Properties

Label 8281.2.a.bh.1.1
Level 82818281
Weight 22
Character 8281.1
Self dual yes
Analytic conductor 66.12466.124
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8281=72132 8281 = 7^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.124117913866.1241179138
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.404.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x25x1 x^{3} - x^{2} - 5x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 637)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.866202.86620 of defining polynomial
Character χ\chi == 8281.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.86620q23.34889q3+1.48270q40.866198q5+6.24970q6+0.965392q8+8.21509q9+1.61650q10+3.86620q114.96539q12+2.90081q154.76700q163.34889q1715.3310q18+5.38350q191.28431q207.21509q225.24970q233.23300q244.24970q2517.4648q27+1.69779q295.41348q307.56399q31+6.96539q3212.9475q33+6.24970q34+12.1805q36+4.83159q3710.0467q380.836221q40+4.06922q41+4.03461q43+5.73240q447.11590q45+9.79698q46+3.65111q47+15.9642q48+7.93078q50+11.2151q510.215092q53+32.5928q543.34889q5518.0288q573.16841q58+2.78491q59+4.30101q60+9.03461q61+14.1159q623.46479q64+24.1626q66+7.66318q674.96539q68+17.5807q694.90081q71+7.93078q7215.5461q739.01671q74+14.2318q75+7.98210q76+9.43018q79+4.12917q80+33.8425q817.59396q82+4.09919q83+2.90081q857.52938q865.68571q87+3.73240q88+0.418110q89+13.2797q907.78371q92+25.3310q936.81369q944.66318q9523.3264q96+7.11590q97+31.7612q99+O(q100)q-1.86620 q^{2} -3.34889 q^{3} +1.48270 q^{4} -0.866198 q^{5} +6.24970 q^{6} +0.965392 q^{8} +8.21509 q^{9} +1.61650 q^{10} +3.86620 q^{11} -4.96539 q^{12} +2.90081 q^{15} -4.76700 q^{16} -3.34889 q^{17} -15.3310 q^{18} +5.38350 q^{19} -1.28431 q^{20} -7.21509 q^{22} -5.24970 q^{23} -3.23300 q^{24} -4.24970 q^{25} -17.4648 q^{27} +1.69779 q^{29} -5.41348 q^{30} -7.56399 q^{31} +6.96539 q^{32} -12.9475 q^{33} +6.24970 q^{34} +12.1805 q^{36} +4.83159 q^{37} -10.0467 q^{38} -0.836221 q^{40} +4.06922 q^{41} +4.03461 q^{43} +5.73240 q^{44} -7.11590 q^{45} +9.79698 q^{46} +3.65111 q^{47} +15.9642 q^{48} +7.93078 q^{50} +11.2151 q^{51} -0.215092 q^{53} +32.5928 q^{54} -3.34889 q^{55} -18.0288 q^{57} -3.16841 q^{58} +2.78491 q^{59} +4.30101 q^{60} +9.03461 q^{61} +14.1159 q^{62} -3.46479 q^{64} +24.1626 q^{66} +7.66318 q^{67} -4.96539 q^{68} +17.5807 q^{69} -4.90081 q^{71} +7.93078 q^{72} -15.5461 q^{73} -9.01671 q^{74} +14.2318 q^{75} +7.98210 q^{76} +9.43018 q^{79} +4.12917 q^{80} +33.8425 q^{81} -7.59396 q^{82} +4.09919 q^{83} +2.90081 q^{85} -7.52938 q^{86} -5.68571 q^{87} +3.73240 q^{88} +0.418110 q^{89} +13.2797 q^{90} -7.78371 q^{92} +25.3310 q^{93} -6.81369 q^{94} -4.66318 q^{95} -23.3264 q^{96} +7.11590 q^{97} +31.7612 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+2q24q3+6q4+5q5+2q6+6q8+11q9+14q10+4q1118q122q15+4q164q178q18+7q19+16q208q22+q2328q24++30q99+O(q100) 3 q + 2 q^{2} - 4 q^{3} + 6 q^{4} + 5 q^{5} + 2 q^{6} + 6 q^{8} + 11 q^{9} + 14 q^{10} + 4 q^{11} - 18 q^{12} - 2 q^{15} + 4 q^{16} - 4 q^{17} - 8 q^{18} + 7 q^{19} + 16 q^{20} - 8 q^{22} + q^{23} - 28 q^{24}+ \cdots + 30 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.86620 −1.31960 −0.659801 0.751441i 0.729359π-0.729359\pi
−0.659801 + 0.751441i 0.729359π0.729359\pi
33 −3.34889 −1.93348 −0.966742 0.255752i 0.917677π-0.917677\pi
−0.966742 + 0.255752i 0.917677π0.917677\pi
44 1.48270 0.741348
55 −0.866198 −0.387376 −0.193688 0.981063i 0.562045π-0.562045\pi
−0.193688 + 0.981063i 0.562045π0.562045\pi
66 6.24970 2.55143
77 0 0
88 0.965392 0.341318
99 8.21509 2.73836
1010 1.61650 0.511181
1111 3.86620 1.16570 0.582851 0.812579i 0.301937π-0.301937\pi
0.582851 + 0.812579i 0.301937π0.301937\pi
1212 −4.96539 −1.43339
1313 0 0
1414 0 0
1515 2.90081 0.748985
1616 −4.76700 −1.19175
1717 −3.34889 −0.812226 −0.406113 0.913823i 0.633116π-0.633116\pi
−0.406113 + 0.913823i 0.633116π0.633116\pi
1818 −15.3310 −3.61355
1919 5.38350 1.23506 0.617530 0.786547i 0.288133π-0.288133\pi
0.617530 + 0.786547i 0.288133π0.288133\pi
2020 −1.28431 −0.287180
2121 0 0
2222 −7.21509 −1.53826
2323 −5.24970 −1.09464 −0.547319 0.836924i 0.684352π-0.684352\pi
−0.547319 + 0.836924i 0.684352π0.684352\pi
2424 −3.23300 −0.659932
2525 −4.24970 −0.849940
2626 0 0
2727 −17.4648 −3.36110
2828 0 0
2929 1.69779 0.315271 0.157636 0.987497i 0.449613π-0.449613\pi
0.157636 + 0.987497i 0.449613π0.449613\pi
3030 −5.41348 −0.988362
3131 −7.56399 −1.35853 −0.679266 0.733892i 0.737702π-0.737702\pi
−0.679266 + 0.733892i 0.737702π0.737702\pi
3232 6.96539 1.23132
3333 −12.9475 −2.25387
3434 6.24970 1.07181
3535 0 0
3636 12.1805 2.03008
3737 4.83159 0.794309 0.397154 0.917752i 0.369998π-0.369998\pi
0.397154 + 0.917752i 0.369998π0.369998\pi
3838 −10.0467 −1.62979
3939 0 0
4040 −0.836221 −0.132218
4141 4.06922 0.635505 0.317752 0.948174i 0.397072π-0.397072\pi
0.317752 + 0.948174i 0.397072π0.397072\pi
4242 0 0
4343 4.03461 0.615272 0.307636 0.951504i 0.400462π-0.400462\pi
0.307636 + 0.951504i 0.400462π0.400462\pi
4444 5.73240 0.864191
4545 −7.11590 −1.06078
4646 9.79698 1.44449
4747 3.65111 0.532569 0.266284 0.963895i 0.414204π-0.414204\pi
0.266284 + 0.963895i 0.414204π0.414204\pi
4848 15.9642 2.30423
4949 0 0
5050 7.93078 1.12158
5151 11.2151 1.57043
5252 0 0
5353 −0.215092 −0.0295452 −0.0147726 0.999891i 0.504702π-0.504702\pi
−0.0147726 + 0.999891i 0.504702π0.504702\pi
5454 32.5928 4.43531
5555 −3.34889 −0.451565
5656 0 0
5757 −18.0288 −2.38797
5858 −3.16841 −0.416033
5959 2.78491 0.362564 0.181282 0.983431i 0.441975π-0.441975\pi
0.181282 + 0.983431i 0.441975π0.441975\pi
6060 4.30101 0.555258
6161 9.03461 1.15676 0.578382 0.815766i 0.303685π-0.303685\pi
0.578382 + 0.815766i 0.303685π0.303685\pi
6262 14.1159 1.79272
6363 0 0
6464 −3.46479 −0.433099
6565 0 0
6666 24.1626 2.97421
6767 7.66318 0.936206 0.468103 0.883674i 0.344938π-0.344938\pi
0.468103 + 0.883674i 0.344938π0.344938\pi
6868 −4.96539 −0.602142
6969 17.5807 2.11647
7070 0 0
7171 −4.90081 −0.581619 −0.290809 0.956781i 0.593925π-0.593925\pi
−0.290809 + 0.956781i 0.593925π0.593925\pi
7272 7.93078 0.934652
7373 −15.5461 −1.81953 −0.909766 0.415122i 0.863739π-0.863739\pi
−0.909766 + 0.415122i 0.863739π0.863739\pi
7474 −9.01671 −1.04817
7575 14.2318 1.64335
7676 7.98210 0.915609
7777 0 0
7878 0 0
7979 9.43018 1.06098 0.530489 0.847692i 0.322008π-0.322008\pi
0.530489 + 0.847692i 0.322008π0.322008\pi
8080 4.12917 0.461655
8181 33.8425 3.76027
8282 −7.59396 −0.838613
8383 4.09919 0.449945 0.224972 0.974365i 0.427771π-0.427771\pi
0.224972 + 0.974365i 0.427771π0.427771\pi
8484 0 0
8585 2.90081 0.314637
8686 −7.52938 −0.811914
8787 −5.68571 −0.609573
8888 3.73240 0.397875
8989 0.418110 0.0443196 0.0221598 0.999754i 0.492946π-0.492946\pi
0.0221598 + 0.999754i 0.492946π0.492946\pi
9090 13.2797 1.39980
9191 0 0
9292 −7.78371 −0.811508
9393 25.3310 2.62670
9494 −6.81369 −0.702778
9595 −4.66318 −0.478432
9696 −23.3264 −2.38074
9797 7.11590 0.722510 0.361255 0.932467i 0.382348π-0.382348\pi
0.361255 + 0.932467i 0.382348π0.382348\pi
9898 0 0
9999 31.7612 3.19212
100100 −6.30101 −0.630101
101101 −14.1159 −1.40458 −0.702292 0.711889i 0.747840π-0.747840\pi
−0.702292 + 0.711889i 0.747840π0.747840\pi
102102 −20.9296 −2.07234
103103 −16.8604 −1.66130 −0.830651 0.556794i 0.812031π-0.812031\pi
−0.830651 + 0.556794i 0.812031π0.812031\pi
104104 0 0
105105 0 0
106106 0.401405 0.0389879
107107 10.1805 0.984185 0.492092 0.870543i 0.336232π-0.336232\pi
0.492092 + 0.870543i 0.336232π0.336232\pi
108108 −25.8950 −2.49175
109109 6.20302 0.594141 0.297071 0.954855i 0.403990π-0.403990\pi
0.297071 + 0.954855i 0.403990π0.403990\pi
110110 6.24970 0.595886
111111 −16.1805 −1.53578
112112 0 0
113113 10.2843 0.967466 0.483733 0.875216i 0.339281π-0.339281\pi
0.483733 + 0.875216i 0.339281π0.339281\pi
114114 33.6453 3.15117
115115 4.54728 0.424036
116116 2.51730 0.233726
117117 0 0
118118 −5.19719 −0.478440
119119 0 0
120120 2.80041 0.255642
121121 3.94749 0.358863
122122 −16.8604 −1.52647
123123 −13.6274 −1.22874
124124 −11.2151 −1.00715
125125 8.01207 0.716622
126126 0 0
127127 −1.91288 −0.169741 −0.0848704 0.996392i 0.527048π-0.527048\pi
−0.0848704 + 0.996392i 0.527048π0.527048\pi
128128 −7.46479 −0.659801
129129 −13.5115 −1.18962
130130 0 0
131131 10.1626 0.887909 0.443954 0.896049i 0.353575π-0.353575\pi
0.443954 + 0.896049i 0.353575π0.353575\pi
132132 −19.1972 −1.67090
133133 0 0
134134 −14.3010 −1.23542
135135 15.1280 1.30201
136136 −3.23300 −0.277227
137137 −7.79698 −0.666141 −0.333071 0.942902i 0.608085π-0.608085\pi
−0.333071 + 0.942902i 0.608085π0.608085\pi
138138 −32.8091 −2.79289
139139 −5.08129 −0.430989 −0.215495 0.976505i 0.569136π-0.569136\pi
−0.215495 + 0.976505i 0.569136π0.569136\pi
140140 0 0
141141 −12.2272 −1.02971
142142 9.14588 0.767505
143143 0 0
144144 −39.1614 −3.26345
145145 −1.47062 −0.122128
146146 29.0121 2.40106
147147 0 0
148148 7.16378 0.588859
149149 2.49477 0.204380 0.102190 0.994765i 0.467415π-0.467415\pi
0.102190 + 0.994765i 0.467415π0.467415\pi
150150 −26.5594 −2.16856
151151 3.26178 0.265439 0.132720 0.991154i 0.457629π-0.457629\pi
0.132720 + 0.991154i 0.457629π0.457629\pi
152152 5.19719 0.421548
153153 −27.5115 −2.22417
154154 0 0
155155 6.55191 0.526262
156156 0 0
157157 −0.720322 −0.0574880 −0.0287440 0.999587i 0.509151π-0.509151\pi
−0.0287440 + 0.999587i 0.509151π0.509151\pi
158158 −17.5986 −1.40007
159159 0.720322 0.0571252
160160 −6.03341 −0.476983
161161 0 0
162162 −63.1568 −4.96206
163163 −1.30221 −0.101997 −0.0509985 0.998699i 0.516240π-0.516240\pi
−0.0509985 + 0.998699i 0.516240π0.516240\pi
164164 6.03341 0.471130
165165 11.2151 0.873094
166166 −7.64991 −0.593748
167167 −16.1505 −1.24976 −0.624882 0.780719i 0.714853π-0.714853\pi
−0.624882 + 0.780719i 0.714853π0.714853\pi
168168 0 0
169169 0 0
170170 −5.41348 −0.415195
171171 44.2260 3.38204
172172 5.98210 0.456131
173173 −15.8483 −1.20492 −0.602462 0.798148i 0.705813π-0.705813\pi
−0.602462 + 0.798148i 0.705813π0.705813\pi
174174 10.6107 0.804393
175175 0 0
176176 −18.4302 −1.38923
177177 −9.32636 −0.701012
178178 −0.780277 −0.0584842
179179 −20.4648 −1.52961 −0.764805 0.644262i 0.777165π-0.777165\pi
−0.764805 + 0.644262i 0.777165π0.777165\pi
180180 −10.5507 −0.786404
181181 −6.58189 −0.489228 −0.244614 0.969621i 0.578661π-0.578661\pi
−0.244614 + 0.969621i 0.578661π0.578661\pi
182182 0 0
183183 −30.2559 −2.23658
184184 −5.06802 −0.373619
185185 −4.18512 −0.307696
186186 −47.2727 −3.46620
187187 −12.9475 −0.946814
188188 5.41348 0.394819
189189 0 0
190190 8.70242 0.631340
191191 12.7491 0.922493 0.461246 0.887272i 0.347402π-0.347402\pi
0.461246 + 0.887272i 0.347402π0.347402\pi
192192 11.6032 0.837391
193193 −2.26760 −0.163226 −0.0816128 0.996664i 0.526007π-0.526007\pi
−0.0816128 + 0.996664i 0.526007π0.526007\pi
194194 −13.2797 −0.953425
195195 0 0
196196 0 0
197197 18.6978 1.33216 0.666081 0.745879i 0.267970π-0.267970\pi
0.666081 + 0.745879i 0.267970π0.267970\pi
198198 −59.2727 −4.21232
199199 19.9175 1.41191 0.705957 0.708254i 0.250517π-0.250517\pi
0.705957 + 0.708254i 0.250517π0.250517\pi
200200 −4.10263 −0.290100
201201 −25.6632 −1.81014
202202 26.3431 1.85349
203203 0 0
204204 16.6286 1.16423
205205 −3.52475 −0.246179
206206 31.4648 2.19226
207207 −43.1268 −2.99752
208208 0 0
209209 20.8137 1.43971
210210 0 0
211211 0.645277 0.0444227 0.0222114 0.999753i 0.492929π-0.492929\pi
0.0222114 + 0.999753i 0.492929π0.492929\pi
212212 −0.318917 −0.0219033
213213 16.4123 1.12455
214214 −18.9988 −1.29873
215215 −3.49477 −0.238341
216216 −16.8604 −1.14720
217217 0 0
218218 −11.5761 −0.784030
219219 52.0622 3.51804
220220 −4.96539 −0.334767
221221 0 0
222222 30.1960 2.02662
223223 −5.83159 −0.390512 −0.195256 0.980752i 0.562554π-0.562554\pi
−0.195256 + 0.980752i 0.562554π0.562554\pi
224224 0 0
225225 −34.9117 −2.32745
226226 −19.1926 −1.27667
227227 15.7324 1.04420 0.522098 0.852886i 0.325150π-0.325150\pi
0.522098 + 0.852886i 0.325150π0.325150\pi
228228 −26.7312 −1.77032
229229 8.87827 0.586693 0.293346 0.956006i 0.405231π-0.405231\pi
0.293346 + 0.956006i 0.405231π0.405231\pi
230230 −8.48613 −0.559559
231231 0 0
232232 1.63903 0.107608
233233 −11.7912 −0.772464 −0.386232 0.922402i 0.626224π-0.626224\pi
−0.386232 + 0.922402i 0.626224π0.626224\pi
234234 0 0
235235 −3.16258 −0.206304
236236 4.12917 0.268786
237237 −31.5807 −2.05139
238238 0 0
239239 16.0692 1.03943 0.519716 0.854339i 0.326038π-0.326038\pi
0.519716 + 0.854339i 0.326038π0.326038\pi
240240 −13.8282 −0.892604
241241 −4.93541 −0.317918 −0.158959 0.987285i 0.550814π-0.550814\pi
−0.158959 + 0.987285i 0.550814π0.550814\pi
242242 −7.36680 −0.473556
243243 −60.9405 −3.90933
244244 13.3956 0.857564
245245 0 0
246246 25.4314 1.62145
247247 0 0
248248 −7.30221 −0.463691
249249 −13.7278 −0.869962
250250 −14.9521 −0.945655
251251 15.2439 0.962185 0.481092 0.876670i 0.340240π-0.340240\pi
0.481092 + 0.876670i 0.340240π0.340240\pi
252252 0 0
253253 −20.2964 −1.27602
254254 3.56982 0.223990
255255 −9.71449 −0.608345
256256 20.8604 1.30377
257257 −15.6165 −0.974130 −0.487065 0.873366i 0.661933π-0.661933\pi
−0.487065 + 0.873366i 0.661933π0.661933\pi
258258 25.2151 1.56982
259259 0 0
260260 0 0
261261 13.9475 0.863328
262262 −18.9654 −1.17169
263263 17.0934 1.05402 0.527011 0.849858i 0.323313π-0.323313\pi
0.527011 + 0.849858i 0.323313π0.323313\pi
264264 −12.4994 −0.769285
265265 0.186313 0.0114451
266266 0 0
267267 −1.40021 −0.0856913
268268 11.3622 0.694055
269269 16.3368 0.996073 0.498037 0.867156i 0.334054π-0.334054\pi
0.498037 + 0.867156i 0.334054π0.334054\pi
270270 −28.2318 −1.71813
271271 12.4994 0.759285 0.379642 0.925133i 0.376047π-0.376047\pi
0.379642 + 0.925133i 0.376047π0.376047\pi
272272 15.9642 0.967971
273273 0 0
274274 14.5507 0.879041
275275 −16.4302 −0.990777
276276 26.0668 1.56904
277277 −3.00000 −0.180253 −0.0901263 0.995930i 0.528727π-0.528727\pi
−0.0901263 + 0.995930i 0.528727π0.528727\pi
278278 9.48270 0.568734
279279 −62.1389 −3.72016
280280 0 0
281281 −0.831590 −0.0496085 −0.0248043 0.999692i 0.507896π-0.507896\pi
−0.0248043 + 0.999692i 0.507896π0.507896\pi
282282 22.8183 1.35881
283283 11.0588 0.657375 0.328687 0.944439i 0.393394π-0.393394\pi
0.328687 + 0.944439i 0.393394π0.393394\pi
284284 −7.26641 −0.431182
285285 15.6165 0.925041
286286 0 0
287287 0 0
288288 57.2213 3.37180
289289 −5.78491 −0.340289
290290 2.74447 0.161161
291291 −23.8304 −1.39696
292292 −23.0501 −1.34891
293293 26.9175 1.57254 0.786269 0.617884i 0.212010π-0.212010\pi
0.786269 + 0.617884i 0.212010π0.212010\pi
294294 0 0
295295 −2.41228 −0.140448
296296 4.66438 0.271111
297297 −67.5224 −3.91804
298298 −4.65574 −0.269700
299299 0 0
300300 21.1014 1.21829
301301 0 0
302302 −6.08712 −0.350274
303303 47.2727 2.71574
304304 −25.6632 −1.47188
305305 −7.82576 −0.448102
306306 51.3419 2.93502
307307 15.1580 0.865110 0.432555 0.901608i 0.357612π-0.357612\pi
0.432555 + 0.901608i 0.357612π0.357612\pi
308308 0 0
309309 56.4636 3.21210
310310 −12.2272 −0.694456
311311 4.24507 0.240716 0.120358 0.992731i 0.461596π-0.461596\pi
0.120358 + 0.992731i 0.461596π0.461596\pi
312312 0 0
313313 17.9533 1.01478 0.507391 0.861716i 0.330610π-0.330610\pi
0.507391 + 0.861716i 0.330610π0.330610\pi
314314 1.34426 0.0758612
315315 0 0
316316 13.9821 0.786554
317317 15.2664 0.857447 0.428723 0.903436i 0.358963π-0.358963\pi
0.428723 + 0.903436i 0.358963π0.358963\pi
318318 −1.34426 −0.0753826
319319 6.56399 0.367513
320320 3.00120 0.167772
321321 −34.0934 −1.90291
322322 0 0
323323 −18.0288 −1.00315
324324 50.1781 2.78767
325325 0 0
326326 2.43018 0.134595
327327 −20.7733 −1.14876
328328 3.92839 0.216909
329329 0 0
330330 −20.9296 −1.15214
331331 −17.2664 −0.949047 −0.474524 0.880243i 0.657380π-0.657380\pi
−0.474524 + 0.880243i 0.657380π0.657380\pi
332332 6.07786 0.333566
333333 39.6920 2.17511
334334 30.1400 1.64919
335335 −6.63783 −0.362664
336336 0 0
337337 −25.5415 −1.39133 −0.695666 0.718366i 0.744891π-0.744891\pi
−0.695666 + 0.718366i 0.744891π0.744891\pi
338338 0 0
339339 −34.4411 −1.87058
340340 4.30101 0.233255
341341 −29.2439 −1.58364
342342 −82.5344 −4.46295
343343 0 0
344344 3.89498 0.210003
345345 −15.2284 −0.819868
346346 29.5761 1.59002
347347 −12.6286 −0.677937 −0.338969 0.940798i 0.610078π-0.610078\pi
−0.338969 + 0.940798i 0.610078π0.610078\pi
348348 −8.43018 −0.451905
349349 −35.6394 −1.90774 −0.953868 0.300226i 0.902938π-0.902938\pi
−0.953868 + 0.300226i 0.902938π0.902938\pi
350350 0 0
351351 0 0
352352 26.9296 1.43535
353353 −5.41348 −0.288130 −0.144065 0.989568i 0.546018π-0.546018\pi
−0.144065 + 0.989568i 0.546018π0.546018\pi
354354 17.4048 0.925057
355355 4.24507 0.225305
356356 0.619931 0.0328563
357357 0 0
358358 38.1914 2.01848
359359 18.8316 0.993893 0.496947 0.867781i 0.334454π-0.334454\pi
0.496947 + 0.867781i 0.334454π0.334454\pi
360360 −6.86963 −0.362061
361361 9.98210 0.525374
362362 12.2831 0.645586
363363 −13.2197 −0.693856
364364 0 0
365365 13.4660 0.704842
366366 56.4636 2.95140
367367 −23.1505 −1.20845 −0.604223 0.796815i 0.706517π-0.706517\pi
−0.604223 + 0.796815i 0.706517π0.706517\pi
368368 25.0253 1.30454
369369 33.4290 1.74024
370370 7.81025 0.406036
371371 0 0
372372 37.5582 1.94730
373373 −33.1793 −1.71796 −0.858979 0.512011i 0.828901π-0.828901\pi
−0.858979 + 0.512011i 0.828901π0.828901\pi
374374 24.1626 1.24942
375375 −26.8316 −1.38558
376376 3.52475 0.181775
377377 0 0
378378 0 0
379379 −37.7853 −1.94090 −0.970451 0.241299i 0.922427π-0.922427\pi
−0.970451 + 0.241299i 0.922427π0.922427\pi
380380 −6.91408 −0.354685
381381 6.40604 0.328191
382382 −23.7924 −1.21732
383383 −0.231798 −0.0118443 −0.00592215 0.999982i 0.501885π-0.501885\pi
−0.00592215 + 0.999982i 0.501885π0.501885\pi
384384 24.9988 1.27571
385385 0 0
386386 4.23180 0.215393
387387 33.1447 1.68484
388388 10.5507 0.535631
389389 9.35352 0.474243 0.237121 0.971480i 0.423796π-0.423796\pi
0.237121 + 0.971480i 0.423796π0.423796\pi
390390 0 0
391391 17.5807 0.889094
392392 0 0
393393 −34.0334 −1.71676
394394 −34.8938 −1.75792
395395 −8.16841 −0.410997
396396 47.0922 2.36647
397397 −9.74447 −0.489061 −0.244530 0.969642i 0.578634π-0.578634\pi
−0.244530 + 0.969642i 0.578634π0.578634\pi
398398 −37.1700 −1.86317
399399 0 0
400400 20.2583 1.01292
401401 −9.73240 −0.486013 −0.243006 0.970025i 0.578134π-0.578134\pi
−0.243006 + 0.970025i 0.578134π0.578134\pi
402402 47.8926 2.38866
403403 0 0
404404 −20.9296 −1.04129
405405 −29.3143 −1.45664
406406 0 0
407407 18.6799 0.925928
408408 10.8270 0.536014
409409 12.3730 0.611808 0.305904 0.952062i 0.401041π-0.401041\pi
0.305904 + 0.952062i 0.401041π0.401041\pi
410410 6.57788 0.324858
411411 26.1113 1.28797
412412 −24.9988 −1.23160
413413 0 0
414414 80.4831 3.95553
415415 −3.55071 −0.174298
416416 0 0
417417 17.0167 0.833312
418418 −38.8425 −1.89985
419419 −21.1054 −1.03107 −0.515534 0.856869i 0.672406π-0.672406\pi
−0.515534 + 0.856869i 0.672406π0.672406\pi
420420 0 0
421421 −23.2618 −1.13371 −0.566855 0.823818i 0.691840π-0.691840\pi
−0.566855 + 0.823818i 0.691840π0.691840\pi
422422 −1.20422 −0.0586203
423423 29.9942 1.45837
424424 −0.207649 −0.0100843
425425 14.2318 0.690344
426426 −30.6286 −1.48396
427427 0 0
428428 15.0946 0.729623
429429 0 0
430430 6.52193 0.314516
431431 16.9895 0.818357 0.409179 0.912454i 0.365815π-0.365815\pi
0.409179 + 0.912454i 0.365815π0.365815\pi
432432 83.2547 4.00560
433433 30.8604 1.48305 0.741527 0.670923i 0.234102π-0.234102\pi
0.741527 + 0.670923i 0.234102π0.234102\pi
434434 0 0
435435 4.92496 0.236134
436436 9.19719 0.440465
437437 −28.2618 −1.35194
438438 −97.1584 −4.64241
439439 −19.1972 −0.916232 −0.458116 0.888892i 0.651476π-0.651476\pi
−0.458116 + 0.888892i 0.651476π0.651476\pi
440440 −3.23300 −0.154127
441441 0 0
442442 0 0
443443 −34.3777 −1.63333 −0.816666 0.577110i 0.804180π-0.804180\pi
−0.816666 + 0.577110i 0.804180π0.804180\pi
444444 −23.9907 −1.13855
445445 −0.362166 −0.0171683
446446 10.8829 0.515320
447447 −8.35472 −0.395165
448448 0 0
449449 −29.6274 −1.39820 −0.699101 0.715023i 0.746416π-0.746416\pi
−0.699101 + 0.715023i 0.746416π0.746416\pi
450450 65.1521 3.07130
451451 15.7324 0.740810
452452 15.2485 0.717229
453453 −10.9233 −0.513223
454454 −29.3598 −1.37792
455455 0 0
456456 −17.4048 −0.815056
457457 17.0392 0.797062 0.398531 0.917155i 0.369520π-0.369520\pi
0.398531 + 0.917155i 0.369520π0.369520\pi
458458 −16.5686 −0.774201
459459 58.4877 2.72997
460460 6.74224 0.314358
461461 15.1280 0.704580 0.352290 0.935891i 0.385403π-0.385403\pi
0.352290 + 0.935891i 0.385403π0.385403\pi
462462 0 0
463463 −26.1221 −1.21400 −0.607000 0.794702i 0.707627π-0.707627\pi
−0.607000 + 0.794702i 0.707627π0.707627\pi
464464 −8.09337 −0.375725
465465 −21.9417 −1.01752
466466 22.0046 1.01934
467467 −22.9187 −1.06055 −0.530276 0.847825i 0.677912π-0.677912\pi
−0.530276 + 0.847825i 0.677912π0.677912\pi
468468 0 0
469469 0 0
470470 5.90200 0.272239
471471 2.41228 0.111152
472472 2.68853 0.123749
473473 15.5986 0.717224
474474 58.9358 2.70701
475475 −22.8783 −1.04973
476476 0 0
477477 −1.76700 −0.0809056
478478 −29.9883 −1.37163
479479 35.1914 1.60793 0.803967 0.594674i 0.202719π-0.202719\pi
0.803967 + 0.594674i 0.202719π0.202719\pi
480480 20.2053 0.922239
481481 0 0
482482 9.21046 0.419525
483483 0 0
484484 5.85293 0.266042
485485 −6.16378 −0.279883
486486 113.727 5.15876
487487 28.3010 1.28244 0.641221 0.767357i 0.278428π-0.278428\pi
0.641221 + 0.767357i 0.278428π0.278428\pi
488488 8.72194 0.394824
489489 4.36097 0.197210
490490 0 0
491491 8.24970 0.372304 0.186152 0.982521i 0.440398π-0.440398\pi
0.186152 + 0.982521i 0.440398π0.440398\pi
492492 −20.2053 −0.910923
493493 −5.68571 −0.256072
494494 0 0
495495 −27.5115 −1.23655
496496 36.0576 1.61903
497497 0 0
498498 25.6187 1.14800
499499 16.7266 0.748784 0.374392 0.927271i 0.377851π-0.377851\pi
0.374392 + 0.927271i 0.377851π0.377851\pi
500500 11.8795 0.531266
501501 54.0863 2.41640
502502 −28.4481 −1.26970
503503 −21.2213 −0.946213 −0.473106 0.881005i 0.656867π-0.656867\pi
−0.473106 + 0.881005i 0.656867π0.656867\pi
504504 0 0
505505 12.2272 0.544102
506506 37.8771 1.68384
507507 0 0
508508 −2.83622 −0.125837
509509 −40.6048 −1.79978 −0.899889 0.436119i 0.856353π-0.856353\pi
−0.899889 + 0.436119i 0.856353π0.856353\pi
510510 18.1292 0.802773
511511 0 0
512512 −24.0000 −1.06066
513513 −94.0218 −4.15116
514514 29.1435 1.28546
515515 14.6044 0.643548
516516 −20.0334 −0.881922
517517 14.1159 0.620817
518518 0 0
519519 53.0743 2.32970
520520 0 0
521521 −3.46479 −0.151795 −0.0758977 0.997116i 0.524182π-0.524182\pi
−0.0758977 + 0.997116i 0.524182π0.524182\pi
522522 −26.0288 −1.13925
523523 −5.56982 −0.243551 −0.121776 0.992558i 0.538859π-0.538859\pi
−0.121776 + 0.992558i 0.538859π0.538859\pi
524524 15.0680 0.658249
525525 0 0
526526 −31.8996 −1.39089
527527 25.3310 1.10344
528528 61.7207 2.68605
529529 4.55936 0.198233
530530 −0.347696 −0.0151030
531531 22.8783 0.992832
532532 0 0
533533 0 0
534534 2.61306 0.113078
535535 −8.81832 −0.381249
536536 7.39797 0.319544
537537 68.5344 2.95748
538538 −30.4877 −1.31442
539539 0 0
540540 22.4302 0.965241
541541 −24.2364 −1.04201 −0.521003 0.853555i 0.674442π-0.674442\pi
−0.521003 + 0.853555i 0.674442π0.674442\pi
542542 −23.3264 −1.00195
543543 22.0421 0.945915
544544 −23.3264 −1.00011
545545 −5.37304 −0.230156
546546 0 0
547547 15.7733 0.674416 0.337208 0.941430i 0.390518π-0.390518\pi
0.337208 + 0.941430i 0.390518π0.390518\pi
548548 −11.5606 −0.493842
549549 74.2201 3.16764
550550 30.6620 1.30743
551551 9.14005 0.389379
552552 16.9723 0.722387
553553 0 0
554554 5.59859 0.237861
555555 14.0155 0.594925
556556 −7.53401 −0.319513
557557 17.2213 0.729692 0.364846 0.931068i 0.381122π-0.381122\pi
0.364846 + 0.931068i 0.381122π0.381122\pi
558558 115.963 4.90912
559559 0 0
560560 0 0
561561 43.3598 1.83065
562562 1.55191 0.0654635
563563 15.3598 0.647337 0.323669 0.946171i 0.395084π-0.395084\pi
0.323669 + 0.946171i 0.395084π0.395084\pi
564564 −18.1292 −0.763376
565565 −8.90825 −0.374773
566566 −20.6378 −0.867473
567567 0 0
568568 −4.73120 −0.198517
569569 23.7219 0.994475 0.497238 0.867614i 0.334348π-0.334348\pi
0.497238 + 0.867614i 0.334348π0.334348\pi
570570 −29.1435 −1.22069
571571 −27.3189 −1.14326 −0.571631 0.820511i 0.693689π-0.693689\pi
−0.571631 + 0.820511i 0.693689π0.693689\pi
572572 0 0
573573 −42.6954 −1.78363
574574 0 0
575575 22.3097 0.930377
576576 −28.4636 −1.18598
577577 −23.2664 −0.968593 −0.484297 0.874904i 0.660924π-0.660924\pi
−0.484297 + 0.874904i 0.660924π0.660924\pi
578578 10.7958 0.449045
579579 7.59396 0.315594
580580 −2.18048 −0.0905397
581581 0 0
582582 44.4722 1.84343
583583 −0.831590 −0.0344409
584584 −15.0081 −0.621038
585585 0 0
586586 −50.2334 −2.07512
587587 45.7266 1.88734 0.943669 0.330892i 0.107349π-0.107349\pi
0.943669 + 0.330892i 0.107349π0.107349\pi
588588 0 0
589589 −40.7207 −1.67787
590590 4.50180 0.185336
591591 −62.6169 −2.57572
592592 −23.0322 −0.946618
593593 29.3897 1.20689 0.603446 0.797404i 0.293794π-0.293794\pi
0.603446 + 0.797404i 0.293794π0.293794\pi
594594 126.010 5.17026
595595 0 0
596596 3.69899 0.151516
597597 −66.7016 −2.72992
598598 0 0
599599 22.0588 0.901296 0.450648 0.892702i 0.351193π-0.351193\pi
0.450648 + 0.892702i 0.351193π0.351193\pi
600600 13.7393 0.560903
601601 30.8604 1.25882 0.629410 0.777073i 0.283296π-0.283296\pi
0.629410 + 0.777073i 0.283296π0.283296\pi
602602 0 0
603603 62.9537 2.56367
604604 4.83622 0.196783
605605 −3.41931 −0.139015
606606 −88.2201 −3.58370
607607 36.4861 1.48093 0.740463 0.672097i 0.234606π-0.234606\pi
0.740463 + 0.672097i 0.234606π0.234606\pi
608608 37.4982 1.52075
609609 0 0
610610 14.6044 0.591316
611611 0 0
612612 −40.7912 −1.64888
613613 −28.9988 −1.17125 −0.585625 0.810582i 0.699151π-0.699151\pi
−0.585625 + 0.810582i 0.699151π0.699151\pi
614614 −28.2877 −1.14160
615615 11.8040 0.475984
616616 0 0
617617 41.6515 1.67683 0.838414 0.545035i 0.183483π-0.183483\pi
0.838414 + 0.545035i 0.183483π0.183483\pi
618618 −105.372 −4.23869
619619 −12.4994 −0.502393 −0.251197 0.967936i 0.580824π-0.580824\pi
−0.251197 + 0.967936i 0.580824π0.580824\pi
620620 9.71449 0.390143
621621 91.6849 3.67919
622622 −7.92214 −0.317649
623623 0 0
624624 0 0
625625 14.3085 0.572338
626626 −33.5044 −1.33911
627627 −69.7028 −2.78366
628628 −1.06802 −0.0426186
629629 −16.1805 −0.645158
630630 0 0
631631 35.5582 1.41555 0.707774 0.706439i 0.249700π-0.249700\pi
0.707774 + 0.706439i 0.249700π0.249700\pi
632632 9.10382 0.362131
633633 −2.16097 −0.0858907
634634 −28.4901 −1.13149
635635 1.65693 0.0657534
636636 1.06802 0.0423497
637637 0 0
638638 −12.2497 −0.484970
639639 −40.2606 −1.59268
640640 6.46599 0.255591
641641 1.36097 0.0537550 0.0268775 0.999639i 0.491444π-0.491444\pi
0.0268775 + 0.999639i 0.491444π0.491444\pi
642642 63.6250 2.51108
643643 −12.1867 −0.480598 −0.240299 0.970699i 0.577245π-0.577245\pi
−0.240299 + 0.970699i 0.577245π0.577245\pi
644644 0 0
645645 11.7036 0.460829
646646 33.6453 1.32376
647647 −3.72152 −0.146308 −0.0731540 0.997321i 0.523306π-0.523306\pi
−0.0731540 + 0.997321i 0.523306π0.523306\pi
648648 32.6712 1.28345
649649 10.7670 0.422642
650650 0 0
651651 0 0
652652 −1.93078 −0.0756153
653653 −45.0588 −1.76329 −0.881643 0.471917i 0.843562π-0.843562\pi
−0.881643 + 0.471917i 0.843562π0.843562\pi
654654 38.7670 1.51591
655655 −8.80281 −0.343954
656656 −19.3980 −0.757364
657657 −127.713 −4.98254
658658 0 0
659659 5.37887 0.209531 0.104766 0.994497i 0.466591π-0.466591\pi
0.104766 + 0.994497i 0.466591π0.466591\pi
660660 16.6286 0.647266
661661 42.4936 1.65281 0.826404 0.563077i 0.190383π-0.190383\pi
0.826404 + 0.563077i 0.190383π0.190383\pi
662662 32.2225 1.25236
663663 0 0
664664 3.95733 0.153574
665665 0 0
666666 −74.0731 −2.87027
667667 −8.91288 −0.345108
668668 −23.9463 −0.926510
669669 19.5294 0.755049
670670 12.3875 0.478571
671671 34.9296 1.34844
672672 0 0
673673 −37.3765 −1.44076 −0.720379 0.693581i 0.756032π-0.756032\pi
−0.720379 + 0.693581i 0.756032π0.756032\pi
674674 47.6654 1.83600
675675 74.2201 2.85673
676676 0 0
677677 −43.4757 −1.67091 −0.835453 0.549562i 0.814795π-0.814795\pi
−0.835453 + 0.549562i 0.814795π0.814795\pi
678678 64.2738 2.46842
679679 0 0
680680 2.80041 0.107391
681681 −52.6861 −2.01894
682682 54.5749 2.08978
683683 −31.3956 −1.20132 −0.600659 0.799505i 0.705095π-0.705095\pi
−0.600659 + 0.799505i 0.705095π0.705095\pi
684684 65.5737 2.50727
685685 6.75373 0.258047
686686 0 0
687687 −29.7324 −1.13436
688688 −19.2330 −0.733251
689689 0 0
690690 28.4191 1.08190
691691 −13.4411 −0.511322 −0.255661 0.966766i 0.582293π-0.582293\pi
−0.255661 + 0.966766i 0.582293π0.582293\pi
692692 −23.4982 −0.893268
693693 0 0
694694 23.5674 0.894607
695695 4.40141 0.166955
696696 −5.48894 −0.208058
697697 −13.6274 −0.516174
698698 66.5103 2.51745
699699 39.4873 1.49355
700700 0 0
701701 −28.0346 −1.05885 −0.529426 0.848356i 0.677593π-0.677593\pi
−0.529426 + 0.848356i 0.677593π0.677593\pi
702702 0 0
703703 26.0109 0.981019
704704 −13.3956 −0.504865
705705 10.5912 0.398886
706706 10.1026 0.380217
707707 0 0
708708 −13.8282 −0.519694
709709 40.2847 1.51292 0.756462 0.654037i 0.226926π-0.226926\pi
0.756462 + 0.654037i 0.226926π0.226926\pi
710710 −7.92214 −0.297313
711711 77.4698 2.90535
712712 0.403640 0.0151271
713713 39.7087 1.48710
714714 0 0
715715 0 0
716716 −30.3431 −1.13397
717717 −53.8141 −2.00972
718718 −35.1435 −1.31154
719719 16.7445 0.624463 0.312232 0.950006i 0.398923π-0.398923\pi
0.312232 + 0.950006i 0.398923π0.398923\pi
720720 33.9215 1.26418
721721 0 0
722722 −18.6286 −0.693284
723723 16.5282 0.614690
724724 −9.75894 −0.362688
725725 −7.21509 −0.267962
726726 24.6706 0.915613
727727 51.4982 1.90996 0.954981 0.296666i 0.0958748π-0.0958748\pi
0.954981 + 0.296666i 0.0958748π0.0958748\pi
728728 0 0
729729 102.556 3.79836
730730 −25.1302 −0.930111
731731 −13.5115 −0.499740
732732 −44.8604 −1.65809
733733 −33.8316 −1.24960 −0.624799 0.780786i 0.714819π-0.714819\pi
−0.624799 + 0.780786i 0.714819π0.714819\pi
734734 43.2034 1.59467
735735 0 0
736736 −36.5662 −1.34785
737737 29.6274 1.09134
738738 −62.3851 −2.29643
739739 −20.6690 −0.760322 −0.380161 0.924920i 0.624131π-0.624131\pi
−0.380161 + 0.924920i 0.624131π0.624131\pi
740740 −6.20525 −0.228110
741741 0 0
742742 0 0
743743 29.6966 1.08946 0.544731 0.838611i 0.316632π-0.316632\pi
0.544731 + 0.838611i 0.316632π0.316632\pi
744744 24.4543 0.896539
745745 −2.16097 −0.0791717
746746 61.9191 2.26702
747747 33.6753 1.23211
748748 −19.1972 −0.701919
749749 0 0
750750 50.0731 1.82841
751751 −12.0230 −0.438724 −0.219362 0.975644i 0.570398π-0.570398\pi
−0.219362 + 0.975644i 0.570398π0.570398\pi
752752 −17.4048 −0.634689
753753 −51.0501 −1.86037
754754 0 0
755755 −2.82534 −0.102825
756756 0 0
757757 −30.2906 −1.10093 −0.550464 0.834859i 0.685549π-0.685549\pi
−0.550464 + 0.834859i 0.685549π0.685549\pi
758758 70.5149 2.56122
759759 67.9704 2.46717
760760 −4.50180 −0.163297
761761 −45.9584 −1.66599 −0.832995 0.553281i 0.813376π-0.813376\pi
−0.832995 + 0.553281i 0.813376π0.813376\pi
762762 −11.9549 −0.433082
763763 0 0
764764 18.9030 0.683888
765765 23.8304 0.861590
766766 0.432580 0.0156298
767767 0 0
768768 −69.8592 −2.52083
769769 4.03924 0.145659 0.0728293 0.997344i 0.476797π-0.476797\pi
0.0728293 + 0.997344i 0.476797π0.476797\pi
770770 0 0
771771 52.2980 1.88347
772772 −3.36217 −0.121007
773773 36.1175 1.29906 0.649528 0.760337i 0.274966π-0.274966\pi
0.649528 + 0.760337i 0.274966π0.274966\pi
774774 −61.8545 −2.22332
775775 32.1447 1.15467
776776 6.86963 0.246605
777777 0 0
778778 −17.4555 −0.625811
779779 21.9066 0.784887
780780 0 0
781781 −18.9475 −0.677994
782782 −32.8091 −1.17325
783783 −29.6515 −1.05966
784784 0 0
785785 0.623942 0.0222694
786786 63.5131 2.26544
787787 −25.8650 −0.921988 −0.460994 0.887403i 0.652507π-0.652507\pi
−0.460994 + 0.887403i 0.652507π0.652507\pi
788788 27.7231 0.987596
789789 −57.2439 −2.03794
790790 15.2439 0.542353
791791 0 0
792792 30.6620 1.08953
793793 0 0
794794 18.1851 0.645366
795795 −0.623942 −0.0221289
796796 29.5316 1.04672
797797 0.291753 0.0103344 0.00516720 0.999987i 0.498355π-0.498355\pi
0.00516720 + 0.999987i 0.498355π0.498355\pi
798798 0 0
799799 −12.2272 −0.432566
800800 −29.6008 −1.04655
801801 3.43482 0.121363
802802 18.1626 0.641343
803803 −60.1042 −2.12103
804804 −38.0507 −1.34194
805805 0 0
806806 0 0
807807 −54.7103 −1.92589
808808 −13.6274 −0.479409
809809 −5.25595 −0.184789 −0.0923946 0.995722i 0.529452π-0.529452\pi
−0.0923946 + 0.995722i 0.529452π0.529452\pi
810810 54.7063 1.92218
811811 −37.8499 −1.32909 −0.664545 0.747248i 0.731375π-0.731375\pi
−0.664545 + 0.747248i 0.731375π0.731375\pi
812812 0 0
813813 −41.8592 −1.46807
814814 −34.8604 −1.22186
815815 1.12797 0.0395112
816816 −53.4624 −1.87156
817817 21.7203 0.759898
818818 −23.0906 −0.807342
819819 0 0
820820 −5.22613 −0.182504
821821 25.7207 0.897660 0.448830 0.893617i 0.351841π-0.351841\pi
0.448830 + 0.893617i 0.351841π0.351841\pi
822822 −48.7288 −1.69961
823823 −19.4827 −0.679124 −0.339562 0.940584i 0.610279π-0.610279\pi
−0.339562 + 0.940584i 0.610279π0.610279\pi
824824 −16.2769 −0.567031
825825 55.0230 1.91565
826826 0 0
827827 32.0934 1.11600 0.557998 0.829842i 0.311570π-0.311570\pi
0.557998 + 0.829842i 0.311570π0.311570\pi
828828 −63.9439 −2.22220
829829 3.89336 0.135222 0.0676110 0.997712i 0.478462π-0.478462\pi
0.0676110 + 0.997712i 0.478462π0.478462\pi
830830 6.62634 0.230004
831831 10.0467 0.348516
832832 0 0
833833 0 0
834834 −31.7565 −1.09964
835835 13.9895 0.484128
836836 30.8604 1.06733
837837 132.103 4.56616
838838 39.3869 1.36060
839839 41.8592 1.44514 0.722570 0.691298i 0.242961π-0.242961\pi
0.722570 + 0.691298i 0.242961π0.242961\pi
840840 0 0
841841 −26.1175 −0.900604
842842 43.4111 1.49604
843843 2.78491 0.0959173
844844 0.956750 0.0329327
845845 0 0
846846 −55.9751 −1.92446
847847 0 0
848848 1.02535 0.0352106
849849 −37.0346 −1.27102
850850 −26.5594 −0.910978
851851 −25.3644 −0.869480
852852 24.3344 0.833684
853853 1.70242 0.0582897 0.0291449 0.999575i 0.490722π-0.490722\pi
0.0291449 + 0.999575i 0.490722π0.490722\pi
854854 0 0
855855 −38.3085 −1.31012
856856 9.82816 0.335919
857857 9.57908 0.327215 0.163608 0.986526i 0.447687π-0.447687\pi
0.163608 + 0.986526i 0.447687π0.447687\pi
858858 0 0
859859 −6.17424 −0.210662 −0.105331 0.994437i 0.533590π-0.533590\pi
−0.105331 + 0.994437i 0.533590π0.533590\pi
860860 −5.18168 −0.176694
861861 0 0
862862 −31.7059 −1.07991
863863 −24.8604 −0.846257 −0.423128 0.906070i 0.639068π-0.639068\pi
−0.423128 + 0.906070i 0.639068π0.639068\pi
864864 −121.649 −4.13859
865865 13.7278 0.466758
866866 −57.5916 −1.95704
867867 19.3730 0.657943
868868 0 0
869869 36.4590 1.23679
870870 −9.19094 −0.311602
871871 0 0
872872 5.98834 0.202791
873873 58.4578 1.97850
874874 52.7421 1.78403
875875 0 0
876876 77.1924 2.60809
877877 −25.6562 −0.866347 −0.433173 0.901311i 0.642606π-0.642606\pi
−0.433173 + 0.901311i 0.642606π0.642606\pi
878878 35.8258 1.20906
879879 −90.1439 −3.04048
880880 15.9642 0.538153
881881 −25.6632 −0.864615 −0.432307 0.901726i 0.642300π-0.642300\pi
−0.432307 + 0.901726i 0.642300π0.642300\pi
882882 0 0
883883 48.6682 1.63782 0.818908 0.573925i 0.194580π-0.194580\pi
0.818908 + 0.573925i 0.194580π0.194580\pi
884884 0 0
885885 8.07848 0.271555
886886 64.1556 2.15535
887887 17.5247 0.588423 0.294212 0.955740i 0.404943π-0.404943\pi
0.294212 + 0.955740i 0.404943π0.404943\pi
888888 −15.6205 −0.524190
889889 0 0
890890 0.675874 0.0226554
891891 130.842 4.38336
892892 −8.64648 −0.289505
893893 19.6557 0.657754
894894 15.5916 0.521460
895895 17.7266 0.592534
896896 0 0
897897 0 0
898898 55.2906 1.84507
899899 −12.8420 −0.428306
900900 −51.7634 −1.72545
901901 0.720322 0.0239974
902902 −29.3598 −0.977573
903903 0 0
904904 9.92839 0.330213
905905 5.70122 0.189515
906906 20.3851 0.677250
907907 57.3765 1.90515 0.952577 0.304297i 0.0984214π-0.0984214\pi
0.952577 + 0.304297i 0.0984214π0.0984214\pi
908908 23.3264 0.774112
909909 −115.963 −3.84626
910910 0 0
911911 7.87203 0.260812 0.130406 0.991461i 0.458372π-0.458372\pi
0.130406 + 0.991461i 0.458372π0.458372\pi
912912 85.9433 2.84587
913913 15.8483 0.524502
914914 −31.7986 −1.05180
915915 26.2076 0.866398
916916 13.1638 0.434944
917917 0 0
918918 −109.150 −3.60248
919919 −47.0230 −1.55114 −0.775572 0.631259i 0.782538π-0.782538\pi
−0.775572 + 0.631259i 0.782538π0.782538\pi
920920 4.38991 0.144731
921921 −50.7624 −1.67268
922922 −28.2318 −0.929765
923923 0 0
924924 0 0
925925 −20.5328 −0.675115
926926 48.7491 1.60199
927927 −138.509 −4.54925
928928 11.8258 0.388200
929929 28.2618 0.927239 0.463619 0.886034i 0.346551π-0.346551\pi
0.463619 + 0.886034i 0.346551π0.346551\pi
930930 40.9475 1.34272
931931 0 0
932932 −17.4827 −0.572665
933933 −14.2163 −0.465420
934934 42.7709 1.39951
935935 11.2151 0.366773
936936 0 0
937937 −8.83784 −0.288720 −0.144360 0.989525i 0.546112π-0.546112\pi
−0.144360 + 0.989525i 0.546112π0.546112\pi
938938 0 0
939939 −60.1238 −1.96206
940940 −4.68915 −0.152943
941941 −42.7853 −1.39476 −0.697381 0.716701i 0.745651π-0.745651\pi
−0.697381 + 0.716701i 0.745651π0.745651\pi
942942 −4.50180 −0.146676
943943 −21.3622 −0.695648
944944 −13.2757 −0.432086
945945 0 0
946946 −29.1101 −0.946450
947947 −29.2213 −0.949566 −0.474783 0.880103i 0.657473π-0.657473\pi
−0.474783 + 0.880103i 0.657473π0.657473\pi
948948 −46.8246 −1.52079
949949 0 0
950950 42.6954 1.38522
951951 −51.1256 −1.65786
952952 0 0
953953 3.66198 0.118623 0.0593116 0.998240i 0.481109π-0.481109\pi
0.0593116 + 0.998240i 0.481109π0.481109\pi
954954 3.29758 0.106763
955955 −11.0432 −0.357351
956956 23.8258 0.770580
957957 −21.9821 −0.710580
958958 −65.6741 −2.12183
959959 0 0
960960 −10.0507 −0.324385
961961 26.2139 0.845610
962962 0 0
963963 83.6336 2.69506
964964 −7.31772 −0.235688
965965 1.96419 0.0632296
966966 0 0
967967 30.0288 0.965660 0.482830 0.875714i 0.339609π-0.339609\pi
0.482830 + 0.875714i 0.339609π0.339609\pi
968968 3.81087 0.122486
969969 60.3765 1.93957
970970 11.5028 0.369334
971971 4.90544 0.157423 0.0787115 0.996897i 0.474919π-0.474919\pi
0.0787115 + 0.996897i 0.474919π0.474919\pi
972972 −90.3562 −2.89818
973973 0 0
974974 −52.8153 −1.69231
975975 0 0
976976 −43.0680 −1.37857
977977 −22.6332 −0.724100 −0.362050 0.932159i 0.617923π-0.617923\pi
−0.362050 + 0.932159i 0.617923π0.617923\pi
978978 −8.13843 −0.260238
979979 1.61650 0.0516635
980980 0 0
981981 50.9584 1.62698
982982 −15.3956 −0.491293
983983 57.4053 1.83094 0.915472 0.402382i 0.131818π-0.131818\pi
0.915472 + 0.402382i 0.131818π0.131818\pi
984984 −13.1558 −0.419390
985985 −16.1960 −0.516047
986986 10.6107 0.337913
987987 0 0
988988 0 0
989989 −21.1805 −0.673500
990990 51.3419 1.63175
991991 31.1793 0.990443 0.495221 0.868767i 0.335087π-0.335087\pi
0.495221 + 0.868767i 0.335087π0.335087\pi
992992 −52.6861 −1.67279
993993 57.8234 1.83497
994994 0 0
995995 −17.2525 −0.546941
996996 −20.3541 −0.644944
997997 −36.0576 −1.14195 −0.570977 0.820966i 0.693436π-0.693436\pi
−0.570977 + 0.820966i 0.693436π0.693436\pi
998998 −31.2151 −0.988096
999999 −84.3827 −2.66975
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.bh.1.1 3
7.6 odd 2 8281.2.a.bk.1.1 3
13.12 even 2 637.2.a.h.1.3 3
39.38 odd 2 5733.2.a.be.1.1 3
91.12 odd 6 637.2.e.k.508.1 6
91.25 even 6 637.2.e.l.79.1 6
91.38 odd 6 637.2.e.k.79.1 6
91.51 even 6 637.2.e.l.508.1 6
91.90 odd 2 637.2.a.i.1.3 yes 3
273.272 even 2 5733.2.a.bd.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.a.h.1.3 3 13.12 even 2
637.2.a.i.1.3 yes 3 91.90 odd 2
637.2.e.k.79.1 6 91.38 odd 6
637.2.e.k.508.1 6 91.12 odd 6
637.2.e.l.79.1 6 91.25 even 6
637.2.e.l.508.1 6 91.51 even 6
5733.2.a.bd.1.1 3 273.272 even 2
5733.2.a.be.1.1 3 39.38 odd 2
8281.2.a.bh.1.1 3 1.1 even 1 trivial
8281.2.a.bk.1.1 3 7.6 odd 2