Properties

Label 8281.2.a.bm.1.1
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $3$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.246980 q^{2} -1.93900 q^{4} +0.972853 q^{8} -3.00000 q^{9} -6.63102 q^{11} +3.63773 q^{16} +0.740939 q^{18} +1.63773 q^{22} -6.93900 q^{23} -5.00000 q^{25} -6.39373 q^{29} -2.84415 q^{32} +5.81700 q^{36} -11.6528 q^{37} +8.51573 q^{43} +12.8576 q^{44} +1.71379 q^{46} +1.23490 q^{50} -8.09246 q^{53} +1.57912 q^{58} -6.57301 q^{64} -14.5864 q^{67} +8.71917 q^{71} -2.91856 q^{72} +2.87800 q^{74} -7.42327 q^{79} +9.00000 q^{81} -2.10321 q^{86} -6.45101 q^{88} +13.4547 q^{92} +19.8931 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{2} + 4 q^{4} + 9 q^{8} - 9 q^{9} - 5 q^{11} + 18 q^{16} - 12 q^{18} + 12 q^{22} - 11 q^{23} - 15 q^{25} + 13 q^{29} + 27 q^{32} - 12 q^{36} - 17 q^{37} + 13 q^{43} + 47 q^{44} - 3 q^{46} - 20 q^{50}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.246980 −0.174641 −0.0873205 0.996180i \(-0.527830\pi\)
−0.0873205 + 0.996180i \(0.527830\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −1.93900 −0.969501
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.972853 0.343955
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) −6.63102 −1.99933 −0.999664 0.0259107i \(-0.991751\pi\)
−0.999664 + 0.0259107i \(0.991751\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 3.63773 0.909432
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0.740939 0.174641
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.63773 0.349165
\(23\) −6.93900 −1.44688 −0.723441 0.690386i \(-0.757441\pi\)
−0.723441 + 0.690386i \(0.757441\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.39373 −1.18729 −0.593643 0.804728i \(-0.702311\pi\)
−0.593643 + 0.804728i \(0.702311\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −2.84415 −0.502779
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 5.81700 0.969501
\(37\) −11.6528 −1.91571 −0.957854 0.287257i \(-0.907257\pi\)
−0.957854 + 0.287257i \(0.907257\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 8.51573 1.29864 0.649318 0.760517i \(-0.275054\pi\)
0.649318 + 0.760517i \(0.275054\pi\)
\(44\) 12.8576 1.93835
\(45\) 0 0
\(46\) 1.71379 0.252685
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.23490 0.174641
\(51\) 0 0
\(52\) 0 0
\(53\) −8.09246 −1.11158 −0.555792 0.831321i \(-0.687585\pi\)
−0.555792 + 0.831321i \(0.687585\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.57912 0.207349
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −6.57301 −0.821626
\(65\) 0 0
\(66\) 0 0
\(67\) −14.5864 −1.78201 −0.891007 0.453989i \(-0.850000\pi\)
−0.891007 + 0.453989i \(0.850000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.71917 1.03477 0.517387 0.855751i \(-0.326905\pi\)
0.517387 + 0.855751i \(0.326905\pi\)
\(72\) −2.91856 −0.343955
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 2.87800 0.334561
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.42327 −0.835183 −0.417592 0.908635i \(-0.637126\pi\)
−0.417592 + 0.908635i \(0.637126\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.10321 −0.226795
\(87\) 0 0
\(88\) −6.45101 −0.687680
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 13.4547 1.40275
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 19.8931 1.99933
\(100\) 9.69501 0.969501
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.99867 0.194128
\(107\) −8.33273 −0.805556 −0.402778 0.915298i \(-0.631955\pi\)
−0.402778 + 0.915298i \(0.631955\pi\)
\(108\) 0 0
\(109\) −2.94869 −0.282433 −0.141217 0.989979i \(-0.545101\pi\)
−0.141217 + 0.989979i \(0.545101\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.3013 −1.43942 −0.719711 0.694273i \(-0.755726\pi\)
−0.719711 + 0.694273i \(0.755726\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.3975 1.15107
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 32.9705 2.99731
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −21.3032 −1.89035 −0.945176 0.326560i \(-0.894110\pi\)
−0.945176 + 0.326560i \(0.894110\pi\)
\(128\) 7.31170 0.646269
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.60255 0.311213
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3134 −0.881129 −0.440565 0.897721i \(-0.645222\pi\)
−0.440565 + 0.897721i \(0.645222\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.15346 −0.180714
\(143\) 0 0
\(144\) −10.9132 −0.909432
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 22.5948 1.85728
\(149\) 24.4131 2.00000 1.00000 0.000429442i \(-0.000136696\pi\)
1.00000 0.000429442i \(0.000136696\pi\)
\(150\) 0 0
\(151\) −23.9191 −1.94651 −0.973256 0.229722i \(-0.926218\pi\)
−0.973256 + 0.229722i \(0.926218\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 1.83340 0.145857
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −2.22282 −0.174641
\(163\) −24.9071 −1.95087 −0.975436 0.220283i \(-0.929302\pi\)
−0.975436 + 0.220283i \(0.929302\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −16.5120 −1.25903
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −24.1219 −1.81825
\(177\) 0 0
\(178\) 0 0
\(179\) 23.1793 1.73250 0.866250 0.499610i \(-0.166523\pi\)
0.866250 + 0.499610i \(0.166523\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.75063 −0.497663
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.27173 0.309092 0.154546 0.987986i \(-0.450609\pi\)
0.154546 + 0.987986i \(0.450609\pi\)
\(192\) 0 0
\(193\) 25.4010 1.82841 0.914203 0.405257i \(-0.132818\pi\)
0.914203 + 0.405257i \(0.132818\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) −4.91318 −0.349165
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −4.86426 −0.343955
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 20.8170 1.44688
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −23.1239 −1.59192 −0.795958 0.605352i \(-0.793032\pi\)
−0.795958 + 0.605352i \(0.793032\pi\)
\(212\) 15.6913 1.07768
\(213\) 0 0
\(214\) 2.05802 0.140683
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.728266 0.0493244
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 3.77910 0.251382
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.22016 −0.408374
\(233\) −10.6377 −0.696901 −0.348450 0.937327i \(-0.613292\pi\)
−0.348450 + 0.937327i \(0.613292\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 25.8950 1.67501 0.837504 0.546432i \(-0.184014\pi\)
0.837504 + 0.546432i \(0.184014\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −8.14303 −0.523454
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 46.0127 2.89279
\(254\) 5.26145 0.330133
\(255\) 0 0
\(256\) 11.3402 0.708761
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 19.1812 1.18729
\(262\) 0 0
\(263\) 24.0887 1.48538 0.742688 0.669638i \(-0.233551\pi\)
0.742688 + 0.669638i \(0.233551\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 28.2831 1.72766
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 2.54719 0.153881
\(275\) 33.1551 1.99933
\(276\) 0 0
\(277\) −31.0573 −1.86605 −0.933025 0.359810i \(-0.882841\pi\)
−0.933025 + 0.359810i \(0.882841\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −16.9065 −1.00321
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 8.53245 0.502779
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.3365 −0.658918
\(297\) 0 0
\(298\) −6.02954 −0.349282
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 5.90754 0.339941
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 14.3937 0.809711
\(317\) 29.4728 1.65536 0.827678 0.561203i \(-0.189661\pi\)
0.827678 + 0.561203i \(0.189661\pi\)
\(318\) 0 0
\(319\) 42.3970 2.37378
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −17.4510 −0.969501
\(325\) 0 0
\(326\) 6.15154 0.340702
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.85192 0.156756 0.0783779 0.996924i \(-0.475026\pi\)
0.0783779 + 0.996924i \(0.475026\pi\)
\(332\) 0 0
\(333\) 34.9584 1.91571
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −36.2127 −1.97263 −0.986314 0.164875i \(-0.947278\pi\)
−0.986314 + 0.164875i \(0.947278\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 8.28455 0.446673
\(345\) 0 0
\(346\) 0 0
\(347\) −37.0019 −1.98637 −0.993184 0.116561i \(-0.962813\pi\)
−0.993184 + 0.116561i \(0.962813\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18.8596 1.00522
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −5.72481 −0.302566
\(359\) 37.8920 1.99986 0.999932 0.0116868i \(-0.00372012\pi\)
0.999932 + 0.0116868i \(0.00372012\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −25.2422 −1.31584
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −35.8485 −1.85616 −0.928082 0.372377i \(-0.878543\pi\)
−0.928082 + 0.372377i \(0.878543\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −26.8829 −1.38088 −0.690441 0.723389i \(-0.742584\pi\)
−0.690441 + 0.723389i \(0.742584\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.05503 −0.0539801
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.27354 −0.319315
\(387\) −25.5472 −1.29864
\(388\) 0 0
\(389\) −31.9667 −1.62078 −0.810389 0.585892i \(-0.800744\pi\)
−0.810389 + 0.585892i \(0.800744\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −6.42147 −0.323509
\(395\) 0 0
\(396\) −38.5727 −1.93835
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −18.1886 −0.909432
\(401\) −21.4494 −1.07113 −0.535565 0.844494i \(-0.679901\pi\)
−0.535565 + 0.844494i \(0.679901\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 77.2699 3.83013
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −5.14138 −0.252685
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 5.71114 0.278014
\(423\) 0 0
\(424\) −7.87277 −0.382336
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 16.1572 0.780987
\(429\) 0 0
\(430\) 0 0
\(431\) 0.733643 0.0353383 0.0176692 0.999844i \(-0.494375\pi\)
0.0176692 + 0.999844i \(0.494375\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 5.71751 0.273819
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.0907 1.61970 0.809848 0.586640i \(-0.199550\pi\)
0.809848 + 0.586640i \(0.199550\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −40.8256 −1.92668 −0.963340 0.268283i \(-0.913544\pi\)
−0.963340 + 0.268283i \(0.913544\pi\)
\(450\) −3.70469 −0.174641
\(451\) 0 0
\(452\) 29.6692 1.39552
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 36.8374 1.72318 0.861592 0.507602i \(-0.169468\pi\)
0.861592 + 0.507602i \(0.169468\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 12.5284 0.582244 0.291122 0.956686i \(-0.405971\pi\)
0.291122 + 0.956686i \(0.405971\pi\)
\(464\) −23.2587 −1.07976
\(465\) 0 0
\(466\) 2.62730 0.121707
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −56.4680 −2.59640
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 24.2774 1.11158
\(478\) −6.39553 −0.292525
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −63.9298 −2.90590
\(485\) 0 0
\(486\) 0 0
\(487\) −13.9957 −0.634205 −0.317103 0.948391i \(-0.602710\pi\)
−0.317103 + 0.948391i \(0.602710\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.63209 −0.209043 −0.104522 0.994523i \(-0.533331\pi\)
−0.104522 + 0.994523i \(0.533331\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 20.9554 0.938092 0.469046 0.883174i \(-0.344598\pi\)
0.469046 + 0.883174i \(0.344598\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −11.3642 −0.505200
\(507\) 0 0
\(508\) 41.3069 1.83270
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −17.4242 −0.770048
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −4.73736 −0.207349
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −5.94943 −0.259407
\(527\) 0 0
\(528\) 0 0
\(529\) 25.1497 1.09347
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −14.1904 −0.612934
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 23.3873 1.00550 0.502749 0.864432i \(-0.332322\pi\)
0.502749 + 0.864432i \(0.332322\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 39.8447 1.70364 0.851819 0.523836i \(-0.175500\pi\)
0.851819 + 0.523836i \(0.175500\pi\)
\(548\) 19.9976 0.854255
\(549\) 0 0
\(550\) −8.18864 −0.349165
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 7.67051 0.325889
\(555\) 0 0
\(556\) 0 0
\(557\) −0.0817042 −0.00346192 −0.00173096 0.999999i \(-0.500551\pi\)
−0.00173096 + 0.999999i \(0.500551\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −6.42147 −0.270873
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 8.48247 0.355916
\(569\) 46.8133 1.96251 0.981257 0.192701i \(-0.0617249\pi\)
0.981257 + 0.192701i \(0.0617249\pi\)
\(570\) 0 0
\(571\) 17.0592 0.713905 0.356953 0.934123i \(-0.383816\pi\)
0.356953 + 0.934123i \(0.383816\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 34.6950 1.44688
\(576\) 19.7190 0.821626
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 4.19865 0.174641
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 53.6613 2.22242
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −42.3897 −1.74221
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −47.3370 −1.93900
\(597\) 0 0
\(598\) 0 0
\(599\) −12.7597 −0.521348 −0.260674 0.965427i \(-0.583945\pi\)
−0.260674 + 0.965427i \(0.583945\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 43.7593 1.78201
\(604\) 46.3793 1.88715
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −20.4614 −0.826430 −0.413215 0.910634i \(-0.635594\pi\)
−0.413215 + 0.910634i \(0.635594\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.0000 1.04672 0.523360 0.852111i \(-0.324678\pi\)
0.523360 + 0.852111i \(0.324678\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 27.2577 1.08511 0.542557 0.840019i \(-0.317456\pi\)
0.542557 + 0.840019i \(0.317456\pi\)
\(632\) −7.22175 −0.287266
\(633\) 0 0
\(634\) −7.27918 −0.289093
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −10.4712 −0.414558
\(639\) −26.1575 −1.03477
\(640\) 0 0
\(641\) 10.3994 0.410750 0.205375 0.978683i \(-0.434159\pi\)
0.205375 + 0.978683i \(0.434159\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 8.75568 0.343955
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 48.2948 1.89137
\(653\) −40.4566 −1.58319 −0.791596 0.611045i \(-0.790749\pi\)
−0.791596 + 0.611045i \(0.790749\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −51.1221 −1.99143 −0.995717 0.0924489i \(-0.970531\pi\)
−0.995717 + 0.0924489i \(0.970531\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −0.704366 −0.0273760
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −8.63401 −0.334561
\(667\) 44.3661 1.71786
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.3918 −0.554764 −0.277382 0.960760i \(-0.589467\pi\)
−0.277382 + 0.960760i \(0.589467\pi\)
\(674\) 8.94379 0.344502
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 52.0000 1.98972 0.994862 0.101237i \(-0.0322800\pi\)
0.994862 + 0.101237i \(0.0322800\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 30.9779 1.18102
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 9.13872 0.346901
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −52.0334 −1.96527 −0.982637 0.185540i \(-0.940597\pi\)
−0.982637 + 0.185540i \(0.940597\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 43.5858 1.64270
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −28.3648 −1.06526 −0.532631 0.846348i \(-0.678797\pi\)
−0.532631 + 0.846348i \(0.678797\pi\)
\(710\) 0 0
\(711\) 22.2698 0.835183
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −44.9446 −1.67966
\(717\) 0 0
\(718\) −9.35855 −0.349258
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.69261 0.174641
\(723\) 0 0
\(724\) 0 0
\(725\) 31.9687 1.18729
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 19.7356 0.727462
\(737\) 96.7229 3.56283
\(738\) 0 0
\(739\) 52.0000 1.91285 0.956425 0.291977i \(-0.0943129\pi\)
0.956425 + 0.291977i \(0.0943129\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.9675 −0.732536 −0.366268 0.930509i \(-0.619365\pi\)
−0.366268 + 0.930509i \(0.619365\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.85384 0.324162
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.24219 −0.337252 −0.168626 0.985680i \(-0.553933\pi\)
−0.168626 + 0.985680i \(0.553933\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 53.2441 1.93519 0.967595 0.252507i \(-0.0812550\pi\)
0.967595 + 0.252507i \(0.0812550\pi\)
\(758\) 6.63953 0.241159
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.28290 −0.299665
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −49.2526 −1.77264
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 6.30963 0.226795
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 7.89513 0.283054
\(779\) 0 0
\(780\) 0 0
\(781\) −57.8170 −2.06886
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −50.4140 −1.79593
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 19.3530 0.687680
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 14.2208 0.502779
\(801\) 0 0
\(802\) 5.29755 0.187063
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 49.7265 1.74829 0.874145 0.485666i \(-0.161423\pi\)
0.874145 + 0.485666i \(0.161423\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −19.0841 −0.668897
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46.6929 −1.62959 −0.814796 0.579747i \(-0.803151\pi\)
−0.814796 + 0.579747i \(0.803151\pi\)
\(822\) 0 0
\(823\) 39.3088 1.37022 0.685110 0.728440i \(-0.259754\pi\)
0.685110 + 0.728440i \(0.259754\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26.3209 −0.915268 −0.457634 0.889141i \(-0.651303\pi\)
−0.457634 + 0.889141i \(0.651303\pi\)
\(828\) −40.3642 −1.40275
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 11.8798 0.409648
\(842\) −6.42147 −0.221298
\(843\) 0 0
\(844\) 44.8373 1.54336
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −29.4382 −1.01091
\(849\) 0 0
\(850\) 0 0
\(851\) 80.8587 2.77180
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −8.10652 −0.277075
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.181195 −0.00617152
\(863\) 40.5198 1.37931 0.689655 0.724138i \(-0.257762\pi\)
0.689655 + 0.724138i \(0.257762\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 49.2239 1.66981
\(870\) 0 0
\(871\) 0 0
\(872\) −2.86864 −0.0971445
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −55.9969 −1.89088 −0.945440 0.325796i \(-0.894368\pi\)
−0.945440 + 0.325796i \(0.894368\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 38.0258 1.27967 0.639835 0.768512i \(-0.279003\pi\)
0.639835 + 0.768512i \(0.279003\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −8.41970 −0.282865
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −59.6792 −1.99933
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 10.0831 0.336477
\(899\) 0 0
\(900\) −29.0850 −0.969501
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −14.8859 −0.495097
\(905\) 0 0
\(906\) 0 0
\(907\) −18.5101 −0.614617 −0.307309 0.951610i \(-0.599428\pi\)
−0.307309 + 0.951610i \(0.599428\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 53.1868 1.76216 0.881079 0.472969i \(-0.156818\pi\)
0.881079 + 0.472969i \(0.156818\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −9.09810 −0.300938
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −25.4308 −0.838886 −0.419443 0.907782i \(-0.637775\pi\)
−0.419443 + 0.907782i \(0.637775\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 58.2640 1.91571
\(926\) −3.09426 −0.101684
\(927\) 0 0
\(928\) 18.1847 0.596943
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 20.6266 0.675646
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 13.9464 0.453438
\(947\) −61.1976 −1.98865 −0.994327 0.106364i \(-0.966079\pi\)
−0.994327 + 0.106364i \(0.966079\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −33.5415 −1.08652 −0.543259 0.839565i \(-0.682810\pi\)
−0.543259 + 0.839565i \(0.682810\pi\)
\(954\) −5.99602 −0.194128
\(955\) 0 0
\(956\) −50.2104 −1.62392
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 24.9982 0.805556
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −55.3303 −1.77930 −0.889652 0.456639i \(-0.849053\pi\)
−0.889652 + 0.456639i \(0.849053\pi\)
\(968\) 32.0754 1.03094
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 3.45665 0.110758
\(975\) 0 0
\(976\) 0 0
\(977\) 4.41598 0.141280 0.0706398 0.997502i \(-0.477496\pi\)
0.0706398 + 0.997502i \(0.477496\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8.84607 0.282433
\(982\) 1.14403 0.0365075
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −59.0907 −1.87897
\(990\) 0 0
\(991\) 46.8781 1.48913 0.744566 0.667549i \(-0.232656\pi\)
0.744566 + 0.667549i \(0.232656\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −5.17556 −0.163829
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.bm.1.1 yes 3
7.6 odd 2 CM 8281.2.a.bm.1.1 yes 3
13.12 even 2 8281.2.a.bc.1.3 3
91.90 odd 2 8281.2.a.bc.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8281.2.a.bc.1.3 3 13.12 even 2
8281.2.a.bc.1.3 3 91.90 odd 2
8281.2.a.bm.1.1 yes 3 1.1 even 1 trivial
8281.2.a.bm.1.1 yes 3 7.6 odd 2 CM