Properties

Label 825.4.c.g
Level $825$
Weight $4$
Character orbit 825.c
Analytic conductor $48.677$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 i q^{3} + 8 q^{4} - 2 i q^{7} - 9 q^{9} - 11 q^{11} - 24 i q^{12} - 22 i q^{13} + 64 q^{16} - 72 i q^{17} - 122 q^{19} - 6 q^{21} + 72 i q^{23} + 27 i q^{27} - 16 i q^{28} - 96 q^{29} - 112 q^{31} + \cdots + 99 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{4} - 18 q^{9} - 22 q^{11} + 128 q^{16} - 244 q^{19} - 12 q^{21} - 192 q^{29} - 224 q^{31} - 144 q^{36} - 132 q^{39} - 192 q^{41} - 176 q^{44} + 678 q^{49} - 432 q^{51} - 1320 q^{59} - 860 q^{61}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
0 3.00000i 8.00000 0 0 2.00000i 0 −9.00000 0
199.2 0 3.00000i 8.00000 0 0 2.00000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.c.g 2
5.b even 2 1 inner 825.4.c.g 2
5.c odd 4 1 165.4.a.a 1
5.c odd 4 1 825.4.a.e 1
15.e even 4 1 495.4.a.c 1
15.e even 4 1 2475.4.a.f 1
55.e even 4 1 1815.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.a 1 5.c odd 4 1
495.4.a.c 1 15.e even 4 1
825.4.a.e 1 5.c odd 4 1
825.4.c.g 2 1.a even 1 1 trivial
825.4.c.g 2 5.b even 2 1 inner
1815.4.a.f 1 55.e even 4 1
2475.4.a.f 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(825, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{7}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 484 \) Copy content Toggle raw display
$17$ \( T^{2} + 5184 \) Copy content Toggle raw display
$19$ \( (T + 122)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 5184 \) Copy content Toggle raw display
$29$ \( (T + 96)^{2} \) Copy content Toggle raw display
$31$ \( (T + 112)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 70756 \) Copy content Toggle raw display
$41$ \( (T + 96)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 145924 \) Copy content Toggle raw display
$47$ \( T^{2} + 129600 \) Copy content Toggle raw display
$53$ \( T^{2} + 101124 \) Copy content Toggle raw display
$59$ \( (T + 660)^{2} \) Copy content Toggle raw display
$61$ \( (T + 430)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144400 \) Copy content Toggle raw display
$71$ \( (T - 168)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 47524 \) Copy content Toggle raw display
$79$ \( (T - 706)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1140624 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 470596 \) Copy content Toggle raw display
show more
show less