Properties

Label 825.6.a.b.1.1
Level $825$
Weight $6$
Character 825.1
Self dual yes
Analytic conductor $132.317$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,6,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.316651346\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +9.00000 q^{3} -28.0000 q^{4} +18.0000 q^{6} -148.000 q^{7} -120.000 q^{8} +81.0000 q^{9} +121.000 q^{11} -252.000 q^{12} -574.000 q^{13} -296.000 q^{14} +656.000 q^{16} +722.000 q^{17} +162.000 q^{18} +2160.00 q^{19} -1332.00 q^{21} +242.000 q^{22} +2536.00 q^{23} -1080.00 q^{24} -1148.00 q^{26} +729.000 q^{27} +4144.00 q^{28} +4650.00 q^{29} +5032.00 q^{31} +5152.00 q^{32} +1089.00 q^{33} +1444.00 q^{34} -2268.00 q^{36} -8118.00 q^{37} +4320.00 q^{38} -5166.00 q^{39} -5138.00 q^{41} -2664.00 q^{42} -8304.00 q^{43} -3388.00 q^{44} +5072.00 q^{46} -24728.0 q^{47} +5904.00 q^{48} +5097.00 q^{49} +6498.00 q^{51} +16072.0 q^{52} +28746.0 q^{53} +1458.00 q^{54} +17760.0 q^{56} +19440.0 q^{57} +9300.00 q^{58} -5860.00 q^{59} -53658.0 q^{61} +10064.0 q^{62} -11988.0 q^{63} -10688.0 q^{64} +2178.00 q^{66} -30908.0 q^{67} -20216.0 q^{68} +22824.0 q^{69} -69648.0 q^{71} -9720.00 q^{72} +18446.0 q^{73} -16236.0 q^{74} -60480.0 q^{76} -17908.0 q^{77} -10332.0 q^{78} -25300.0 q^{79} +6561.00 q^{81} -10276.0 q^{82} +17556.0 q^{83} +37296.0 q^{84} -16608.0 q^{86} +41850.0 q^{87} -14520.0 q^{88} +132570. q^{89} +84952.0 q^{91} -71008.0 q^{92} +45288.0 q^{93} -49456.0 q^{94} +46368.0 q^{96} -70658.0 q^{97} +10194.0 q^{98} +9801.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) 9.00000 0.577350
\(4\) −28.0000 −0.875000
\(5\) 0 0
\(6\) 18.0000 0.204124
\(7\) −148.000 −1.14161 −0.570803 0.821087i \(-0.693368\pi\)
−0.570803 + 0.821087i \(0.693368\pi\)
\(8\) −120.000 −0.662913
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) −252.000 −0.505181
\(13\) −574.000 −0.942006 −0.471003 0.882132i \(-0.656108\pi\)
−0.471003 + 0.882132i \(0.656108\pi\)
\(14\) −296.000 −0.403619
\(15\) 0 0
\(16\) 656.000 0.640625
\(17\) 722.000 0.605919 0.302960 0.953003i \(-0.402025\pi\)
0.302960 + 0.953003i \(0.402025\pi\)
\(18\) 162.000 0.117851
\(19\) 2160.00 1.37268 0.686341 0.727280i \(-0.259216\pi\)
0.686341 + 0.727280i \(0.259216\pi\)
\(20\) 0 0
\(21\) −1332.00 −0.659107
\(22\) 242.000 0.106600
\(23\) 2536.00 0.999608 0.499804 0.866139i \(-0.333405\pi\)
0.499804 + 0.866139i \(0.333405\pi\)
\(24\) −1080.00 −0.382733
\(25\) 0 0
\(26\) −1148.00 −0.333049
\(27\) 729.000 0.192450
\(28\) 4144.00 0.998906
\(29\) 4650.00 1.02673 0.513367 0.858169i \(-0.328398\pi\)
0.513367 + 0.858169i \(0.328398\pi\)
\(30\) 0 0
\(31\) 5032.00 0.940451 0.470226 0.882546i \(-0.344172\pi\)
0.470226 + 0.882546i \(0.344172\pi\)
\(32\) 5152.00 0.889408
\(33\) 1089.00 0.174078
\(34\) 1444.00 0.214225
\(35\) 0 0
\(36\) −2268.00 −0.291667
\(37\) −8118.00 −0.974866 −0.487433 0.873161i \(-0.662067\pi\)
−0.487433 + 0.873161i \(0.662067\pi\)
\(38\) 4320.00 0.485316
\(39\) −5166.00 −0.543867
\(40\) 0 0
\(41\) −5138.00 −0.477347 −0.238674 0.971100i \(-0.576713\pi\)
−0.238674 + 0.971100i \(0.576713\pi\)
\(42\) −2664.00 −0.233030
\(43\) −8304.00 −0.684883 −0.342441 0.939539i \(-0.611254\pi\)
−0.342441 + 0.939539i \(0.611254\pi\)
\(44\) −3388.00 −0.263822
\(45\) 0 0
\(46\) 5072.00 0.353415
\(47\) −24728.0 −1.63284 −0.816421 0.577457i \(-0.804045\pi\)
−0.816421 + 0.577457i \(0.804045\pi\)
\(48\) 5904.00 0.369865
\(49\) 5097.00 0.303266
\(50\) 0 0
\(51\) 6498.00 0.349828
\(52\) 16072.0 0.824255
\(53\) 28746.0 1.40568 0.702842 0.711346i \(-0.251914\pi\)
0.702842 + 0.711346i \(0.251914\pi\)
\(54\) 1458.00 0.0680414
\(55\) 0 0
\(56\) 17760.0 0.756786
\(57\) 19440.0 0.792518
\(58\) 9300.00 0.363005
\(59\) −5860.00 −0.219163 −0.109582 0.993978i \(-0.534951\pi\)
−0.109582 + 0.993978i \(0.534951\pi\)
\(60\) 0 0
\(61\) −53658.0 −1.84633 −0.923166 0.384401i \(-0.874408\pi\)
−0.923166 + 0.384401i \(0.874408\pi\)
\(62\) 10064.0 0.332500
\(63\) −11988.0 −0.380536
\(64\) −10688.0 −0.326172
\(65\) 0 0
\(66\) 2178.00 0.0615457
\(67\) −30908.0 −0.841170 −0.420585 0.907253i \(-0.638175\pi\)
−0.420585 + 0.907253i \(0.638175\pi\)
\(68\) −20216.0 −0.530180
\(69\) 22824.0 0.577124
\(70\) 0 0
\(71\) −69648.0 −1.63969 −0.819847 0.572583i \(-0.805942\pi\)
−0.819847 + 0.572583i \(0.805942\pi\)
\(72\) −9720.00 −0.220971
\(73\) 18446.0 0.405131 0.202565 0.979269i \(-0.435072\pi\)
0.202565 + 0.979269i \(0.435072\pi\)
\(74\) −16236.0 −0.344667
\(75\) 0 0
\(76\) −60480.0 −1.20110
\(77\) −17908.0 −0.344207
\(78\) −10332.0 −0.192286
\(79\) −25300.0 −0.456092 −0.228046 0.973650i \(-0.573234\pi\)
−0.228046 + 0.973650i \(0.573234\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) −10276.0 −0.168768
\(83\) 17556.0 0.279724 0.139862 0.990171i \(-0.455334\pi\)
0.139862 + 0.990171i \(0.455334\pi\)
\(84\) 37296.0 0.576719
\(85\) 0 0
\(86\) −16608.0 −0.242143
\(87\) 41850.0 0.592785
\(88\) −14520.0 −0.199876
\(89\) 132570. 1.77407 0.887034 0.461704i \(-0.152762\pi\)
0.887034 + 0.461704i \(0.152762\pi\)
\(90\) 0 0
\(91\) 84952.0 1.07540
\(92\) −71008.0 −0.874657
\(93\) 45288.0 0.542970
\(94\) −49456.0 −0.577297
\(95\) 0 0
\(96\) 46368.0 0.513500
\(97\) −70658.0 −0.762486 −0.381243 0.924475i \(-0.624504\pi\)
−0.381243 + 0.924475i \(0.624504\pi\)
\(98\) 10194.0 0.107221
\(99\) 9801.00 0.100504
\(100\) 0 0
\(101\) −101998. −0.994920 −0.497460 0.867487i \(-0.665734\pi\)
−0.497460 + 0.867487i \(0.665734\pi\)
\(102\) 12996.0 0.123683
\(103\) −130904. −1.21579 −0.607897 0.794016i \(-0.707987\pi\)
−0.607897 + 0.794016i \(0.707987\pi\)
\(104\) 68880.0 0.624467
\(105\) 0 0
\(106\) 57492.0 0.496984
\(107\) 141612. 1.19575 0.597875 0.801589i \(-0.296012\pi\)
0.597875 + 0.801589i \(0.296012\pi\)
\(108\) −20412.0 −0.168394
\(109\) −239810. −1.93331 −0.966654 0.256086i \(-0.917567\pi\)
−0.966654 + 0.256086i \(0.917567\pi\)
\(110\) 0 0
\(111\) −73062.0 −0.562839
\(112\) −97088.0 −0.731342
\(113\) 42726.0 0.314772 0.157386 0.987537i \(-0.449693\pi\)
0.157386 + 0.987537i \(0.449693\pi\)
\(114\) 38880.0 0.280197
\(115\) 0 0
\(116\) −130200. −0.898392
\(117\) −46494.0 −0.314002
\(118\) −11720.0 −0.0774859
\(119\) −106856. −0.691722
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) −107316. −0.652777
\(123\) −46242.0 −0.275597
\(124\) −140896. −0.822895
\(125\) 0 0
\(126\) −23976.0 −0.134540
\(127\) −51788.0 −0.284918 −0.142459 0.989801i \(-0.545501\pi\)
−0.142459 + 0.989801i \(0.545501\pi\)
\(128\) −186240. −1.00473
\(129\) −74736.0 −0.395417
\(130\) 0 0
\(131\) 53652.0 0.273154 0.136577 0.990629i \(-0.456390\pi\)
0.136577 + 0.990629i \(0.456390\pi\)
\(132\) −30492.0 −0.152318
\(133\) −319680. −1.56706
\(134\) −61816.0 −0.297399
\(135\) 0 0
\(136\) −86640.0 −0.401672
\(137\) 228862. 1.04177 0.520886 0.853627i \(-0.325602\pi\)
0.520886 + 0.853627i \(0.325602\pi\)
\(138\) 45648.0 0.204044
\(139\) 374920. 1.64589 0.822947 0.568119i \(-0.192329\pi\)
0.822947 + 0.568119i \(0.192329\pi\)
\(140\) 0 0
\(141\) −222552. −0.942722
\(142\) −139296. −0.579719
\(143\) −69454.0 −0.284025
\(144\) 53136.0 0.213542
\(145\) 0 0
\(146\) 36892.0 0.143235
\(147\) 45873.0 0.175091
\(148\) 227304. 0.853007
\(149\) −65830.0 −0.242917 −0.121459 0.992597i \(-0.538757\pi\)
−0.121459 + 0.992597i \(0.538757\pi\)
\(150\) 0 0
\(151\) 154052. 0.549826 0.274913 0.961469i \(-0.411351\pi\)
0.274913 + 0.961469i \(0.411351\pi\)
\(152\) −259200. −0.909968
\(153\) 58482.0 0.201973
\(154\) −35816.0 −0.121696
\(155\) 0 0
\(156\) 144648. 0.475884
\(157\) −287678. −0.931446 −0.465723 0.884931i \(-0.654206\pi\)
−0.465723 + 0.884931i \(0.654206\pi\)
\(158\) −50600.0 −0.161253
\(159\) 258714. 0.811572
\(160\) 0 0
\(161\) −375328. −1.14116
\(162\) 13122.0 0.0392837
\(163\) −105124. −0.309908 −0.154954 0.987922i \(-0.549523\pi\)
−0.154954 + 0.987922i \(0.549523\pi\)
\(164\) 143864. 0.417679
\(165\) 0 0
\(166\) 35112.0 0.0988975
\(167\) −150528. −0.417663 −0.208832 0.977952i \(-0.566966\pi\)
−0.208832 + 0.977952i \(0.566966\pi\)
\(168\) 159840. 0.436930
\(169\) −41817.0 −0.112625
\(170\) 0 0
\(171\) 174960. 0.457560
\(172\) 232512. 0.599272
\(173\) 2166.00 0.00550229 0.00275114 0.999996i \(-0.499124\pi\)
0.00275114 + 0.999996i \(0.499124\pi\)
\(174\) 83700.0 0.209581
\(175\) 0 0
\(176\) 79376.0 0.193156
\(177\) −52740.0 −0.126534
\(178\) 265140. 0.627228
\(179\) 672780. 1.56942 0.784712 0.619860i \(-0.212811\pi\)
0.784712 + 0.619860i \(0.212811\pi\)
\(180\) 0 0
\(181\) −526778. −1.19517 −0.597587 0.801804i \(-0.703874\pi\)
−0.597587 + 0.801804i \(0.703874\pi\)
\(182\) 169904. 0.380211
\(183\) −482922. −1.06598
\(184\) −304320. −0.662653
\(185\) 0 0
\(186\) 90576.0 0.191969
\(187\) 87362.0 0.182692
\(188\) 692384. 1.42874
\(189\) −107892. −0.219702
\(190\) 0 0
\(191\) −305608. −0.606152 −0.303076 0.952966i \(-0.598014\pi\)
−0.303076 + 0.952966i \(0.598014\pi\)
\(192\) −96192.0 −0.188315
\(193\) −116434. −0.225002 −0.112501 0.993652i \(-0.535886\pi\)
−0.112501 + 0.993652i \(0.535886\pi\)
\(194\) −141316. −0.269580
\(195\) 0 0
\(196\) −142716. −0.265358
\(197\) 247742. 0.454814 0.227407 0.973800i \(-0.426975\pi\)
0.227407 + 0.973800i \(0.426975\pi\)
\(198\) 19602.0 0.0355335
\(199\) −513360. −0.918945 −0.459472 0.888192i \(-0.651961\pi\)
−0.459472 + 0.888192i \(0.651961\pi\)
\(200\) 0 0
\(201\) −278172. −0.485650
\(202\) −203996. −0.351757
\(203\) −688200. −1.17213
\(204\) −181944. −0.306099
\(205\) 0 0
\(206\) −261808. −0.429848
\(207\) 205416. 0.333203
\(208\) −376544. −0.603472
\(209\) 261360. 0.413879
\(210\) 0 0
\(211\) −620688. −0.959770 −0.479885 0.877331i \(-0.659322\pi\)
−0.479885 + 0.877331i \(0.659322\pi\)
\(212\) −804888. −1.22997
\(213\) −626832. −0.946678
\(214\) 283224. 0.422762
\(215\) 0 0
\(216\) −87480.0 −0.127578
\(217\) −744736. −1.07363
\(218\) −479620. −0.683528
\(219\) 166014. 0.233902
\(220\) 0 0
\(221\) −414428. −0.570780
\(222\) −146124. −0.198994
\(223\) 1.31802e6 1.77484 0.887419 0.460964i \(-0.152496\pi\)
0.887419 + 0.460964i \(0.152496\pi\)
\(224\) −762496. −1.01535
\(225\) 0 0
\(226\) 85452.0 0.111289
\(227\) 887412. 1.14304 0.571519 0.820589i \(-0.306354\pi\)
0.571519 + 0.820589i \(0.306354\pi\)
\(228\) −544320. −0.693453
\(229\) −237450. −0.299215 −0.149608 0.988745i \(-0.547801\pi\)
−0.149608 + 0.988745i \(0.547801\pi\)
\(230\) 0 0
\(231\) −161172. −0.198728
\(232\) −558000. −0.680635
\(233\) 914706. 1.10380 0.551902 0.833909i \(-0.313902\pi\)
0.551902 + 0.833909i \(0.313902\pi\)
\(234\) −92988.0 −0.111016
\(235\) 0 0
\(236\) 164080. 0.191768
\(237\) −227700. −0.263325
\(238\) −213712. −0.244561
\(239\) 1.40892e6 1.59548 0.797740 0.603001i \(-0.206029\pi\)
0.797740 + 0.603001i \(0.206029\pi\)
\(240\) 0 0
\(241\) −826358. −0.916486 −0.458243 0.888827i \(-0.651521\pi\)
−0.458243 + 0.888827i \(0.651521\pi\)
\(242\) 29282.0 0.0321412
\(243\) 59049.0 0.0641500
\(244\) 1.50242e6 1.61554
\(245\) 0 0
\(246\) −92484.0 −0.0974381
\(247\) −1.23984e6 −1.29307
\(248\) −603840. −0.623437
\(249\) 158004. 0.161499
\(250\) 0 0
\(251\) −1.60387e6 −1.60688 −0.803442 0.595384i \(-0.797000\pi\)
−0.803442 + 0.595384i \(0.797000\pi\)
\(252\) 335664. 0.332969
\(253\) 306856. 0.301393
\(254\) −103576. −0.100734
\(255\) 0 0
\(256\) −30464.0 −0.0290527
\(257\) −397618. −0.375520 −0.187760 0.982215i \(-0.560123\pi\)
−0.187760 + 0.982215i \(0.560123\pi\)
\(258\) −149472. −0.139801
\(259\) 1.20146e6 1.11291
\(260\) 0 0
\(261\) 376650. 0.342245
\(262\) 107304. 0.0965745
\(263\) −2.13166e6 −1.90033 −0.950166 0.311745i \(-0.899087\pi\)
−0.950166 + 0.311745i \(0.899087\pi\)
\(264\) −130680. −0.115398
\(265\) 0 0
\(266\) −639360. −0.554040
\(267\) 1.19313e6 1.02426
\(268\) 865424. 0.736024
\(269\) −725810. −0.611564 −0.305782 0.952101i \(-0.598918\pi\)
−0.305782 + 0.952101i \(0.598918\pi\)
\(270\) 0 0
\(271\) −1.46787e6 −1.21413 −0.607063 0.794654i \(-0.707652\pi\)
−0.607063 + 0.794654i \(0.707652\pi\)
\(272\) 473632. 0.388167
\(273\) 764568. 0.620883
\(274\) 457724. 0.368322
\(275\) 0 0
\(276\) −639072. −0.504983
\(277\) −1.52100e6 −1.19105 −0.595524 0.803338i \(-0.703056\pi\)
−0.595524 + 0.803338i \(0.703056\pi\)
\(278\) 749840. 0.581911
\(279\) 407592. 0.313484
\(280\) 0 0
\(281\) 464382. 0.350840 0.175420 0.984494i \(-0.443872\pi\)
0.175420 + 0.984494i \(0.443872\pi\)
\(282\) −445104. −0.333303
\(283\) 415136. 0.308123 0.154062 0.988061i \(-0.450765\pi\)
0.154062 + 0.988061i \(0.450765\pi\)
\(284\) 1.95014e6 1.43473
\(285\) 0 0
\(286\) −138908. −0.100418
\(287\) 760424. 0.544943
\(288\) 417312. 0.296469
\(289\) −898573. −0.632862
\(290\) 0 0
\(291\) −635922. −0.440222
\(292\) −516488. −0.354489
\(293\) 2.59321e6 1.76469 0.882344 0.470605i \(-0.155964\pi\)
0.882344 + 0.470605i \(0.155964\pi\)
\(294\) 91746.0 0.0619040
\(295\) 0 0
\(296\) 974160. 0.646251
\(297\) 88209.0 0.0580259
\(298\) −131660. −0.0858842
\(299\) −1.45566e6 −0.941636
\(300\) 0 0
\(301\) 1.22899e6 0.781867
\(302\) 308104. 0.194393
\(303\) −917982. −0.574417
\(304\) 1.41696e6 0.879374
\(305\) 0 0
\(306\) 116964. 0.0714083
\(307\) 930832. 0.563671 0.281835 0.959463i \(-0.409057\pi\)
0.281835 + 0.959463i \(0.409057\pi\)
\(308\) 501424. 0.301182
\(309\) −1.17814e6 −0.701939
\(310\) 0 0
\(311\) 2.48527e6 1.45704 0.728522 0.685022i \(-0.240207\pi\)
0.728522 + 0.685022i \(0.240207\pi\)
\(312\) 619920. 0.360536
\(313\) −1.31719e6 −0.759957 −0.379978 0.924995i \(-0.624069\pi\)
−0.379978 + 0.924995i \(0.624069\pi\)
\(314\) −575356. −0.329316
\(315\) 0 0
\(316\) 708400. 0.399081
\(317\) −2.25540e6 −1.26059 −0.630297 0.776354i \(-0.717067\pi\)
−0.630297 + 0.776354i \(0.717067\pi\)
\(318\) 517428. 0.286934
\(319\) 562650. 0.309572
\(320\) 0 0
\(321\) 1.27451e6 0.690367
\(322\) −750656. −0.403461
\(323\) 1.55952e6 0.831734
\(324\) −183708. −0.0972222
\(325\) 0 0
\(326\) −210248. −0.109569
\(327\) −2.15829e6 −1.11620
\(328\) 616560. 0.316440
\(329\) 3.65974e6 1.86406
\(330\) 0 0
\(331\) −3.17071e6 −1.59069 −0.795346 0.606155i \(-0.792711\pi\)
−0.795346 + 0.606155i \(0.792711\pi\)
\(332\) −491568. −0.244759
\(333\) −657558. −0.324955
\(334\) −301056. −0.147666
\(335\) 0 0
\(336\) −873792. −0.422240
\(337\) −1.27630e6 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(338\) −83634.0 −0.0398191
\(339\) 384534. 0.181734
\(340\) 0 0
\(341\) 608872. 0.283557
\(342\) 349920. 0.161772
\(343\) 1.73308e6 0.795396
\(344\) 996480. 0.454017
\(345\) 0 0
\(346\) 4332.00 0.00194535
\(347\) −3.69303e6 −1.64649 −0.823245 0.567687i \(-0.807838\pi\)
−0.823245 + 0.567687i \(0.807838\pi\)
\(348\) −1.17180e6 −0.518687
\(349\) 1.70919e6 0.751150 0.375575 0.926792i \(-0.377445\pi\)
0.375575 + 0.926792i \(0.377445\pi\)
\(350\) 0 0
\(351\) −418446. −0.181289
\(352\) 623392. 0.268167
\(353\) −4.36859e6 −1.86597 −0.932986 0.359914i \(-0.882806\pi\)
−0.932986 + 0.359914i \(0.882806\pi\)
\(354\) −105480. −0.0447365
\(355\) 0 0
\(356\) −3.71196e6 −1.55231
\(357\) −961704. −0.399366
\(358\) 1.34556e6 0.554875
\(359\) −3.51284e6 −1.43854 −0.719271 0.694730i \(-0.755524\pi\)
−0.719271 + 0.694730i \(0.755524\pi\)
\(360\) 0 0
\(361\) 2.18950e6 0.884254
\(362\) −1.05356e6 −0.422558
\(363\) 131769. 0.0524864
\(364\) −2.37866e6 −0.940975
\(365\) 0 0
\(366\) −965844. −0.376881
\(367\) 2.15259e6 0.834251 0.417125 0.908849i \(-0.363038\pi\)
0.417125 + 0.908849i \(0.363038\pi\)
\(368\) 1.66362e6 0.640374
\(369\) −416178. −0.159116
\(370\) 0 0
\(371\) −4.25441e6 −1.60474
\(372\) −1.26806e6 −0.475099
\(373\) 2.24247e6 0.834553 0.417276 0.908780i \(-0.362985\pi\)
0.417276 + 0.908780i \(0.362985\pi\)
\(374\) 174724. 0.0645912
\(375\) 0 0
\(376\) 2.96736e6 1.08243
\(377\) −2.66910e6 −0.967189
\(378\) −215784. −0.0776765
\(379\) −2.40986e6 −0.861775 −0.430887 0.902406i \(-0.641799\pi\)
−0.430887 + 0.902406i \(0.641799\pi\)
\(380\) 0 0
\(381\) −466092. −0.164497
\(382\) −611216. −0.214307
\(383\) 1.01066e6 0.352052 0.176026 0.984386i \(-0.443676\pi\)
0.176026 + 0.984386i \(0.443676\pi\)
\(384\) −1.67616e6 −0.580079
\(385\) 0 0
\(386\) −232868. −0.0795503
\(387\) −672624. −0.228294
\(388\) 1.97842e6 0.667175
\(389\) 1.27779e6 0.428140 0.214070 0.976818i \(-0.431328\pi\)
0.214070 + 0.976818i \(0.431328\pi\)
\(390\) 0 0
\(391\) 1.83099e6 0.605682
\(392\) −611640. −0.201039
\(393\) 482868. 0.157706
\(394\) 495484. 0.160801
\(395\) 0 0
\(396\) −274428. −0.0879408
\(397\) −5.45400e6 −1.73676 −0.868378 0.495903i \(-0.834837\pi\)
−0.868378 + 0.495903i \(0.834837\pi\)
\(398\) −1.02672e6 −0.324896
\(399\) −2.87712e6 −0.904744
\(400\) 0 0
\(401\) −1.48980e6 −0.462665 −0.231332 0.972875i \(-0.574308\pi\)
−0.231332 + 0.972875i \(0.574308\pi\)
\(402\) −556344. −0.171703
\(403\) −2.88837e6 −0.885911
\(404\) 2.85594e6 0.870555
\(405\) 0 0
\(406\) −1.37640e6 −0.414409
\(407\) −982278. −0.293933
\(408\) −779760. −0.231905
\(409\) −4.39899e6 −1.30030 −0.650152 0.759804i \(-0.725295\pi\)
−0.650152 + 0.759804i \(0.725295\pi\)
\(410\) 0 0
\(411\) 2.05976e6 0.601467
\(412\) 3.66531e6 1.06382
\(413\) 867280. 0.250198
\(414\) 410832. 0.117805
\(415\) 0 0
\(416\) −2.95725e6 −0.837827
\(417\) 3.37428e6 0.950257
\(418\) 522720. 0.146328
\(419\) −280420. −0.0780322 −0.0390161 0.999239i \(-0.512422\pi\)
−0.0390161 + 0.999239i \(0.512422\pi\)
\(420\) 0 0
\(421\) 817462. 0.224782 0.112391 0.993664i \(-0.464149\pi\)
0.112391 + 0.993664i \(0.464149\pi\)
\(422\) −1.24138e6 −0.339330
\(423\) −2.00297e6 −0.544281
\(424\) −3.44952e6 −0.931846
\(425\) 0 0
\(426\) −1.25366e6 −0.334701
\(427\) 7.94138e6 2.10779
\(428\) −3.96514e6 −1.04628
\(429\) −625086. −0.163982
\(430\) 0 0
\(431\) 1.88599e6 0.489043 0.244521 0.969644i \(-0.421369\pi\)
0.244521 + 0.969644i \(0.421369\pi\)
\(432\) 478224. 0.123288
\(433\) −5.84067e6 −1.49707 −0.748537 0.663093i \(-0.769243\pi\)
−0.748537 + 0.663093i \(0.769243\pi\)
\(434\) −1.48947e6 −0.379584
\(435\) 0 0
\(436\) 6.71468e6 1.69164
\(437\) 5.47776e6 1.37214
\(438\) 332028. 0.0826969
\(439\) −509540. −0.126188 −0.0630938 0.998008i \(-0.520097\pi\)
−0.0630938 + 0.998008i \(0.520097\pi\)
\(440\) 0 0
\(441\) 412857. 0.101089
\(442\) −828856. −0.201801
\(443\) −4.10268e6 −0.993250 −0.496625 0.867965i \(-0.665428\pi\)
−0.496625 + 0.867965i \(0.665428\pi\)
\(444\) 2.04574e6 0.492484
\(445\) 0 0
\(446\) 2.63603e6 0.627500
\(447\) −592470. −0.140248
\(448\) 1.58182e6 0.372360
\(449\) 513410. 0.120185 0.0600923 0.998193i \(-0.480861\pi\)
0.0600923 + 0.998193i \(0.480861\pi\)
\(450\) 0 0
\(451\) −621698. −0.143926
\(452\) −1.19633e6 −0.275426
\(453\) 1.38647e6 0.317442
\(454\) 1.77482e6 0.404125
\(455\) 0 0
\(456\) −2.33280e6 −0.525370
\(457\) −1.22738e6 −0.274908 −0.137454 0.990508i \(-0.543892\pi\)
−0.137454 + 0.990508i \(0.543892\pi\)
\(458\) −474900. −0.105789
\(459\) 526338. 0.116609
\(460\) 0 0
\(461\) −6.41000e6 −1.40477 −0.702386 0.711797i \(-0.747882\pi\)
−0.702386 + 0.711797i \(0.747882\pi\)
\(462\) −322344. −0.0702611
\(463\) −6.63030e6 −1.43741 −0.718705 0.695315i \(-0.755265\pi\)
−0.718705 + 0.695315i \(0.755265\pi\)
\(464\) 3.05040e6 0.657751
\(465\) 0 0
\(466\) 1.82941e6 0.390253
\(467\) 4.14769e6 0.880064 0.440032 0.897982i \(-0.354967\pi\)
0.440032 + 0.897982i \(0.354967\pi\)
\(468\) 1.30183e6 0.274752
\(469\) 4.57438e6 0.960286
\(470\) 0 0
\(471\) −2.58910e6 −0.537770
\(472\) 703200. 0.145286
\(473\) −1.00478e6 −0.206500
\(474\) −455400. −0.0930995
\(475\) 0 0
\(476\) 2.99197e6 0.605257
\(477\) 2.32843e6 0.468561
\(478\) 2.81784e6 0.564088
\(479\) −5.05132e6 −1.00593 −0.502963 0.864308i \(-0.667757\pi\)
−0.502963 + 0.864308i \(0.667757\pi\)
\(480\) 0 0
\(481\) 4.65973e6 0.918329
\(482\) −1.65272e6 −0.324027
\(483\) −3.37795e6 −0.658849
\(484\) −409948. −0.0795455
\(485\) 0 0
\(486\) 118098. 0.0226805
\(487\) −2.66221e6 −0.508651 −0.254325 0.967119i \(-0.581853\pi\)
−0.254325 + 0.967119i \(0.581853\pi\)
\(488\) 6.43896e6 1.22396
\(489\) −946116. −0.178925
\(490\) 0 0
\(491\) −5.54659e6 −1.03830 −0.519149 0.854684i \(-0.673751\pi\)
−0.519149 + 0.854684i \(0.673751\pi\)
\(492\) 1.29478e6 0.241147
\(493\) 3.35730e6 0.622118
\(494\) −2.47968e6 −0.457171
\(495\) 0 0
\(496\) 3.30099e6 0.602477
\(497\) 1.03079e7 1.87189
\(498\) 316008. 0.0570985
\(499\) −6820.00 −0.00122612 −0.000613060 1.00000i \(-0.500195\pi\)
−0.000613060 1.00000i \(0.500195\pi\)
\(500\) 0 0
\(501\) −1.35475e6 −0.241138
\(502\) −3.20774e6 −0.568119
\(503\) 451136. 0.0795037 0.0397519 0.999210i \(-0.487343\pi\)
0.0397519 + 0.999210i \(0.487343\pi\)
\(504\) 1.43856e6 0.252262
\(505\) 0 0
\(506\) 613712. 0.106559
\(507\) −376353. −0.0650243
\(508\) 1.45006e6 0.249303
\(509\) 393390. 0.0673021 0.0336511 0.999434i \(-0.489287\pi\)
0.0336511 + 0.999434i \(0.489287\pi\)
\(510\) 0 0
\(511\) −2.73001e6 −0.462500
\(512\) 5.89875e6 0.994455
\(513\) 1.57464e6 0.264173
\(514\) −795236. −0.132766
\(515\) 0 0
\(516\) 2.09261e6 0.345990
\(517\) −2.99209e6 −0.492321
\(518\) 2.40293e6 0.393474
\(519\) 19494.0 0.00317675
\(520\) 0 0
\(521\) 3.28432e6 0.530092 0.265046 0.964236i \(-0.414613\pi\)
0.265046 + 0.964236i \(0.414613\pi\)
\(522\) 753300. 0.121002
\(523\) 1.68266e6 0.268993 0.134497 0.990914i \(-0.457058\pi\)
0.134497 + 0.990914i \(0.457058\pi\)
\(524\) −1.50226e6 −0.239010
\(525\) 0 0
\(526\) −4.26333e6 −0.671869
\(527\) 3.63310e6 0.569838
\(528\) 714384. 0.111518
\(529\) −5047.00 −0.000784141 0
\(530\) 0 0
\(531\) −474660. −0.0730544
\(532\) 8.95104e6 1.37118
\(533\) 2.94921e6 0.449664
\(534\) 2.38626e6 0.362130
\(535\) 0 0
\(536\) 3.70896e6 0.557622
\(537\) 6.05502e6 0.906108
\(538\) −1.45162e6 −0.216221
\(539\) 616737. 0.0914383
\(540\) 0 0
\(541\) 9.48158e6 1.39280 0.696398 0.717656i \(-0.254785\pi\)
0.696398 + 0.717656i \(0.254785\pi\)
\(542\) −2.93574e6 −0.429258
\(543\) −4.74100e6 −0.690034
\(544\) 3.71974e6 0.538909
\(545\) 0 0
\(546\) 1.52914e6 0.219515
\(547\) 6.09239e6 0.870602 0.435301 0.900285i \(-0.356642\pi\)
0.435301 + 0.900285i \(0.356642\pi\)
\(548\) −6.40814e6 −0.911550
\(549\) −4.34630e6 −0.615444
\(550\) 0 0
\(551\) 1.00440e7 1.40938
\(552\) −2.73888e6 −0.382583
\(553\) 3.74440e6 0.520678
\(554\) −3.04200e6 −0.421099
\(555\) 0 0
\(556\) −1.04978e7 −1.44016
\(557\) −8.49594e6 −1.16031 −0.580154 0.814507i \(-0.697008\pi\)
−0.580154 + 0.814507i \(0.697008\pi\)
\(558\) 815184. 0.110833
\(559\) 4.76650e6 0.645163
\(560\) 0 0
\(561\) 786258. 0.105477
\(562\) 928764. 0.124041
\(563\) 7.02216e6 0.933683 0.466842 0.884341i \(-0.345392\pi\)
0.466842 + 0.884341i \(0.345392\pi\)
\(564\) 6.23146e6 0.824882
\(565\) 0 0
\(566\) 830272. 0.108938
\(567\) −971028. −0.126845
\(568\) 8.35776e6 1.08697
\(569\) 9.41847e6 1.21955 0.609775 0.792574i \(-0.291260\pi\)
0.609775 + 0.792574i \(0.291260\pi\)
\(570\) 0 0
\(571\) 7.29699e6 0.936599 0.468299 0.883570i \(-0.344867\pi\)
0.468299 + 0.883570i \(0.344867\pi\)
\(572\) 1.94471e6 0.248522
\(573\) −2.75047e6 −0.349962
\(574\) 1.52085e6 0.192666
\(575\) 0 0
\(576\) −865728. −0.108724
\(577\) 3.29590e6 0.412131 0.206065 0.978538i \(-0.433934\pi\)
0.206065 + 0.978538i \(0.433934\pi\)
\(578\) −1.79715e6 −0.223750
\(579\) −1.04791e6 −0.129905
\(580\) 0 0
\(581\) −2.59829e6 −0.319335
\(582\) −1.27184e6 −0.155642
\(583\) 3.47827e6 0.423830
\(584\) −2.21352e6 −0.268566
\(585\) 0 0
\(586\) 5.18641e6 0.623911
\(587\) −4.39827e6 −0.526849 −0.263425 0.964680i \(-0.584852\pi\)
−0.263425 + 0.964680i \(0.584852\pi\)
\(588\) −1.28444e6 −0.153205
\(589\) 1.08691e7 1.29094
\(590\) 0 0
\(591\) 2.22968e6 0.262587
\(592\) −5.32541e6 −0.624523
\(593\) −9.21781e6 −1.07644 −0.538222 0.842803i \(-0.680904\pi\)
−0.538222 + 0.842803i \(0.680904\pi\)
\(594\) 176418. 0.0205152
\(595\) 0 0
\(596\) 1.84324e6 0.212553
\(597\) −4.62024e6 −0.530553
\(598\) −2.91133e6 −0.332919
\(599\) 3.77140e6 0.429473 0.214736 0.976672i \(-0.431111\pi\)
0.214736 + 0.976672i \(0.431111\pi\)
\(600\) 0 0
\(601\) 4.19724e6 0.473999 0.237000 0.971510i \(-0.423836\pi\)
0.237000 + 0.971510i \(0.423836\pi\)
\(602\) 2.45798e6 0.276432
\(603\) −2.50355e6 −0.280390
\(604\) −4.31346e6 −0.481097
\(605\) 0 0
\(606\) −1.83596e6 −0.203087
\(607\) 1.00133e6 0.110308 0.0551539 0.998478i \(-0.482435\pi\)
0.0551539 + 0.998478i \(0.482435\pi\)
\(608\) 1.11283e7 1.22087
\(609\) −6.19380e6 −0.676728
\(610\) 0 0
\(611\) 1.41939e7 1.53815
\(612\) −1.63750e6 −0.176727
\(613\) 7.38239e6 0.793498 0.396749 0.917927i \(-0.370138\pi\)
0.396749 + 0.917927i \(0.370138\pi\)
\(614\) 1.86166e6 0.199288
\(615\) 0 0
\(616\) 2.14896e6 0.228179
\(617\) 1.54025e7 1.62884 0.814418 0.580279i \(-0.197056\pi\)
0.814418 + 0.580279i \(0.197056\pi\)
\(618\) −2.35627e6 −0.248173
\(619\) −7.12402e6 −0.747306 −0.373653 0.927569i \(-0.621895\pi\)
−0.373653 + 0.927569i \(0.621895\pi\)
\(620\) 0 0
\(621\) 1.84874e6 0.192375
\(622\) 4.97054e6 0.515143
\(623\) −1.96204e7 −2.02529
\(624\) −3.38890e6 −0.348415
\(625\) 0 0
\(626\) −2.63439e6 −0.268685
\(627\) 2.35224e6 0.238953
\(628\) 8.05498e6 0.815015
\(629\) −5.86120e6 −0.590690
\(630\) 0 0
\(631\) 1.16696e7 1.16677 0.583383 0.812197i \(-0.301729\pi\)
0.583383 + 0.812197i \(0.301729\pi\)
\(632\) 3.03600e6 0.302349
\(633\) −5.58619e6 −0.554124
\(634\) −4.51080e6 −0.445687
\(635\) 0 0
\(636\) −7.24399e6 −0.710126
\(637\) −2.92568e6 −0.285679
\(638\) 1.12530e6 0.109450
\(639\) −5.64149e6 −0.546565
\(640\) 0 0
\(641\) −1.10271e7 −1.06003 −0.530014 0.847989i \(-0.677813\pi\)
−0.530014 + 0.847989i \(0.677813\pi\)
\(642\) 2.54902e6 0.244082
\(643\) 9.56024e6 0.911887 0.455944 0.890009i \(-0.349302\pi\)
0.455944 + 0.890009i \(0.349302\pi\)
\(644\) 1.05092e7 0.998514
\(645\) 0 0
\(646\) 3.11904e6 0.294063
\(647\) 1.09942e7 1.03253 0.516263 0.856430i \(-0.327323\pi\)
0.516263 + 0.856430i \(0.327323\pi\)
\(648\) −787320. −0.0736570
\(649\) −709060. −0.0660802
\(650\) 0 0
\(651\) −6.70262e6 −0.619858
\(652\) 2.94347e6 0.271170
\(653\) 295346. 0.0271049 0.0135525 0.999908i \(-0.495686\pi\)
0.0135525 + 0.999908i \(0.495686\pi\)
\(654\) −4.31658e6 −0.394635
\(655\) 0 0
\(656\) −3.37053e6 −0.305801
\(657\) 1.49413e6 0.135044
\(658\) 7.31949e6 0.659046
\(659\) −1.65613e7 −1.48553 −0.742766 0.669551i \(-0.766486\pi\)
−0.742766 + 0.669551i \(0.766486\pi\)
\(660\) 0 0
\(661\) 1.97042e6 0.175411 0.0877053 0.996146i \(-0.472047\pi\)
0.0877053 + 0.996146i \(0.472047\pi\)
\(662\) −6.34142e6 −0.562395
\(663\) −3.72985e6 −0.329540
\(664\) −2.10672e6 −0.185433
\(665\) 0 0
\(666\) −1.31512e6 −0.114889
\(667\) 1.17924e7 1.02633
\(668\) 4.21478e6 0.365455
\(669\) 1.18621e7 1.02470
\(670\) 0 0
\(671\) −6.49262e6 −0.556690
\(672\) −6.86246e6 −0.586215
\(673\) 1.63733e6 0.139347 0.0696735 0.997570i \(-0.477804\pi\)
0.0696735 + 0.997570i \(0.477804\pi\)
\(674\) −2.55260e6 −0.216437
\(675\) 0 0
\(676\) 1.17088e6 0.0985472
\(677\) 6.35878e6 0.533215 0.266607 0.963805i \(-0.414097\pi\)
0.266607 + 0.963805i \(0.414097\pi\)
\(678\) 769068. 0.0642526
\(679\) 1.04574e7 0.870460
\(680\) 0 0
\(681\) 7.98671e6 0.659933
\(682\) 1.21774e6 0.100252
\(683\) −1.11033e7 −0.910751 −0.455376 0.890299i \(-0.650495\pi\)
−0.455376 + 0.890299i \(0.650495\pi\)
\(684\) −4.89888e6 −0.400365
\(685\) 0 0
\(686\) 3.46616e6 0.281215
\(687\) −2.13705e6 −0.172752
\(688\) −5.44742e6 −0.438753
\(689\) −1.65002e7 −1.32416
\(690\) 0 0
\(691\) 1.70189e7 1.35592 0.677962 0.735097i \(-0.262864\pi\)
0.677962 + 0.735097i \(0.262864\pi\)
\(692\) −60648.0 −0.00481450
\(693\) −1.45055e6 −0.114736
\(694\) −7.38606e6 −0.582122
\(695\) 0 0
\(696\) −5.02200e6 −0.392965
\(697\) −3.70964e6 −0.289234
\(698\) 3.41838e6 0.265572
\(699\) 8.23235e6 0.637281
\(700\) 0 0
\(701\) 1.58021e7 1.21456 0.607280 0.794488i \(-0.292260\pi\)
0.607280 + 0.794488i \(0.292260\pi\)
\(702\) −836892. −0.0640954
\(703\) −1.75349e7 −1.33818
\(704\) −1.29325e6 −0.0983445
\(705\) 0 0
\(706\) −8.73719e6 −0.659720
\(707\) 1.50957e7 1.13581
\(708\) 1.47672e6 0.110717
\(709\) 1.24834e7 0.932643 0.466322 0.884615i \(-0.345579\pi\)
0.466322 + 0.884615i \(0.345579\pi\)
\(710\) 0 0
\(711\) −2.04930e6 −0.152031
\(712\) −1.59084e7 −1.17605
\(713\) 1.27612e7 0.940083
\(714\) −1.92341e6 −0.141197
\(715\) 0 0
\(716\) −1.88378e7 −1.37325
\(717\) 1.26803e7 0.921151
\(718\) −7.02568e6 −0.508601
\(719\) 2.00724e6 0.144803 0.0724014 0.997376i \(-0.476934\pi\)
0.0724014 + 0.997376i \(0.476934\pi\)
\(720\) 0 0
\(721\) 1.93738e7 1.38796
\(722\) 4.37900e6 0.312631
\(723\) −7.43722e6 −0.529133
\(724\) 1.47498e7 1.04578
\(725\) 0 0
\(726\) 263538. 0.0185567
\(727\) −6.97301e6 −0.489310 −0.244655 0.969610i \(-0.578675\pi\)
−0.244655 + 0.969610i \(0.578675\pi\)
\(728\) −1.01942e7 −0.712896
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −5.99549e6 −0.414984
\(732\) 1.35218e7 0.932733
\(733\) 2.34965e7 1.61527 0.807633 0.589685i \(-0.200748\pi\)
0.807633 + 0.589685i \(0.200748\pi\)
\(734\) 4.30518e6 0.294952
\(735\) 0 0
\(736\) 1.30655e7 0.889059
\(737\) −3.73987e6 −0.253622
\(738\) −832356. −0.0562559
\(739\) −1.39901e7 −0.942346 −0.471173 0.882041i \(-0.656169\pi\)
−0.471173 + 0.882041i \(0.656169\pi\)
\(740\) 0 0
\(741\) −1.11586e7 −0.746556
\(742\) −8.50882e6 −0.567361
\(743\) −2.42745e7 −1.61316 −0.806582 0.591123i \(-0.798685\pi\)
−0.806582 + 0.591123i \(0.798685\pi\)
\(744\) −5.43456e6 −0.359942
\(745\) 0 0
\(746\) 4.48493e6 0.295059
\(747\) 1.42204e6 0.0932415
\(748\) −2.44614e6 −0.159855
\(749\) −2.09586e7 −1.36508
\(750\) 0 0
\(751\) 1.53660e7 0.994170 0.497085 0.867702i \(-0.334404\pi\)
0.497085 + 0.867702i \(0.334404\pi\)
\(752\) −1.62216e7 −1.04604
\(753\) −1.44348e7 −0.927734
\(754\) −5.33820e6 −0.341953
\(755\) 0 0
\(756\) 3.02098e6 0.192240
\(757\) −2.07605e7 −1.31674 −0.658368 0.752697i \(-0.728753\pi\)
−0.658368 + 0.752697i \(0.728753\pi\)
\(758\) −4.81972e6 −0.304683
\(759\) 2.76170e6 0.174009
\(760\) 0 0
\(761\) 5.83810e6 0.365435 0.182717 0.983165i \(-0.441511\pi\)
0.182717 + 0.983165i \(0.441511\pi\)
\(762\) −932184. −0.0581586
\(763\) 3.54919e7 2.20708
\(764\) 8.55702e6 0.530383
\(765\) 0 0
\(766\) 2.02131e6 0.124469
\(767\) 3.36364e6 0.206453
\(768\) −274176. −0.0167736
\(769\) −1.39197e7 −0.848818 −0.424409 0.905471i \(-0.639518\pi\)
−0.424409 + 0.905471i \(0.639518\pi\)
\(770\) 0 0
\(771\) −3.57856e6 −0.216807
\(772\) 3.26015e6 0.196877
\(773\) 4.17883e6 0.251539 0.125770 0.992059i \(-0.459860\pi\)
0.125770 + 0.992059i \(0.459860\pi\)
\(774\) −1.34525e6 −0.0807142
\(775\) 0 0
\(776\) 8.47896e6 0.505462
\(777\) 1.08132e7 0.642541
\(778\) 2.55558e6 0.151370
\(779\) −1.10981e7 −0.655246
\(780\) 0 0
\(781\) −8.42741e6 −0.494386
\(782\) 3.66198e6 0.214141
\(783\) 3.38985e6 0.197595
\(784\) 3.34363e6 0.194280
\(785\) 0 0
\(786\) 965736. 0.0557573
\(787\) −9.66705e6 −0.556361 −0.278181 0.960529i \(-0.589731\pi\)
−0.278181 + 0.960529i \(0.589731\pi\)
\(788\) −6.93678e6 −0.397962
\(789\) −1.91850e7 −1.09716
\(790\) 0 0
\(791\) −6.32345e6 −0.359346
\(792\) −1.17612e6 −0.0666252
\(793\) 3.07997e7 1.73926
\(794\) −1.09080e7 −0.614036
\(795\) 0 0
\(796\) 1.43741e7 0.804077
\(797\) 5.79884e6 0.323367 0.161683 0.986843i \(-0.448308\pi\)
0.161683 + 0.986843i \(0.448308\pi\)
\(798\) −5.75424e6 −0.319875
\(799\) −1.78536e7 −0.989371
\(800\) 0 0
\(801\) 1.07382e7 0.591356
\(802\) −2.97960e6 −0.163577
\(803\) 2.23197e6 0.122151
\(804\) 7.78882e6 0.424944
\(805\) 0 0
\(806\) −5.77674e6 −0.313217
\(807\) −6.53229e6 −0.353087
\(808\) 1.22398e7 0.659545
\(809\) −1.92543e7 −1.03433 −0.517163 0.855887i \(-0.673012\pi\)
−0.517163 + 0.855887i \(0.673012\pi\)
\(810\) 0 0
\(811\) −1.31938e7 −0.704396 −0.352198 0.935926i \(-0.614566\pi\)
−0.352198 + 0.935926i \(0.614566\pi\)
\(812\) 1.92696e7 1.02561
\(813\) −1.32108e7 −0.700976
\(814\) −1.96456e6 −0.103921
\(815\) 0 0
\(816\) 4.26269e6 0.224108
\(817\) −1.79366e7 −0.940126
\(818\) −8.79798e6 −0.459727
\(819\) 6.88111e6 0.358467
\(820\) 0 0
\(821\) 1.33779e7 0.692677 0.346338 0.938110i \(-0.387425\pi\)
0.346338 + 0.938110i \(0.387425\pi\)
\(822\) 4.11952e6 0.212651
\(823\) 1.88613e7 0.970673 0.485336 0.874327i \(-0.338697\pi\)
0.485336 + 0.874327i \(0.338697\pi\)
\(824\) 1.57085e7 0.805965
\(825\) 0 0
\(826\) 1.73456e6 0.0884584
\(827\) −1.62680e7 −0.827123 −0.413561 0.910476i \(-0.635715\pi\)
−0.413561 + 0.910476i \(0.635715\pi\)
\(828\) −5.75165e6 −0.291552
\(829\) −2.18098e7 −1.10221 −0.551107 0.834435i \(-0.685794\pi\)
−0.551107 + 0.834435i \(0.685794\pi\)
\(830\) 0 0
\(831\) −1.36890e7 −0.687652
\(832\) 6.13491e6 0.307256
\(833\) 3.68003e6 0.183755
\(834\) 6.74856e6 0.335967
\(835\) 0 0
\(836\) −7.31808e6 −0.362144
\(837\) 3.66833e6 0.180990
\(838\) −560840. −0.0275886
\(839\) 1.17771e7 0.577607 0.288804 0.957388i \(-0.406743\pi\)
0.288804 + 0.957388i \(0.406743\pi\)
\(840\) 0 0
\(841\) 1.11135e6 0.0541828
\(842\) 1.63492e6 0.0794726
\(843\) 4.17944e6 0.202558
\(844\) 1.73793e7 0.839799
\(845\) 0 0
\(846\) −4.00594e6 −0.192432
\(847\) −2.16687e6 −0.103782
\(848\) 1.88574e7 0.900516
\(849\) 3.73622e6 0.177895
\(850\) 0 0
\(851\) −2.05872e7 −0.974483
\(852\) 1.75513e7 0.828343
\(853\) 1.43993e7 0.677591 0.338796 0.940860i \(-0.389980\pi\)
0.338796 + 0.940860i \(0.389980\pi\)
\(854\) 1.58828e7 0.745215
\(855\) 0 0
\(856\) −1.69934e7 −0.792678
\(857\) −6.27604e6 −0.291900 −0.145950 0.989292i \(-0.546624\pi\)
−0.145950 + 0.989292i \(0.546624\pi\)
\(858\) −1.25017e6 −0.0579764
\(859\) −4.71738e6 −0.218131 −0.109066 0.994035i \(-0.534786\pi\)
−0.109066 + 0.994035i \(0.534786\pi\)
\(860\) 0 0
\(861\) 6.84382e6 0.314623
\(862\) 3.77198e6 0.172903
\(863\) −7.53926e6 −0.344589 −0.172295 0.985045i \(-0.555118\pi\)
−0.172295 + 0.985045i \(0.555118\pi\)
\(864\) 3.75581e6 0.171167
\(865\) 0 0
\(866\) −1.16813e7 −0.529296
\(867\) −8.08716e6 −0.365383
\(868\) 2.08526e7 0.939423
\(869\) −3.06130e6 −0.137517
\(870\) 0 0
\(871\) 1.77412e7 0.792387
\(872\) 2.87772e7 1.28161
\(873\) −5.72330e6 −0.254162
\(874\) 1.09555e7 0.485126
\(875\) 0 0
\(876\) −4.64839e6 −0.204664
\(877\) 1.04331e7 0.458051 0.229025 0.973420i \(-0.426446\pi\)
0.229025 + 0.973420i \(0.426446\pi\)
\(878\) −1.01908e6 −0.0446141
\(879\) 2.33389e7 1.01884
\(880\) 0 0
\(881\) 3.91076e7 1.69755 0.848774 0.528756i \(-0.177342\pi\)
0.848774 + 0.528756i \(0.177342\pi\)
\(882\) 825714. 0.0357403
\(883\) −1.29282e7 −0.558003 −0.279001 0.960291i \(-0.590003\pi\)
−0.279001 + 0.960291i \(0.590003\pi\)
\(884\) 1.16040e7 0.499432
\(885\) 0 0
\(886\) −8.20537e6 −0.351167
\(887\) −3.36466e7 −1.43592 −0.717962 0.696082i \(-0.754925\pi\)
−0.717962 + 0.696082i \(0.754925\pi\)
\(888\) 8.76744e6 0.373113
\(889\) 7.66462e6 0.325264
\(890\) 0 0
\(891\) 793881. 0.0335013
\(892\) −3.69044e7 −1.55298
\(893\) −5.34125e7 −2.24137
\(894\) −1.18494e6 −0.0495853
\(895\) 0 0
\(896\) 2.75635e7 1.14700
\(897\) −1.31010e7 −0.543654
\(898\) 1.02682e6 0.0424916
\(899\) 2.33988e7 0.965594
\(900\) 0 0
\(901\) 2.07546e7 0.851731
\(902\) −1.24340e6 −0.0508854
\(903\) 1.10609e7 0.451411
\(904\) −5.12712e6 −0.208666
\(905\) 0 0
\(906\) 2.77294e6 0.112233
\(907\) 4.19629e7 1.69374 0.846872 0.531797i \(-0.178483\pi\)
0.846872 + 0.531797i \(0.178483\pi\)
\(908\) −2.48475e7 −1.00016
\(909\) −8.26184e6 −0.331640
\(910\) 0 0
\(911\) −1.92521e6 −0.0768567 −0.0384283 0.999261i \(-0.512235\pi\)
−0.0384283 + 0.999261i \(0.512235\pi\)
\(912\) 1.27526e7 0.507707
\(913\) 2.12428e6 0.0843401
\(914\) −2.45476e6 −0.0971948
\(915\) 0 0
\(916\) 6.64860e6 0.261813
\(917\) −7.94050e6 −0.311835
\(918\) 1.05268e6 0.0412276
\(919\) −1.72481e7 −0.673678 −0.336839 0.941562i \(-0.609358\pi\)
−0.336839 + 0.941562i \(0.609358\pi\)
\(920\) 0 0
\(921\) 8.37749e6 0.325435
\(922\) −1.28200e7 −0.496662
\(923\) 3.99780e7 1.54460
\(924\) 4.51282e6 0.173887
\(925\) 0 0
\(926\) −1.32606e7 −0.508202
\(927\) −1.06032e7 −0.405265
\(928\) 2.39568e7 0.913185
\(929\) 2.51145e6 0.0954740 0.0477370 0.998860i \(-0.484799\pi\)
0.0477370 + 0.998860i \(0.484799\pi\)
\(930\) 0 0
\(931\) 1.10095e7 0.416288
\(932\) −2.56118e7 −0.965828
\(933\) 2.23674e7 0.841225
\(934\) 8.29538e6 0.311150
\(935\) 0 0
\(936\) 5.57928e6 0.208156
\(937\) −1.79853e7 −0.669221 −0.334611 0.942357i \(-0.608605\pi\)
−0.334611 + 0.942357i \(0.608605\pi\)
\(938\) 9.14877e6 0.339512
\(939\) −1.18547e7 −0.438761
\(940\) 0 0
\(941\) −3.22586e7 −1.18760 −0.593802 0.804611i \(-0.702374\pi\)
−0.593802 + 0.804611i \(0.702374\pi\)
\(942\) −5.17820e6 −0.190131
\(943\) −1.30300e7 −0.477160
\(944\) −3.84416e6 −0.140401
\(945\) 0 0
\(946\) −2.00957e6 −0.0730087
\(947\) −4.41659e7 −1.60034 −0.800169 0.599774i \(-0.795257\pi\)
−0.800169 + 0.599774i \(0.795257\pi\)
\(948\) 6.37560e6 0.230409
\(949\) −1.05880e7 −0.381635
\(950\) 0 0
\(951\) −2.02986e7 −0.727804
\(952\) 1.28227e7 0.458551
\(953\) −1.87488e7 −0.668714 −0.334357 0.942446i \(-0.608519\pi\)
−0.334357 + 0.942446i \(0.608519\pi\)
\(954\) 4.65685e6 0.165661
\(955\) 0 0
\(956\) −3.94498e7 −1.39605
\(957\) 5.06385e6 0.178731
\(958\) −1.01026e7 −0.355649
\(959\) −3.38716e7 −1.18929
\(960\) 0 0
\(961\) −3.30813e6 −0.115551
\(962\) 9.31946e6 0.324678
\(963\) 1.14706e7 0.398584
\(964\) 2.31380e7 0.801925
\(965\) 0 0
\(966\) −6.75590e6 −0.232938
\(967\) −1.08673e7 −0.373730 −0.186865 0.982386i \(-0.559833\pi\)
−0.186865 + 0.982386i \(0.559833\pi\)
\(968\) −1.75692e6 −0.0602648
\(969\) 1.40357e7 0.480202
\(970\) 0 0
\(971\) −4.79123e7 −1.63079 −0.815397 0.578902i \(-0.803481\pi\)
−0.815397 + 0.578902i \(0.803481\pi\)
\(972\) −1.65337e6 −0.0561313
\(973\) −5.54882e7 −1.87896
\(974\) −5.32442e6 −0.179835
\(975\) 0 0
\(976\) −3.51996e7 −1.18281
\(977\) −4.01385e7 −1.34532 −0.672658 0.739954i \(-0.734847\pi\)
−0.672658 + 0.739954i \(0.734847\pi\)
\(978\) −1.89223e6 −0.0632597
\(979\) 1.60410e7 0.534902
\(980\) 0 0
\(981\) −1.94246e7 −0.644436
\(982\) −1.10932e7 −0.367094
\(983\) −3.22682e6 −0.106510 −0.0532551 0.998581i \(-0.516960\pi\)
−0.0532551 + 0.998581i \(0.516960\pi\)
\(984\) 5.54904e6 0.182696
\(985\) 0 0
\(986\) 6.71460e6 0.219952
\(987\) 3.29377e7 1.07622
\(988\) 3.47155e7 1.13144
\(989\) −2.10589e7 −0.684614
\(990\) 0 0
\(991\) −5.95345e6 −0.192568 −0.0962841 0.995354i \(-0.530696\pi\)
−0.0962841 + 0.995354i \(0.530696\pi\)
\(992\) 2.59249e7 0.836445
\(993\) −2.85364e7 −0.918387
\(994\) 2.06158e7 0.661812
\(995\) 0 0
\(996\) −4.42411e6 −0.141312
\(997\) −3.20783e7 −1.02205 −0.511027 0.859565i \(-0.670735\pi\)
−0.511027 + 0.859565i \(0.670735\pi\)
\(998\) −13640.0 −0.000433499 0
\(999\) −5.91802e6 −0.187613
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.6.a.b.1.1 1
5.4 even 2 33.6.a.a.1.1 1
15.14 odd 2 99.6.a.b.1.1 1
20.19 odd 2 528.6.a.i.1.1 1
55.54 odd 2 363.6.a.c.1.1 1
165.164 even 2 1089.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.6.a.a.1.1 1 5.4 even 2
99.6.a.b.1.1 1 15.14 odd 2
363.6.a.c.1.1 1 55.54 odd 2
528.6.a.i.1.1 1 20.19 odd 2
825.6.a.b.1.1 1 1.1 even 1 trivial
1089.6.a.d.1.1 1 165.164 even 2