\) 31138.3 1.77953
\(675\) 0 0
\(676\) −7073.65 −0.402461
\(677\) −1975.02 −0.112121 −0.0560606 0.998427i \(-0.517854\pi\)
−0.0560606 + 0.998427i \(0.517854\pi\)
\(678\) −15923.6 −0.901978
\(679\) −8718.92 −0.492786
\(680\) 0 0
\(681\) 18734.6 1.05420
\(682\) 7318.71 0.410921
\(683\) −14600.7 −0.817980 −0.408990 0.912539i \(-0.634119\pi\)
−0.408990 + 0.912539i \(0.634119\pi\)
\(684\) −10525.1 −0.588358
\(685\) 0 0
\(686\) 26455.6 1.47242
\(687\) 9885.47 0.548987
\(688\) −18063.8 −1.00098
\(689\) 8053.77 0.445318
\(690\) 0 0
\(691\) −27053.0 −1.48936 −0.744678 0.667423i \(-0.767397\pi\)
−0.744678 + 0.667423i \(0.767397\pi\)
\(692\) 13532.3 0.743381
\(693\) 1243.71 0.0681741
\(694\) −23365.6 −1.27802
\(695\) 0 0
\(696\) −109.066 −0.00593984
\(697\) −13104.8 −0.712165
\(698\) 23259.1 1.26128
\(699\) −2885.55 −0.156140
\(700\) 0 0
\(701\) −25541.0 −1.37613 −0.688067 0.725647i \(-0.741541\pi\)
−0.688067 + 0.725647i \(0.741541\pi\)
\(702\) −3883.24 −0.208780
\(703\) 12630.1 0.677603
\(704\) 5485.65 0.293676
\(705\) 0 0
\(706\) 18071.3 0.963345
\(707\) −5626.16 −0.299284
\(708\) −11074.3 −0.587848
\(709\) 10650.6 0.564161 0.282081 0.959391i \(-0.408975\pi\)
0.282081 + 0.959391i \(0.408975\pi\)
\(710\) 0 0
\(711\) −9711.50 −0.512250
\(712\) 68.3998 0.00360027
\(713\) −5851.69 −0.307360
\(714\) 5968.27 0.312825
\(715\) 0 0
\(716\) −7120.36 −0.371649
\(717\) −14214.1 −0.740355
\(718\) −34797.0 −1.80866
\(719\) −26425.6 −1.37066 −0.685332 0.728231i \(-0.740343\pi\)
−0.685332 + 0.728231i \(0.740343\pi\)
\(720\) 0 0
\(721\) −16507.7 −0.852675
\(722\) 60096.2 3.09772
\(723\) −11786.4 −0.606279
\(724\) −23453.8 −1.20394
\(725\) 0 0
\(726\) 1447.31 0.0739870
\(727\) −5323.81 −0.271594 −0.135797 0.990737i \(-0.543360\pi\)
−0.135797 + 0.990737i \(0.543360\pi\)
\(728\) −186.615 −0.00950059
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −11069.3 −0.560071
\(732\) 17820.9 0.899835
\(733\) −9265.08 −0.466867 −0.233434 0.972373i \(-0.574996\pi\)
−0.233434 + 0.972373i \(0.574996\pi\)
\(734\) −45443.8 −2.28523
\(735\) 0 0
\(736\) −8946.52 −0.448061
\(737\) 8069.19 0.403301
\(738\) 11839.6 0.590543
\(739\) −31074.1 −1.54679 −0.773396 0.633923i \(-0.781443\pi\)
−0.773396 + 0.633923i \(0.781443\pi\)
\(740\) 0 0
\(741\) 16026.4 0.794526
\(742\) 11183.0 0.553292
\(743\) −5376.26 −0.265459 −0.132729 0.991152i \(-0.542374\pi\)
−0.132729 + 0.991152i \(0.542374\pi\)
\(744\) 206.156 0.0101587
\(745\) 0 0
\(746\) 42654.4 2.09342
\(747\) −6151.36 −0.301294
\(748\) 3450.08 0.168646
\(749\) −13176.0 −0.642776
\(750\) 0 0
\(751\) 16857.3 0.819082 0.409541 0.912292i \(-0.365689\pi\)
0.409541 + 0.912292i \(0.365689\pi\)
\(752\) −17685.0 −0.857586
\(753\) 23199.2 1.12274
\(754\) −12697.3 −0.613274
\(755\) 0 0
\(756\) −2678.52 −0.128858
\(757\) −27458.7 −1.31837 −0.659183 0.751982i \(-0.729098\pi\)
−0.659183 + 0.751982i \(0.729098\pi\)
\(758\) 24144.0 1.15692
\(759\) −1157.20 −0.0553406
\(760\) 0 0
\(761\) −35829.9 −1.70675 −0.853373 0.521300i \(-0.825447\pi\)
−0.853373 + 0.521300i \(0.825447\pi\)
\(762\) −14958.5 −0.711141
\(763\) 15587.0 0.739562
\(764\) 4832.08 0.228820
\(765\) 0 0
\(766\) −55777.1 −2.63095
\(767\) 16862.6 0.793837
\(768\) 12599.1 0.591968
\(769\) 21200.9 0.994177 0.497089 0.867700i \(-0.334402\pi\)
0.497089 + 0.867700i \(0.334402\pi\)
\(770\) 0 0
\(771\) 4722.52 0.220593
\(772\) 15024.1 0.700428
\(773\) 29661.6 1.38015 0.690074 0.723739i \(-0.257578\pi\)
0.690074 + 0.723739i \(0.257578\pi\)
\(774\) 10000.6 0.464423
\(775\) 0 0
\(776\) −285.802 −0.0132213
\(777\) 3214.23 0.148404
\(778\) 16840.9 0.776061
\(779\) −48862.7 −2.24735
\(780\) 0 0
\(781\) −5909.48 −0.270753
\(782\) −5553.11 −0.253937
\(783\) 2383.66 0.108793
\(784\) 12002.4 0.546757
\(785\) 0 0
\(786\) −2010.28 −0.0912268
\(787\) 340.379 0.0154170 0.00770852 0.999970i \(-0.497546\pi\)
0.00770852 + 0.999970i \(0.497546\pi\)
\(788\) 2122.23 0.0959407
\(789\) 9517.92 0.429464
\(790\) 0 0
\(791\) 16724.4 0.751769
\(792\) 40.7682 0.00182909
\(793\) −27135.5 −1.21515
\(794\) 13324.2 0.595540
\(795\) 0 0
\(796\) −1812.95 −0.0807266
\(797\) −37442.3 −1.66408 −0.832041 0.554715i \(-0.812827\pi\)
−0.832041 + 0.554715i \(0.812827\pi\)
\(798\) 22253.4 0.987169
\(799\) −10837.1 −0.479838
\(800\) 0 0
\(801\) −1494.90 −0.0659420
\(802\) −28578.9 −1.25830
\(803\) 4376.85 0.192348
\(804\) −17378.2 −0.762292
\(805\) 0 0
\(806\) 24000.4 1.04886
\(807\) −3716.49 −0.162115
\(808\) −184.423 −0.00802967
\(809\) −23629.8 −1.02692 −0.513461 0.858113i \(-0.671637\pi\)
−0.513461 + 0.858113i \(0.671637\pi\)
\(810\) 0 0
\(811\) −40325.2 −1.74601 −0.873003 0.487715i \(-0.837830\pi\)
−0.873003 + 0.487715i \(0.837830\pi\)
\(812\) −8758.13 −0.378510
\(813\) −6771.06 −0.292093
\(814\) 3740.40 0.161058
\(815\) 0 0
\(816\) 7723.08 0.331326
\(817\) −41273.0 −1.76739
\(818\) −41308.8 −1.76568
\(819\) 4078.53 0.174011
\(820\) 0 0
\(821\) 20710.8 0.880403 0.440201 0.897899i \(-0.354907\pi\)
0.440201 + 0.897899i \(0.354907\pi\)
\(822\) 18344.6 0.778395
\(823\) −14546.6 −0.616116 −0.308058 0.951368i \(-0.599679\pi\)
−0.308058 + 0.951368i \(0.599679\pi\)
\(824\) −541.114 −0.0228769
\(825\) 0 0
\(826\) 23414.5 0.986314
\(827\) −39477.0 −1.65992 −0.829958 0.557826i \(-0.811636\pi\)
−0.829958 + 0.557826i \(0.811636\pi\)
\(828\) 2492.19 0.104601
\(829\) −37344.7 −1.56458 −0.782289 0.622915i \(-0.785948\pi\)
−0.782289 + 0.622915i \(0.785948\pi\)
\(830\) 0 0
\(831\) −24623.9 −1.02791
\(832\) 17989.2 0.749596
\(833\) 7354.93 0.305922
\(834\) −11497.8 −0.477382
\(835\) 0 0
\(836\) 12864.0 0.532190
\(837\) −4505.60 −0.186065
\(838\) −30463.6 −1.25578
\(839\) −28412.4 −1.16914 −0.584568 0.811345i \(-0.698736\pi\)
−0.584568 + 0.811345i \(0.698736\pi\)
\(840\) 0 0
\(841\) −16595.0 −0.680429
\(842\) −4041.48 −0.165414
\(843\) −10497.6 −0.428892
\(844\) −40366.3 −1.64629
\(845\) 0 0
\(846\) 9790.87 0.397892
\(847\) −1520.09 −0.0616658
\(848\) 14471.1 0.586014
\(849\) −25842.4 −1.04465
\(850\) 0 0
\(851\) −2990.64 −0.120468
\(852\) 12727.0 0.511759
\(853\) −31070.6 −1.24717 −0.623585 0.781756i \(-0.714324\pi\)
−0.623585 + 0.781756i \(0.714324\pi\)
\(854\) −37679.0 −1.50978
\(855\) 0 0
\(856\) −431.902 −0.0172454
\(857\) 28889.1 1.15150 0.575749 0.817626i \(-0.304710\pi\)
0.575749 + 0.817626i \(0.304710\pi\)
\(858\) 4746.18 0.188849
\(859\) 17190.9 0.682825 0.341413 0.939913i \(-0.389095\pi\)
0.341413 + 0.939913i \(0.389095\pi\)
\(860\) 0 0
\(861\) −12435.0 −0.492199
\(862\) −52477.5 −2.07354
\(863\) −39878.7 −1.57298 −0.786492 0.617600i \(-0.788105\pi\)
−0.786492 + 0.617600i \(0.788105\pi\)
\(864\) −6888.51 −0.271240
\(865\) 0 0
\(866\) 15494.0 0.607976
\(867\) −10006.4 −0.391966
\(868\) 16554.6 0.647350
\(869\) 11869.6 0.463347
\(870\) 0 0
\(871\) 26461.5 1.02941
\(872\) 510.933 0.0198422
\(873\) 6246.28 0.242159
\(874\) −20705.4 −0.801339
\(875\) 0 0
\(876\) −9426.20 −0.363564
\(877\) −28622.5 −1.10207 −0.551034 0.834483i \(-0.685767\pi\)
−0.551034 + 0.834483i \(0.685767\pi\)
\(878\) −1534.79 −0.0589939
\(879\) 3085.77 0.118408
\(880\) 0 0
\(881\) 34427.7 1.31657 0.658286 0.752768i \(-0.271282\pi\)
0.658286 + 0.752768i \(0.271282\pi\)
\(882\) −6644.85 −0.253678
\(883\) −14049.2 −0.535441 −0.267721 0.963497i \(-0.586270\pi\)
−0.267721 + 0.963497i \(0.586270\pi\)
\(884\) 11313.9 0.430462
\(885\) 0 0
\(886\) 53126.6 2.01447
\(887\) 29052.4 1.09976 0.549878 0.835245i \(-0.314674\pi\)
0.549878 + 0.835245i \(0.314674\pi\)
\(888\) 105.361 0.00398162
\(889\) 15710.8 0.592713
\(890\) 0 0
\(891\) −891.000 −0.0335013
\(892\) 11004.9 0.413083
\(893\) −40407.5 −1.51421
\(894\) −837.328 −0.0313249
\(895\) 0 0
\(896\) −662.132 −0.0246878
\(897\) −3794.82 −0.141255
\(898\) −12927.8 −0.480409
\(899\) −14732.3 −0.546550
\(900\) 0 0
\(901\) 8867.72 0.327888
\(902\) −14470.6 −0.534167
\(903\) −10503.5 −0.387082
\(904\) 548.216 0.0201697
\(905\) 0 0
\(906\) 2518.18 0.0923411
\(907\) 39504.2 1.44621 0.723107 0.690736i \(-0.242713\pi\)
0.723107 + 0.690736i \(0.242713\pi\)
\(908\) 49314.0 1.80236
\(909\) 4030.61 0.147070
\(910\) 0 0
\(911\) −45484.2 −1.65418 −0.827090 0.562070i \(-0.810005\pi\)
−0.827090 + 0.562070i \(0.810005\pi\)
\(912\) 28796.4 1.04555
\(913\) 7518.33 0.272530
\(914\) 14699.1 0.531951
\(915\) 0 0
\(916\) 26020.9 0.938597
\(917\) 2111.37 0.0760346
\(918\) −4275.70 −0.153725
\(919\) −14765.8 −0.530011 −0.265005 0.964247i \(-0.585374\pi\)
−0.265005 + 0.964247i \(0.585374\pi\)
\(920\) 0 0
\(921\) −6506.48 −0.232786
\(922\) −76628.4 −2.73712
\(923\) −19379.1 −0.691084
\(924\) 3273.74 0.116556
\(925\) 0 0
\(926\) 5369.01 0.190536
\(927\) 11826.2 0.419011
\(928\) −22523.8 −0.796746
\(929\) 31598.4 1.11594 0.557971 0.829861i \(-0.311580\pi\)
0.557971 + 0.829861i \(0.311580\pi\)
\(930\) 0 0
\(931\) 27423.7 0.965387
\(932\) −7595.46 −0.266950
\(933\) 12955.4 0.454597
\(934\) 35537.8 1.24500
\(935\) 0 0
\(936\) 133.692 0.00466866
\(937\) −14121.9 −0.492363 −0.246181 0.969224i \(-0.579176\pi\)
−0.246181 + 0.969224i \(0.579176\pi\)
\(938\) 36743.0 1.27900
\(939\) 14356.0 0.498925
\(940\) 0 0
\(941\) 39525.5 1.36928 0.684641 0.728880i \(-0.259959\pi\)
0.684641 + 0.728880i \(0.259959\pi\)
\(942\) 26786.4 0.926483
\(943\) 11570.0 0.399545
\(944\) 30298.9 1.04465
\(945\) 0 0
\(946\) −12222.9 −0.420087
\(947\) 39575.6 1.35801 0.679004 0.734135i \(-0.262412\pi\)
0.679004 + 0.734135i \(0.262412\pi\)
\(948\) −25563.0 −0.875788
\(949\) 14353.1 0.490961
\(950\) 0 0
\(951\) −20041.5 −0.683377
\(952\) −205.476 −0.00699528
\(953\) 18421.4 0.626158 0.313079 0.949727i \(-0.398640\pi\)
0.313079 + 0.949727i \(0.398640\pi\)
\(954\) −8011.59 −0.271892
\(955\) 0 0
\(956\) −37414.8 −1.26578
\(957\) −2913.36 −0.0984072
\(958\) −46755.4 −1.57682
\(959\) −19267.1 −0.648767
\(960\) 0 0
\(961\) −1944.10 −0.0652581
\(962\) 12266.0 0.411092
\(963\) 9439.32 0.315865
\(964\) −31024.5 −1.03655
\(965\) 0 0
\(966\) −5269.29 −0.175504
\(967\) −50038.2 −1.66403 −0.832016 0.554752i \(-0.812813\pi\)
−0.832016 + 0.554752i \(0.812813\pi\)
\(968\) −49.8278 −0.00165447
\(969\) 17646.1 0.585009
\(970\) 0 0
\(971\) 53444.3 1.76633 0.883166 0.469060i \(-0.155407\pi\)
0.883166 + 0.469060i \(0.155407\pi\)
\(972\) 1918.90 0.0633218
\(973\) 12076.0 0.397883
\(974\) 32358.7 1.06452
\(975\) 0 0
\(976\) −48757.5 −1.59907
\(977\) −20163.0 −0.660256 −0.330128 0.943936i \(-0.607092\pi\)
−0.330128 + 0.943936i \(0.607092\pi\)
\(978\) 22942.6 0.750125
\(979\) 1827.09 0.0596468
\(980\) 0 0
\(981\) −11166.6 −0.363427
\(982\) −48488.7 −1.57570
\(983\) −40813.1 −1.32425 −0.662124 0.749395i \(-0.730345\pi\)
−0.662124 + 0.749395i \(0.730345\pi\)
\(984\) −407.613 −0.0132055
\(985\) 0 0
\(986\) −13980.5 −0.451553
\(987\) −10283.2 −0.331631
\(988\) 42185.2 1.35839
\(989\) 9772.87 0.314216
\(990\) 0 0
\(991\) 36663.8 1.17524 0.587620 0.809137i \(-0.300065\pi\)
0.587620 + 0.809137i \(0.300065\pi\)
\(992\) 42574.5 1.36264
\(993\) 10286.6 0.328735
\(994\) −26908.8 −0.858647
\(995\) 0 0
\(996\) −16191.8 −0.515119
\(997\) −1330.33 −0.0422587 −0.0211294 0.999777i \(-0.506726\pi\)
−0.0211294 + 0.999777i \(0.506726\pi\)
\(998\) 22712.5 0.720392
\(999\) −2302.69 −0.0729268
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.a.x.1.5 5
3.2 odd 2 2475.4.a.bj.1.1 5
5.2 odd 4 825.4.c.s.199.9 10
5.3 odd 4 825.4.c.s.199.2 10
5.4 even 2 825.4.a.y.1.1 yes 5
15.14 odd 2 2475.4.a.bi.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.x.1.5 5 1.1 even 1 trivial
825.4.a.y.1.1 yes 5 5.4 even 2
825.4.c.s.199.2 10 5.3 odd 4
825.4.c.s.199.9 10 5.2 odd 4
2475.4.a.bi.1.5 5 15.14 odd 2
2475.4.a.bj.1.1 5 3.2 odd 2