Properties

Label 8281.2.a.ce.1.6
Level 82818281
Weight 22
Character 8281.1
Self dual yes
Analytic conductor 66.12466.124
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8281=72132 8281 = 7^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.124117913866.1241179138
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.6995813.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x56x4+4x3+7x2x1 x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 91)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 0.363441-0.363441 of defining polynomial
Character χ\chi == 8281.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.38804q22.75148q3+3.70272q40.982280q56.57063q6+4.06616q8+4.57063q92.34572q10+0.587802q1110.1880q12+2.70272q15+2.30470q166.45420q17+10.9148q18+3.82689q193.63711q20+1.40369q22+8.26001q2311.1880q244.03513q254.32156q273.96018q29+6.45420q30+2.98872q312.62861q321.61733q3315.4129q34+16.9238q361.75588q37+9.13877q383.99411q403.67169q41+6.38085q43+2.17647q444.48964q45+19.7252q46+4.34059q476.34134q489.63603q50+17.7586q51+0.425541q5310.3200q540.577387q5510.5296q579.45706q586.00863q59+10.0074q60+2.20674q61+7.13717q6210.8866q643.86223q667.01303q6723.8981q6822.7272q693.60253q71+18.5849q724.93427q734.19311q74+11.1026q75+14.1699q76+2.78541q792.26386q801.82122q818.76812q82+2.86819q83+6.33983q85+15.2377q86+10.8964q87+2.39010q88+2.09311q8910.7214q90+30.5845q928.22340q93+10.3655q943.75908q95+7.23255q967.69704q97+2.68663q99+O(q100)q+2.38804 q^{2} -2.75148 q^{3} +3.70272 q^{4} -0.982280 q^{5} -6.57063 q^{6} +4.06616 q^{8} +4.57063 q^{9} -2.34572 q^{10} +0.587802 q^{11} -10.1880 q^{12} +2.70272 q^{15} +2.30470 q^{16} -6.45420 q^{17} +10.9148 q^{18} +3.82689 q^{19} -3.63711 q^{20} +1.40369 q^{22} +8.26001 q^{23} -11.1880 q^{24} -4.03513 q^{25} -4.32156 q^{27} -3.96018 q^{29} +6.45420 q^{30} +2.98872 q^{31} -2.62861 q^{32} -1.61733 q^{33} -15.4129 q^{34} +16.9238 q^{36} -1.75588 q^{37} +9.13877 q^{38} -3.99411 q^{40} -3.67169 q^{41} +6.38085 q^{43} +2.17647 q^{44} -4.48964 q^{45} +19.7252 q^{46} +4.34059 q^{47} -6.34134 q^{48} -9.63603 q^{50} +17.7586 q^{51} +0.425541 q^{53} -10.3200 q^{54} -0.577387 q^{55} -10.5296 q^{57} -9.45706 q^{58} -6.00863 q^{59} +10.0074 q^{60} +2.20674 q^{61} +7.13717 q^{62} -10.8866 q^{64} -3.86223 q^{66} -7.01303 q^{67} -23.8981 q^{68} -22.7272 q^{69} -3.60253 q^{71} +18.5849 q^{72} -4.93427 q^{73} -4.19311 q^{74} +11.1026 q^{75} +14.1699 q^{76} +2.78541 q^{79} -2.26386 q^{80} -1.82122 q^{81} -8.76812 q^{82} +2.86819 q^{83} +6.33983 q^{85} +15.2377 q^{86} +10.8964 q^{87} +2.39010 q^{88} +2.09311 q^{89} -10.7214 q^{90} +30.5845 q^{92} -8.22340 q^{93} +10.3655 q^{94} -3.75908 q^{95} +7.23255 q^{96} -7.69704 q^{97} +2.68663 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+2q2q3+4q4+q59q6+3q83q94q10+4q115q122q158q165q17+3q18q19q20+5q22+q2311q24++10q99+O(q100) 6 q + 2 q^{2} - q^{3} + 4 q^{4} + q^{5} - 9 q^{6} + 3 q^{8} - 3 q^{9} - 4 q^{10} + 4 q^{11} - 5 q^{12} - 2 q^{15} - 8 q^{16} - 5 q^{17} + 3 q^{18} - q^{19} - q^{20} + 5 q^{22} + q^{23} - 11 q^{24}+ \cdots + 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.38804 1.68860 0.844299 0.535873i 0.180017π-0.180017\pi
0.844299 + 0.535873i 0.180017π0.180017\pi
33 −2.75148 −1.58857 −0.794283 0.607548i 0.792153π-0.792153\pi
−0.794283 + 0.607548i 0.792153π0.792153\pi
44 3.70272 1.85136
55 −0.982280 −0.439289 −0.219644 0.975580i 0.570490π-0.570490\pi
−0.219644 + 0.975580i 0.570490π0.570490\pi
66 −6.57063 −2.68245
77 0 0
88 4.06616 1.43761
99 4.57063 1.52354
1010 −2.34572 −0.741782
1111 0.587802 0.177229 0.0886146 0.996066i 0.471756π-0.471756\pi
0.0886146 + 0.996066i 0.471756π0.471756\pi
1212 −10.1880 −2.94101
1313 0 0
1414 0 0
1515 2.70272 0.697840
1616 2.30470 0.576176
1717 −6.45420 −1.56537 −0.782687 0.622416i 0.786151π-0.786151\pi
−0.782687 + 0.622416i 0.786151π0.786151\pi
1818 10.9148 2.57265
1919 3.82689 0.877950 0.438975 0.898499i 0.355342π-0.355342\pi
0.438975 + 0.898499i 0.355342π0.355342\pi
2020 −3.63711 −0.813282
2121 0 0
2222 1.40369 0.299269
2323 8.26001 1.72233 0.861166 0.508324i 0.169735π-0.169735\pi
0.861166 + 0.508324i 0.169735π0.169735\pi
2424 −11.1880 −2.28373
2525 −4.03513 −0.807025
2626 0 0
2727 −4.32156 −0.831685
2828 0 0
2929 −3.96018 −0.735387 −0.367694 0.929947i 0.619853π-0.619853\pi
−0.367694 + 0.929947i 0.619853π0.619853\pi
3030 6.45420 1.17837
3131 2.98872 0.536790 0.268395 0.963309i 0.413507π-0.413507\pi
0.268395 + 0.963309i 0.413507π0.413507\pi
3232 −2.62861 −0.464676
3333 −1.61733 −0.281540
3434 −15.4129 −2.64329
3535 0 0
3636 16.9238 2.82063
3737 −1.75588 −0.288665 −0.144333 0.989529i 0.546104π-0.546104\pi
−0.144333 + 0.989529i 0.546104π0.546104\pi
3838 9.13877 1.48250
3939 0 0
4040 −3.99411 −0.631524
4141 −3.67169 −0.573421 −0.286710 0.958017i 0.592562π-0.592562\pi
−0.286710 + 0.958017i 0.592562π0.592562\pi
4242 0 0
4343 6.38085 0.973070 0.486535 0.873661i 0.338261π-0.338261\pi
0.486535 + 0.873661i 0.338261π0.338261\pi
4444 2.17647 0.328115
4545 −4.48964 −0.669276
4646 19.7252 2.90832
4747 4.34059 0.633141 0.316570 0.948569i 0.397469π-0.397469\pi
0.316570 + 0.948569i 0.397469π0.397469\pi
4848 −6.34134 −0.915294
4949 0 0
5050 −9.63603 −1.36274
5151 17.7586 2.48670
5252 0 0
5353 0.425541 0.0584525 0.0292263 0.999573i 0.490696π-0.490696\pi
0.0292263 + 0.999573i 0.490696π0.490696\pi
5454 −10.3200 −1.40438
5555 −0.577387 −0.0778548
5656 0 0
5757 −10.5296 −1.39468
5858 −9.45706 −1.24177
5959 −6.00863 −0.782256 −0.391128 0.920336i 0.627915π-0.627915\pi
−0.391128 + 0.920336i 0.627915π0.627915\pi
6060 10.0074 1.29195
6161 2.20674 0.282544 0.141272 0.989971i 0.454881π-0.454881\pi
0.141272 + 0.989971i 0.454881π0.454881\pi
6262 7.13717 0.906422
6363 0 0
6464 −10.8866 −1.36083
6565 0 0
6666 −3.86223 −0.475408
6767 −7.01303 −0.856778 −0.428389 0.903594i 0.640919π-0.640919\pi
−0.428389 + 0.903594i 0.640919π0.640919\pi
6868 −23.8981 −2.89807
6969 −22.7272 −2.73604
7070 0 0
7171 −3.60253 −0.427542 −0.213771 0.976884i 0.568575π-0.568575\pi
−0.213771 + 0.976884i 0.568575π0.568575\pi
7272 18.5849 2.19026
7373 −4.93427 −0.577513 −0.288756 0.957403i 0.593242π-0.593242\pi
−0.288756 + 0.957403i 0.593242π0.593242\pi
7474 −4.19311 −0.487439
7575 11.1026 1.28201
7676 14.1699 1.62540
7777 0 0
7878 0 0
7979 2.78541 0.313383 0.156691 0.987648i 0.449917π-0.449917\pi
0.156691 + 0.987648i 0.449917π0.449917\pi
8080 −2.26386 −0.253108
8181 −1.82122 −0.202357
8282 −8.76812 −0.968277
8383 2.86819 0.314825 0.157412 0.987533i 0.449685π-0.449685\pi
0.157412 + 0.987533i 0.449685π0.449685\pi
8484 0 0
8585 6.33983 0.687651
8686 15.2377 1.64312
8787 10.8964 1.16821
8888 2.39010 0.254786
8989 2.09311 0.221870 0.110935 0.993828i 0.464616π-0.464616\pi
0.110935 + 0.993828i 0.464616π0.464616\pi
9090 −10.7214 −1.13014
9191 0 0
9292 30.5845 3.18866
9393 −8.22340 −0.852727
9494 10.3655 1.06912
9595 −3.75908 −0.385674
9696 7.23255 0.738169
9797 −7.69704 −0.781516 −0.390758 0.920493i 0.627787π-0.627787\pi
−0.390758 + 0.920493i 0.627787π0.627787\pi
9898 0 0
9999 2.68663 0.270016
100100 −14.9409 −1.49409
101101 −2.63732 −0.262423 −0.131212 0.991354i 0.541887π-0.541887\pi
−0.131212 + 0.991354i 0.541887π0.541887\pi
102102 42.4082 4.19903
103103 −10.8619 −1.07026 −0.535128 0.844771i 0.679737π-0.679737\pi
−0.535128 + 0.844771i 0.679737π0.679737\pi
104104 0 0
105105 0 0
106106 1.01621 0.0987027
107107 −15.9805 −1.54489 −0.772446 0.635080i 0.780967π-0.780967\pi
−0.772446 + 0.635080i 0.780967π0.780967\pi
108108 −16.0015 −1.53975
109109 −9.23477 −0.884530 −0.442265 0.896884i 0.645825π-0.645825\pi
−0.442265 + 0.896884i 0.645825π0.645825\pi
110110 −1.37882 −0.131465
111111 4.83127 0.458564
112112 0 0
113113 10.1802 0.957677 0.478838 0.877903i 0.341058π-0.341058\pi
0.478838 + 0.877903i 0.341058π0.341058\pi
114114 −25.1451 −2.35506
115115 −8.11364 −0.756601
116116 −14.6635 −1.36147
117117 0 0
118118 −14.3488 −1.32092
119119 0 0
120120 10.9897 1.00322
121121 −10.6545 −0.968590
122122 5.26978 0.477104
123123 10.1026 0.910917
124124 11.0664 0.993792
125125 8.87502 0.793806
126126 0 0
127127 4.25026 0.377149 0.188575 0.982059i 0.439613π-0.439613\pi
0.188575 + 0.982059i 0.439613π0.439613\pi
128128 −20.7404 −1.83321
129129 −17.5568 −1.54579
130130 0 0
131131 −2.16957 −0.189556 −0.0947779 0.995498i 0.530214π-0.530214\pi
−0.0947779 + 0.995498i 0.530214π0.530214\pi
132132 −5.98851 −0.521233
133133 0 0
134134 −16.7474 −1.44675
135135 4.24498 0.365350
136136 −26.2438 −2.25039
137137 −8.36316 −0.714513 −0.357257 0.934006i 0.616288π-0.616288\pi
−0.357257 + 0.934006i 0.616288π0.616288\pi
138138 −54.2735 −4.62007
139139 −0.576914 −0.0489332 −0.0244666 0.999701i 0.507789π-0.507789\pi
−0.0244666 + 0.999701i 0.507789π0.507789\pi
140140 0 0
141141 −11.9430 −1.00579
142142 −8.60298 −0.721946
143143 0 0
144144 10.5340 0.877830
145145 3.89001 0.323048
146146 −11.7832 −0.975187
147147 0 0
148148 −6.50154 −0.534423
149149 −2.80662 −0.229928 −0.114964 0.993370i 0.536675π-0.536675\pi
−0.114964 + 0.993370i 0.536675π0.536675\pi
150150 26.5133 2.16480
151151 23.0109 1.87260 0.936300 0.351202i 0.114227π-0.114227\pi
0.936300 + 0.351202i 0.114227π0.114227\pi
152152 15.5608 1.26215
153153 −29.4998 −2.38492
154154 0 0
155155 −2.93576 −0.235806
156156 0 0
157157 22.5760 1.80176 0.900879 0.434071i 0.142923π-0.142923\pi
0.900879 + 0.434071i 0.142923π0.142923\pi
158158 6.65165 0.529177
159159 −1.17087 −0.0928557
160160 2.58203 0.204127
161161 0 0
162162 −4.34913 −0.341700
163163 −8.17714 −0.640483 −0.320242 0.947336i 0.603764π-0.603764\pi
−0.320242 + 0.947336i 0.603764π0.603764\pi
164164 −13.5952 −1.06161
165165 1.58867 0.123678
166166 6.84934 0.531612
167167 2.32771 0.180124 0.0900619 0.995936i 0.471293π-0.471293\pi
0.0900619 + 0.995936i 0.471293π0.471293\pi
168168 0 0
169169 0 0
170170 15.1398 1.16117
171171 17.4913 1.33760
172172 23.6265 1.80150
173173 −8.13372 −0.618396 −0.309198 0.950998i 0.600061π-0.600061\pi
−0.309198 + 0.950998i 0.600061π0.600061\pi
174174 26.0209 1.97264
175175 0 0
176176 1.35471 0.102115
177177 16.5326 1.24267
178178 4.99843 0.374648
179179 −20.9925 −1.56906 −0.784528 0.620093i 0.787095π-0.787095\pi
−0.784528 + 0.620093i 0.787095π0.787095\pi
180180 −16.6239 −1.23907
181181 −1.60807 −0.119527 −0.0597635 0.998213i 0.519035π-0.519035\pi
−0.0597635 + 0.998213i 0.519035π0.519035\pi
182182 0 0
183183 −6.07180 −0.448841
184184 33.5865 2.47603
185185 1.72477 0.126807
186186 −19.6378 −1.43991
187187 −3.79379 −0.277430
188188 16.0720 1.17217
189189 0 0
190190 −8.97683 −0.651247
191191 −11.5622 −0.836614 −0.418307 0.908306i 0.637376π-0.637376\pi
−0.418307 + 0.908306i 0.637376π0.637376\pi
192192 29.9543 2.16176
193193 −23.5788 −1.69724 −0.848621 0.529001i 0.822567π-0.822567\pi
−0.848621 + 0.529001i 0.822567π0.822567\pi
194194 −18.3808 −1.31967
195195 0 0
196196 0 0
197197 1.47094 0.104800 0.0524002 0.998626i 0.483313π-0.483313\pi
0.0524002 + 0.998626i 0.483313π0.483313\pi
198198 6.41577 0.455949
199199 9.39399 0.665922 0.332961 0.942941i 0.391952π-0.391952\pi
0.332961 + 0.942941i 0.391952π0.391952\pi
200200 −16.4075 −1.16018
201201 19.2962 1.36105
202202 −6.29802 −0.443127
203203 0 0
204204 65.7551 4.60378
205205 3.60662 0.251897
206206 −25.9386 −1.80723
207207 37.7535 2.62405
208208 0 0
209209 2.24946 0.155598
210210 0 0
211211 −8.94219 −0.615605 −0.307803 0.951450i 0.599594π-0.599594\pi
−0.307803 + 0.951450i 0.599594π0.599594\pi
212212 1.57566 0.108217
213213 9.91229 0.679179
214214 −38.1620 −2.60870
215215 −6.26778 −0.427459
216216 −17.5722 −1.19563
217217 0 0
218218 −22.0530 −1.49362
219219 13.5765 0.917418
220220 −2.13790 −0.144137
221221 0 0
222222 11.5373 0.774330
223223 −21.8196 −1.46115 −0.730574 0.682833i 0.760748π-0.760748\pi
−0.730574 + 0.682833i 0.760748π0.760748\pi
224224 0 0
225225 −18.4431 −1.22954
226226 24.3108 1.61713
227227 18.5525 1.23137 0.615687 0.787990i 0.288878π-0.288878\pi
0.615687 + 0.787990i 0.288878π0.288878\pi
228228 −38.9882 −2.58206
229229 −19.3505 −1.27872 −0.639359 0.768909i 0.720800π-0.720800\pi
−0.639359 + 0.768909i 0.720800π0.720800\pi
230230 −19.3757 −1.27759
231231 0 0
232232 −16.1027 −1.05720
233233 16.1634 1.05890 0.529450 0.848341i 0.322398π-0.322398\pi
0.529450 + 0.848341i 0.322398π0.322398\pi
234234 0 0
235235 −4.26368 −0.278132
236236 −22.2483 −1.44824
237237 −7.66398 −0.497829
238238 0 0
239239 −16.1037 −1.04166 −0.520831 0.853660i 0.674378π-0.674378\pi
−0.520831 + 0.853660i 0.674378π0.674378\pi
240240 6.22897 0.402079
241241 4.00600 0.258049 0.129025 0.991641i 0.458815π-0.458815\pi
0.129025 + 0.991641i 0.458815π0.458815\pi
242242 −25.4433 −1.63556
243243 17.9757 1.15314
244244 8.17095 0.523092
245245 0 0
246246 24.1253 1.53817
247247 0 0
248248 12.1526 0.771692
249249 −7.89176 −0.500120
250250 21.1939 1.34042
251251 3.24688 0.204941 0.102471 0.994736i 0.467325π-0.467325\pi
0.102471 + 0.994736i 0.467325π0.467325\pi
252252 0 0
253253 4.85525 0.305247
254254 10.1498 0.636853
255255 −17.4439 −1.09238
256256 −27.7557 −1.73473
257257 −26.8924 −1.67750 −0.838751 0.544516i 0.816713π-0.816713\pi
−0.838751 + 0.544516i 0.816713π0.816713\pi
258258 −41.9262 −2.61021
259259 0 0
260260 0 0
261261 −18.1005 −1.12040
262262 −5.18100 −0.320084
263263 −3.80706 −0.234753 −0.117377 0.993087i 0.537448π-0.537448\pi
−0.117377 + 0.993087i 0.537448π0.537448\pi
264264 −6.57631 −0.404744
265265 −0.418000 −0.0256775
266266 0 0
267267 −5.75915 −0.352455
268268 −25.9673 −1.58620
269269 −23.8381 −1.45343 −0.726716 0.686938i 0.758954π-0.758954\pi
−0.726716 + 0.686938i 0.758954π0.758954\pi
270270 10.1372 0.616929
271271 −9.90135 −0.601464 −0.300732 0.953709i 0.597231π-0.597231\pi
−0.300732 + 0.953709i 0.597231π0.597231\pi
272272 −14.8750 −0.901931
273273 0 0
274274 −19.9715 −1.20653
275275 −2.37186 −0.143028
276276 −84.1526 −5.06539
277277 11.7858 0.708139 0.354069 0.935219i 0.384798π-0.384798\pi
0.354069 + 0.935219i 0.384798π0.384798\pi
278278 −1.37769 −0.0826285
279279 13.6603 0.817823
280280 0 0
281281 −12.9976 −0.775372 −0.387686 0.921791i 0.626726π-0.626726\pi
−0.387686 + 0.921791i 0.626726π0.626726\pi
282282 −28.5204 −1.69837
283283 −16.8050 −0.998952 −0.499476 0.866328i 0.666474π-0.666474\pi
−0.499476 + 0.866328i 0.666474π0.666474\pi
284284 −13.3392 −0.791534
285285 10.3430 0.612668
286286 0 0
287287 0 0
288288 −12.0144 −0.707955
289289 24.6567 1.45039
290290 9.28948 0.545497
291291 21.1783 1.24149
292292 −18.2702 −1.06918
293293 14.0956 0.823476 0.411738 0.911302i 0.364922π-0.364922\pi
0.411738 + 0.911302i 0.364922π0.364922\pi
294294 0 0
295295 5.90215 0.343637
296296 −7.13970 −0.414987
297297 −2.54022 −0.147399
298298 −6.70232 −0.388255
299299 0 0
300300 41.1097 2.37347
301301 0 0
302302 54.9508 3.16207
303303 7.25654 0.416877
304304 8.81986 0.505854
305305 −2.16764 −0.124119
306306 −70.4466 −4.02716
307307 −15.8786 −0.906240 −0.453120 0.891450i 0.649689π-0.649689\pi
−0.453120 + 0.891450i 0.649689π0.649689\pi
308308 0 0
309309 29.8863 1.70017
310310 −7.01070 −0.398181
311311 −28.6034 −1.62195 −0.810975 0.585081i 0.801063π-0.801063\pi
−0.810975 + 0.585081i 0.801063π0.801063\pi
312312 0 0
313313 −18.5792 −1.05016 −0.525080 0.851053i 0.675965π-0.675965\pi
−0.525080 + 0.851053i 0.675965π0.675965\pi
314314 53.9122 3.04244
315315 0 0
316316 10.3136 0.580184
317317 −30.6445 −1.72117 −0.860584 0.509309i 0.829901π-0.829901\pi
−0.860584 + 0.509309i 0.829901π0.829901\pi
318318 −2.79607 −0.156796
319319 −2.32781 −0.130332
320320 10.6937 0.597796
321321 43.9700 2.45416
322322 0 0
323323 −24.6995 −1.37432
324324 −6.74346 −0.374637
325325 0 0
326326 −19.5273 −1.08152
327327 25.4093 1.40514
328328 −14.9297 −0.824353
329329 0 0
330330 3.79379 0.208842
331331 −27.2277 −1.49657 −0.748284 0.663378i 0.769122π-0.769122\pi
−0.748284 + 0.663378i 0.769122π0.769122\pi
332332 10.6201 0.582854
333333 −8.02549 −0.439794
334334 5.55867 0.304157
335335 6.88876 0.376373
336336 0 0
337337 −12.3160 −0.670898 −0.335449 0.942058i 0.608888π-0.608888\pi
−0.335449 + 0.942058i 0.608888π0.608888\pi
338338 0 0
339339 −28.0107 −1.52133
340340 23.4746 1.27309
341341 1.75678 0.0951348
342342 41.7699 2.25866
343343 0 0
344344 25.9456 1.39889
345345 22.3245 1.20191
346346 −19.4236 −1.04422
347347 6.14506 0.329884 0.164942 0.986303i 0.447256π-0.447256\pi
0.164942 + 0.986303i 0.447256π0.447256\pi
348348 40.3462 2.16278
349349 −13.0313 −0.697547 −0.348774 0.937207i 0.613402π-0.613402\pi
−0.348774 + 0.937207i 0.613402π0.613402\pi
350350 0 0
351351 0 0
352352 −1.54510 −0.0823541
353353 −31.6665 −1.68544 −0.842718 0.538356i 0.819046π-0.819046\pi
−0.842718 + 0.538356i 0.819046π0.819046\pi
354354 39.4805 2.09836
355355 3.53870 0.187814
356356 7.75021 0.410761
357357 0 0
358358 −50.1310 −2.64950
359359 −19.9322 −1.05198 −0.525991 0.850490i 0.676305π-0.676305\pi
−0.525991 + 0.850490i 0.676305π0.676305\pi
360360 −18.2556 −0.962155
361361 −4.35488 −0.229204
362362 −3.84014 −0.201833
363363 29.3156 1.53867
364364 0 0
365365 4.84684 0.253695
366366 −14.4997 −0.757911
367367 19.7190 1.02932 0.514662 0.857393i 0.327918π-0.327918\pi
0.514662 + 0.857393i 0.327918π0.327918\pi
368368 19.0369 0.992366
369369 −16.7819 −0.873632
370370 4.11881 0.214127
371371 0 0
372372 −30.4490 −1.57870
373373 17.5469 0.908544 0.454272 0.890863i 0.349899π-0.349899\pi
0.454272 + 0.890863i 0.349899π0.349899\pi
374374 −9.05972 −0.468467
375375 −24.4194 −1.26101
376376 17.6496 0.910207
377377 0 0
378378 0 0
379379 11.7014 0.601058 0.300529 0.953773i 0.402837π-0.402837\pi
0.300529 + 0.953773i 0.402837π0.402837\pi
380380 −13.9188 −0.714021
381381 −11.6945 −0.599127
382382 −27.6110 −1.41270
383383 21.5288 1.10007 0.550036 0.835141i 0.314614π-0.314614\pi
0.550036 + 0.835141i 0.314614π0.314614\pi
384384 57.0669 2.91218
385385 0 0
386386 −56.3072 −2.86596
387387 29.1645 1.48252
388388 −28.5000 −1.44687
389389 26.4910 1.34315 0.671574 0.740938i 0.265619π-0.265619\pi
0.671574 + 0.740938i 0.265619π0.265619\pi
390390 0 0
391391 −53.3118 −2.69609
392392 0 0
393393 5.96951 0.301122
394394 3.51267 0.176966
395395 −2.73605 −0.137665
396396 9.94784 0.499898
397397 33.7989 1.69632 0.848160 0.529740i 0.177711π-0.177711\pi
0.848160 + 0.529740i 0.177711π0.177711\pi
398398 22.4332 1.12447
399399 0 0
400400 −9.29977 −0.464989
401401 −21.6119 −1.07925 −0.539623 0.841907i 0.681433π-0.681433\pi
−0.539623 + 0.841907i 0.681433π0.681433\pi
402402 46.0800 2.29826
403403 0 0
404404 −9.76527 −0.485840
405405 1.78895 0.0888934
406406 0 0
407407 −1.03211 −0.0511599
408408 72.2093 3.57489
409409 −7.74217 −0.382826 −0.191413 0.981510i 0.561307π-0.561307\pi
−0.191413 + 0.981510i 0.561307π0.561307\pi
410410 8.61275 0.425353
411411 23.0111 1.13505
412412 −40.2186 −1.98143
413413 0 0
414414 90.1567 4.43096
415415 −2.81736 −0.138299
416416 0 0
417417 1.58737 0.0777337
418418 5.37179 0.262743
419419 −8.10194 −0.395806 −0.197903 0.980222i 0.563413π-0.563413\pi
−0.197903 + 0.980222i 0.563413π0.563413\pi
420420 0 0
421421 32.1124 1.56506 0.782530 0.622612i 0.213929π-0.213929\pi
0.782530 + 0.622612i 0.213929π0.213929\pi
422422 −21.3543 −1.03951
423423 19.8393 0.964618
424424 1.73032 0.0840316
425425 26.0435 1.26330
426426 23.6709 1.14686
427427 0 0
428428 −59.1713 −2.86015
429429 0 0
430430 −14.9677 −0.721806
431431 29.5281 1.42232 0.711159 0.703031i 0.248171π-0.248171\pi
0.711159 + 0.703031i 0.248171π0.248171\pi
432432 −9.95992 −0.479197
433433 22.0910 1.06163 0.530813 0.847489i 0.321887π-0.321887\pi
0.530813 + 0.847489i 0.321887π0.321887\pi
434434 0 0
435435 −10.7033 −0.513183
436436 −34.1938 −1.63758
437437 31.6102 1.51212
438438 32.4213 1.54915
439439 −6.35580 −0.303346 −0.151673 0.988431i 0.548466π-0.548466\pi
−0.151673 + 0.988431i 0.548466π0.548466\pi
440440 −2.34775 −0.111924
441441 0 0
442442 0 0
443443 −13.5627 −0.644383 −0.322192 0.946675i 0.604420π-0.604420\pi
−0.322192 + 0.946675i 0.604420π0.604420\pi
444444 17.8889 0.848967
445445 −2.05602 −0.0974648
446446 −52.1060 −2.46729
447447 7.72237 0.365255
448448 0 0
449449 −21.9118 −1.03408 −0.517041 0.855961i 0.672966π-0.672966\pi
−0.517041 + 0.855961i 0.672966π0.672966\pi
450450 −44.0428 −2.07620
451451 −2.15823 −0.101627
452452 37.6946 1.77300
453453 −63.3139 −2.97475
454454 44.3041 2.07930
455455 0 0
456456 −42.8151 −2.00500
457457 −15.2146 −0.711710 −0.355855 0.934541i 0.615810π-0.615810\pi
−0.355855 + 0.934541i 0.615810π0.615810\pi
458458 −46.2097 −2.15924
459459 27.8922 1.30190
460460 −30.0426 −1.40074
461461 16.2163 0.755267 0.377633 0.925955i 0.376738π-0.376738\pi
0.377633 + 0.925955i 0.376738π0.376738\pi
462462 0 0
463463 1.44769 0.0672799 0.0336400 0.999434i 0.489290π-0.489290\pi
0.0336400 + 0.999434i 0.489290π0.489290\pi
464464 −9.12705 −0.423713
465465 8.07768 0.374593
466466 38.5988 1.78805
467467 14.0067 0.648155 0.324078 0.946031i 0.394946π-0.394946\pi
0.324078 + 0.946031i 0.394946π0.394946\pi
468468 0 0
469469 0 0
470470 −10.1818 −0.469652
471471 −62.1172 −2.86221
472472 −24.4320 −1.12458
473473 3.75068 0.172456
474474 −18.3019 −0.840633
475475 −15.4420 −0.708528
476476 0 0
477477 1.94499 0.0890550
478478 −38.4562 −1.75895
479479 30.0243 1.37185 0.685923 0.727674i 0.259399π-0.259399\pi
0.685923 + 0.727674i 0.259399π0.259399\pi
480480 −7.10439 −0.324270
481481 0 0
482482 9.56649 0.435742
483483 0 0
484484 −39.4506 −1.79321
485485 7.56065 0.343312
486486 42.9267 1.94719
487487 28.4903 1.29102 0.645510 0.763752i 0.276645π-0.276645\pi
0.645510 + 0.763752i 0.276645π0.276645\pi
488488 8.97297 0.406187
489489 22.4992 1.01745
490490 0 0
491491 −28.4677 −1.28473 −0.642365 0.766399i 0.722047π-0.722047\pi
−0.642365 + 0.766399i 0.722047π0.722047\pi
492492 37.4070 1.68644
493493 25.5598 1.15116
494494 0 0
495495 −2.63902 −0.118615
496496 6.88812 0.309286
497497 0 0
498498 −18.8458 −0.844501
499499 26.2329 1.17434 0.587172 0.809462i 0.300241π-0.300241\pi
0.587172 + 0.809462i 0.300241π0.300241\pi
500500 32.8617 1.46962
501501 −6.40465 −0.286139
502502 7.75367 0.346063
503503 8.53175 0.380412 0.190206 0.981744i 0.439084π-0.439084\pi
0.190206 + 0.981744i 0.439084π0.439084\pi
504504 0 0
505505 2.59059 0.115280
506506 11.5945 0.515440
507507 0 0
508508 15.7375 0.698240
509509 13.0260 0.577366 0.288683 0.957425i 0.406783π-0.406783\pi
0.288683 + 0.957425i 0.406783π0.406783\pi
510510 −41.6567 −1.84459
511511 0 0
512512 −24.8008 −1.09605
513513 −16.5382 −0.730177
514514 −64.2200 −2.83262
515515 10.6694 0.470151
516516 −65.0078 −2.86181
517517 2.55141 0.112211
518518 0 0
519519 22.3798 0.982363
520520 0 0
521521 4.46570 0.195646 0.0978230 0.995204i 0.468812π-0.468812\pi
0.0978230 + 0.995204i 0.468812π0.468812\pi
522522 −43.2248 −1.89190
523523 −2.90811 −0.127163 −0.0635815 0.997977i 0.520252π-0.520252\pi
−0.0635815 + 0.997977i 0.520252π0.520252\pi
524524 −8.03330 −0.350936
525525 0 0
526526 −9.09140 −0.396404
527527 −19.2898 −0.840277
528528 −3.72746 −0.162217
529529 45.2278 1.96643
530530 −0.998200 −0.0433590
531531 −27.4632 −1.19180
532532 0 0
533533 0 0
534534 −13.7531 −0.595154
535535 15.6973 0.678654
536536 −28.5161 −1.23171
537537 57.7605 2.49255
538538 −56.9262 −2.45426
539539 0 0
540540 15.7180 0.676394
541541 18.4639 0.793824 0.396912 0.917857i 0.370082π-0.370082\pi
0.396912 + 0.917857i 0.370082π0.370082\pi
542542 −23.6448 −1.01563
543543 4.42458 0.189877
544544 16.9655 0.727392
545545 9.07112 0.388564
546546 0 0
547547 34.9817 1.49571 0.747856 0.663861i 0.231083π-0.231083\pi
0.747856 + 0.663861i 0.231083π0.231083\pi
548548 −30.9665 −1.32282
549549 10.0862 0.430469
550550 −5.66408 −0.241517
551551 −15.1552 −0.645633
552552 −92.4127 −3.93334
553553 0 0
554554 28.1449 1.19576
555555 −4.74566 −0.201442
556556 −2.13615 −0.0905930
557557 −0.0531413 −0.00225167 −0.00112583 0.999999i 0.500358π-0.500358\pi
−0.00112583 + 0.999999i 0.500358π0.500358\pi
558558 32.6214 1.38097
559559 0 0
560560 0 0
561561 10.4385 0.440716
562562 −31.0388 −1.30929
563563 7.98506 0.336530 0.168265 0.985742i 0.446184π-0.446184\pi
0.168265 + 0.985742i 0.446184π0.446184\pi
564564 −44.2218 −1.86207
565565 −9.99985 −0.420697
566566 −40.1309 −1.68683
567567 0 0
568568 −14.6485 −0.614637
569569 −26.7241 −1.12033 −0.560167 0.828380i 0.689263π-0.689263\pi
−0.560167 + 0.828380i 0.689263π0.689263\pi
570570 24.6995 1.03455
571571 13.4929 0.564662 0.282331 0.959317i 0.408892π-0.408892\pi
0.282331 + 0.959317i 0.408892π0.408892\pi
572572 0 0
573573 31.8132 1.32902
574574 0 0
575575 −33.3302 −1.38996
576576 −49.7587 −2.07328
577577 −12.0132 −0.500118 −0.250059 0.968231i 0.580450π-0.580450\pi
−0.250059 + 0.968231i 0.580450π0.580450\pi
578578 58.8811 2.44913
579579 64.8767 2.69618
580580 14.4036 0.598078
581581 0 0
582582 50.5745 2.09638
583583 0.250134 0.0103595
584584 −20.0636 −0.830236
585585 0 0
586586 33.6609 1.39052
587587 −10.4235 −0.430225 −0.215113 0.976589i 0.569012π-0.569012\pi
−0.215113 + 0.976589i 0.569012π0.569012\pi
588588 0 0
589589 11.4375 0.471275
590590 14.0946 0.580264
591591 −4.04727 −0.166482
592592 −4.04679 −0.166322
593593 22.3501 0.917810 0.458905 0.888485i 0.348242π-0.348242\pi
0.458905 + 0.888485i 0.348242π0.348242\pi
594594 −6.06615 −0.248897
595595 0 0
596596 −10.3921 −0.425679
597597 −25.8474 −1.05786
598598 0 0
599599 1.15893 0.0473524 0.0236762 0.999720i 0.492463π-0.492463\pi
0.0236762 + 0.999720i 0.492463π0.492463\pi
600600 45.1448 1.84303
601601 42.1813 1.72061 0.860306 0.509778i 0.170272π-0.170272\pi
0.860306 + 0.509778i 0.170272π0.170272\pi
602602 0 0
603603 −32.0540 −1.30534
604604 85.2029 3.46686
605605 10.4657 0.425491
606606 17.3289 0.703937
607607 −18.1569 −0.736965 −0.368482 0.929635i 0.620123π-0.620123\pi
−0.368482 + 0.929635i 0.620123π0.620123\pi
608608 −10.0594 −0.407962
609609 0 0
610610 −5.17640 −0.209586
611611 0 0
612612 −109.229 −4.41534
613613 0.902645 0.0364575 0.0182288 0.999834i 0.494197π-0.494197\pi
0.0182288 + 0.999834i 0.494197π0.494197\pi
614614 −37.9187 −1.53027
615615 −9.92354 −0.400156
616616 0 0
617617 26.0436 1.04848 0.524238 0.851572i 0.324350π-0.324350\pi
0.524238 + 0.851572i 0.324350π0.324350\pi
618618 71.3696 2.87091
619619 −26.8341 −1.07855 −0.539277 0.842128i 0.681303π-0.681303\pi
−0.539277 + 0.842128i 0.681303π0.681303\pi
620620 −10.8703 −0.436562
621621 −35.6961 −1.43244
622622 −68.3060 −2.73882
623623 0 0
624624 0 0
625625 11.4579 0.458315
626626 −44.3679 −1.77330
627627 −6.18933 −0.247178
628628 83.5925 3.33570
629629 11.3328 0.451869
630630 0 0
631631 33.6121 1.33808 0.669039 0.743228i 0.266706π-0.266706\pi
0.669039 + 0.743228i 0.266706π0.266706\pi
632632 11.3259 0.450521
633633 24.6042 0.977930
634634 −73.1802 −2.90636
635635 −4.17494 −0.165678
636636 −4.33539 −0.171909
637637 0 0
638638 −5.55889 −0.220078
639639 −16.4659 −0.651379
640640 20.3729 0.805310
641641 21.1841 0.836722 0.418361 0.908281i 0.362605π-0.362605\pi
0.418361 + 0.908281i 0.362605π0.362605\pi
642642 105.002 4.14410
643643 −0.661539 −0.0260886 −0.0130443 0.999915i 0.504152π-0.504152\pi
−0.0130443 + 0.999915i 0.504152π0.504152\pi
644644 0 0
645645 17.2457 0.679047
646646 −58.9834 −2.32067
647647 −40.0323 −1.57383 −0.786916 0.617060i 0.788324π-0.788324\pi
−0.786916 + 0.617060i 0.788324π0.788324\pi
648648 −7.40537 −0.290910
649649 −3.53188 −0.138639
650650 0 0
651651 0 0
652652 −30.2777 −1.18577
653653 12.7120 0.497460 0.248730 0.968573i 0.419987π-0.419987\pi
0.248730 + 0.968573i 0.419987π0.419987\pi
654654 60.6782 2.37271
655655 2.13112 0.0832698
656656 −8.46215 −0.330391
657657 −22.5527 −0.879867
658658 0 0
659659 −14.1904 −0.552781 −0.276391 0.961045i 0.589138π-0.589138\pi
−0.276391 + 0.961045i 0.589138π0.589138\pi
660660 5.88239 0.228972
661661 −50.1780 −1.95170 −0.975848 0.218449i 0.929900π-0.929900\pi
−0.975848 + 0.218449i 0.929900π0.929900\pi
662662 −65.0207 −2.52710
663663 0 0
664664 11.6625 0.452594
665665 0 0
666666 −19.1652 −0.742635
667667 −32.7112 −1.26658
668668 8.61888 0.333474
669669 60.0362 2.32113
670670 16.4506 0.635542
671671 1.29713 0.0500751
672672 0 0
673673 −1.87427 −0.0722479 −0.0361240 0.999347i 0.511501π-0.511501\pi
−0.0361240 + 0.999347i 0.511501π0.511501\pi
674674 −29.4112 −1.13288
675675 17.4380 0.671191
676676 0 0
677677 −2.00879 −0.0772041 −0.0386020 0.999255i 0.512290π-0.512290\pi
−0.0386020 + 0.999255i 0.512290π0.512290\pi
678678 −66.8906 −2.56892
679679 0 0
680680 25.7788 0.988571
681681 −51.0469 −1.95612
682682 4.19525 0.160644
683683 14.1012 0.539568 0.269784 0.962921i 0.413048π-0.413048\pi
0.269784 + 0.962921i 0.413048π0.413048\pi
684684 64.7655 2.47637
685685 8.21497 0.313878
686686 0 0
687687 53.2425 2.03133
688688 14.7060 0.560660
689689 0 0
690690 53.3118 2.02954
691691 35.6920 1.35779 0.678895 0.734236i 0.262459π-0.262459\pi
0.678895 + 0.734236i 0.262459π0.262459\pi
692692 −30.1169 −1.14487
693693 0 0
694694 14.6746 0.557041
695695 0.566691 0.0214958
696696 44.3064 1.67943
697697 23.6978 0.897618
698698 −31.1191 −1.17788
699699 −44.4732 −1.68213
700700 0 0
701701 −6.15865 −0.232609 −0.116305 0.993214i 0.537105π-0.537105\pi
−0.116305 + 0.993214i 0.537105π0.537105\pi
702702 0 0
703703 −6.71957 −0.253434
704704 −6.39918 −0.241178
705705 11.7314 0.441831
706706 −75.6207 −2.84602
707707 0 0
708708 61.2156 2.30062
709709 −34.0371 −1.27829 −0.639144 0.769087i 0.720711π-0.720711\pi
−0.639144 + 0.769087i 0.720711π0.720711\pi
710710 8.45054 0.317143
711711 12.7311 0.477452
712712 8.51094 0.318961
713713 24.6869 0.924530
714714 0 0
715715 0 0
716716 −77.7295 −2.90489
717717 44.3090 1.65475
718718 −47.5989 −1.77637
719719 −22.9648 −0.856444 −0.428222 0.903674i 0.640860π-0.640860\pi
−0.428222 + 0.903674i 0.640860π0.640860\pi
720720 −10.3473 −0.385621
721721 0 0
722722 −10.3996 −0.387034
723723 −11.0224 −0.409929
724724 −5.95424 −0.221288
725725 15.9798 0.593476
726726 70.0067 2.59819
727727 1.06558 0.0395203 0.0197601 0.999805i 0.493710π-0.493710\pi
0.0197601 + 0.999805i 0.493710π0.493710\pi
728728 0 0
729729 −43.9962 −1.62949
730730 11.5744 0.428389
731731 −41.1833 −1.52322
732732 −22.4822 −0.830966
733733 26.3378 0.972808 0.486404 0.873734i 0.338308π-0.338308\pi
0.486404 + 0.873734i 0.338308π0.338308\pi
734734 47.0897 1.73811
735735 0 0
736736 −21.7123 −0.800326
737737 −4.12228 −0.151846
738738 −40.0759 −1.47521
739739 −34.2149 −1.25862 −0.629308 0.777156i 0.716662π-0.716662\pi
−0.629308 + 0.777156i 0.716662π0.716662\pi
740740 6.38633 0.234766
741741 0 0
742742 0 0
743743 −22.4782 −0.824644 −0.412322 0.911038i 0.635282π-0.635282\pi
−0.412322 + 0.911038i 0.635282π0.635282\pi
744744 −33.4377 −1.22588
745745 2.75689 0.101005
746746 41.9027 1.53417
747747 13.1094 0.479649
748748 −14.0474 −0.513623
749749 0 0
750750 −58.3145 −2.12934
751751 −42.5424 −1.55239 −0.776197 0.630491i 0.782854π-0.782854\pi
−0.776197 + 0.630491i 0.782854π0.782854\pi
752752 10.0038 0.364801
753753 −8.93372 −0.325563
754754 0 0
755755 −22.6031 −0.822612
756756 0 0
757757 −11.2380 −0.408454 −0.204227 0.978924i 0.565468π-0.565468\pi
−0.204227 + 0.978924i 0.565468π0.565468\pi
758758 27.9433 1.01495
759759 −13.3591 −0.484906
760760 −15.2850 −0.554447
761761 −12.8084 −0.464306 −0.232153 0.972679i 0.574577π-0.574577\pi
−0.232153 + 0.972679i 0.574577π0.574577\pi
762762 −27.9269 −1.01168
763763 0 0
764764 −42.8117 −1.54887
765765 28.9770 1.04767
766766 51.4117 1.85758
767767 0 0
768768 76.3692 2.75574
769769 51.3517 1.85179 0.925895 0.377781i 0.123313π-0.123313\pi
0.925895 + 0.377781i 0.123313π0.123313\pi
770770 0 0
771771 73.9938 2.66482
772772 −87.3059 −3.14221
773773 −20.0046 −0.719517 −0.359759 0.933045i 0.617141π-0.617141\pi
−0.359759 + 0.933045i 0.617141π0.617141\pi
774774 69.6459 2.50337
775775 −12.0599 −0.433203
776776 −31.2974 −1.12351
777777 0 0
778778 63.2615 2.26804
779779 −14.0512 −0.503435
780780 0 0
781781 −2.11758 −0.0757729
782782 −127.310 −4.55261
783783 17.1142 0.611611
784784 0 0
785785 −22.1759 −0.791492
786786 14.2554 0.508474
787787 −29.3192 −1.04512 −0.522558 0.852604i 0.675022π-0.675022\pi
−0.522558 + 0.852604i 0.675022π0.675022\pi
788788 5.44650 0.194023
789789 10.4750 0.372921
790790 −6.53378 −0.232462
791791 0 0
792792 10.9243 0.388177
793793 0 0
794794 80.7131 2.86440
795795 1.15012 0.0407905
796796 34.7833 1.23286
797797 3.10100 0.109843 0.0549215 0.998491i 0.482509π-0.482509\pi
0.0549215 + 0.998491i 0.482509π0.482509\pi
798798 0 0
799799 −28.0151 −0.991102
800800 10.6068 0.375005
801801 9.56685 0.338028
802802 −51.6100 −1.82241
803803 −2.90038 −0.102352
804804 71.4484 2.51979
805805 0 0
806806 0 0
807807 65.5899 2.30887
808808 −10.7238 −0.377261
809809 7.99003 0.280914 0.140457 0.990087i 0.455143π-0.455143\pi
0.140457 + 0.990087i 0.455143π0.455143\pi
810810 4.27207 0.150105
811811 48.2554 1.69448 0.847239 0.531213i 0.178263π-0.178263\pi
0.847239 + 0.531213i 0.178263π0.178263\pi
812812 0 0
813813 27.2434 0.955466
814814 −2.46472 −0.0863884
815815 8.03224 0.281357
816816 40.9283 1.43278
817817 24.4188 0.854307
818818 −18.4886 −0.646439
819819 0 0
820820 13.3543 0.466353
821821 27.5519 0.961569 0.480785 0.876839i 0.340352π-0.340352\pi
0.480785 + 0.876839i 0.340352π0.340352\pi
822822 54.9513 1.91665
823823 20.4274 0.712056 0.356028 0.934475i 0.384131π-0.384131\pi
0.356028 + 0.934475i 0.384131π0.384131\pi
824824 −44.1663 −1.53861
825825 6.52611 0.227210
826826 0 0
827827 27.7142 0.963719 0.481859 0.876249i 0.339962π-0.339962\pi
0.481859 + 0.876249i 0.339962π0.339962\pi
828828 139.791 4.85806
829829 9.25664 0.321496 0.160748 0.986995i 0.448609π-0.448609\pi
0.160748 + 0.986995i 0.448609π0.448609\pi
830830 −6.72797 −0.233531
831831 −32.4283 −1.12493
832832 0 0
833833 0 0
834834 3.79069 0.131261
835835 −2.28647 −0.0791264
836836 8.32912 0.288069
837837 −12.9159 −0.446440
838838 −19.3477 −0.668357
839839 30.3739 1.04862 0.524312 0.851526i 0.324323π-0.324323\pi
0.524312 + 0.851526i 0.324323π0.324323\pi
840840 0 0
841841 −13.3170 −0.459205
842842 76.6855 2.64276
843843 35.7626 1.23173
844844 −33.1104 −1.13971
845845 0 0
846846 47.3769 1.62885
847847 0 0
848848 0.980745 0.0336789
849849 46.2385 1.58690
850850 62.1929 2.13320
851851 −14.5036 −0.497177
852852 36.7025 1.25741
853853 5.30773 0.181733 0.0908666 0.995863i 0.471036π-0.471036\pi
0.0908666 + 0.995863i 0.471036π0.471036\pi
854854 0 0
855855 −17.1814 −0.587591
856856 −64.9793 −2.22095
857857 −16.6371 −0.568314 −0.284157 0.958778i 0.591714π-0.591714\pi
−0.284157 + 0.958778i 0.591714π0.591714\pi
858858 0 0
859859 −10.5885 −0.361276 −0.180638 0.983550i 0.557816π-0.557816\pi
−0.180638 + 0.983550i 0.557816π0.557816\pi
860860 −23.2078 −0.791381
861861 0 0
862862 70.5142 2.40172
863863 56.0632 1.90841 0.954207 0.299148i 0.0967025π-0.0967025\pi
0.954207 + 0.299148i 0.0967025π0.0967025\pi
864864 11.3597 0.386464
865865 7.98959 0.271654
866866 52.7541 1.79266
867867 −67.8424 −2.30405
868868 0 0
869869 1.63727 0.0555405
870870 −25.5598 −0.866559
871871 0 0
872872 −37.5501 −1.27161
873873 −35.1804 −1.19067
874874 75.4863 2.55336
875875 0 0
876876 50.2702 1.69847
877877 3.66051 0.123607 0.0618033 0.998088i 0.480315π-0.480315\pi
0.0618033 + 0.998088i 0.480315π0.480315\pi
878878 −15.1779 −0.512229
879879 −38.7838 −1.30815
880880 −1.33071 −0.0448581
881881 10.2299 0.344653 0.172326 0.985040i 0.444872π-0.444872\pi
0.172326 + 0.985040i 0.444872π0.444872\pi
882882 0 0
883883 −3.98979 −0.134267 −0.0671335 0.997744i 0.521385π-0.521385\pi
−0.0671335 + 0.997744i 0.521385π0.521385\pi
884884 0 0
885885 −16.2396 −0.545890
886886 −32.3882 −1.08810
887887 −14.2208 −0.477487 −0.238743 0.971083i 0.576735π-0.576735\pi
−0.238743 + 0.971083i 0.576735π0.576735\pi
888888 19.6447 0.659234
889889 0 0
890890 −4.90986 −0.164579
891891 −1.07052 −0.0358636
892892 −80.7919 −2.70511
893893 16.6110 0.555866
894894 18.4413 0.616769
895895 20.6206 0.689269
896896 0 0
897897 0 0
898898 −52.3262 −1.74615
899899 −11.8359 −0.394749
900900 −68.2896 −2.27632
901901 −2.74652 −0.0915000
902902 −5.15392 −0.171607
903903 0 0
904904 41.3945 1.37676
905905 1.57958 0.0525069
906906 −151.196 −5.02315
907907 43.4253 1.44191 0.720956 0.692981i 0.243703π-0.243703\pi
0.720956 + 0.692981i 0.243703π0.243703\pi
908908 68.6949 2.27972
909909 −12.0542 −0.399814
910910 0 0
911911 24.8617 0.823706 0.411853 0.911250i 0.364882π-0.364882\pi
0.411853 + 0.911250i 0.364882π0.364882\pi
912912 −24.2677 −0.803582
913913 1.68593 0.0557961
914914 −36.3331 −1.20179
915915 5.96421 0.197171
916916 −71.6495 −2.36737
917917 0 0
918918 66.6076 2.19838
919919 −1.66327 −0.0548664 −0.0274332 0.999624i 0.508733π-0.508733\pi
−0.0274332 + 0.999624i 0.508733π0.508733\pi
920920 −32.9914 −1.08769
921921 43.6896 1.43962
922922 38.7250 1.27534
923923 0 0
924924 0 0
925925 7.08521 0.232960
926926 3.45714 0.113609
927927 −49.6458 −1.63058
928928 10.4098 0.341717
929929 −9.49521 −0.311528 −0.155764 0.987794i 0.549784π-0.549784\pi
−0.155764 + 0.987794i 0.549784π0.549784\pi
930930 19.2898 0.632537
931931 0 0
932932 59.8486 1.96040
933933 78.7016 2.57657
934934 33.4486 1.09447
935935 3.72657 0.121872
936936 0 0
937937 −6.41678 −0.209627 −0.104813 0.994492i 0.533425π-0.533425\pi
−0.104813 + 0.994492i 0.533425π0.533425\pi
938938 0 0
939939 51.1203 1.66825
940940 −15.7872 −0.514922
941941 51.5186 1.67946 0.839730 0.543005i 0.182713π-0.182713\pi
0.839730 + 0.543005i 0.182713π0.182713\pi
942942 −148.338 −4.83312
943943 −30.3282 −0.987621
944944 −13.8481 −0.450717
945945 0 0
946946 8.95676 0.291209
947947 8.40219 0.273034 0.136517 0.990638i 0.456409π-0.456409\pi
0.136517 + 0.990638i 0.456409π0.456409\pi
948948 −28.3776 −0.921661
949949 0 0
950950 −36.8761 −1.19642
951951 84.3177 2.73419
952952 0 0
953953 −36.0911 −1.16910 −0.584552 0.811356i 0.698730π-0.698730\pi
−0.584552 + 0.811356i 0.698730π0.698730\pi
954954 4.64471 0.150378
955955 11.3573 0.367515
956956 −59.6275 −1.92849
957957 6.40491 0.207041
958958 71.6991 2.31649
959959 0 0
960960 −29.4235 −0.949639
961961 −22.0676 −0.711857
962962 0 0
963963 −73.0409 −2.35371
964964 14.8331 0.477743
965965 23.1610 0.745580
966966 0 0
967967 −3.18338 −0.102371 −0.0511853 0.998689i 0.516300π-0.516300\pi
−0.0511853 + 0.998689i 0.516300π0.516300\pi
968968 −43.3229 −1.39245
969969 67.9602 2.18320
970970 18.0551 0.579715
971971 37.7476 1.21138 0.605690 0.795701i 0.292897π-0.292897\pi
0.605690 + 0.795701i 0.292897π0.292897\pi
972972 66.5591 2.13488
973973 0 0
974974 68.0359 2.18001
975975 0 0
976976 5.08589 0.162795
977977 21.3076 0.681692 0.340846 0.940119i 0.389287π-0.389287\pi
0.340846 + 0.940119i 0.389287π0.389287\pi
978978 53.7290 1.71806
979979 1.23034 0.0393217
980980 0 0
981981 −42.2087 −1.34762
982982 −67.9819 −2.16939
983983 22.0316 0.702700 0.351350 0.936244i 0.385723π-0.385723\pi
0.351350 + 0.936244i 0.385723π0.385723\pi
984984 41.0787 1.30954
985985 −1.44488 −0.0460377
986986 61.0378 1.94384
987987 0 0
988988 0 0
989989 52.7059 1.67595
990990 −6.30208 −0.200293
991991 −22.0259 −0.699676 −0.349838 0.936810i 0.613763π-0.613763\pi
−0.349838 + 0.936810i 0.613763π0.613763\pi
992992 −7.85617 −0.249434
993993 74.9164 2.37740
994994 0 0
995995 −9.22753 −0.292532
996996 −29.2210 −0.925902
997997 10.0820 0.319301 0.159651 0.987174i 0.448963π-0.448963\pi
0.159651 + 0.987174i 0.448963π0.448963\pi
998998 62.6450 1.98299
999999 7.58815 0.240078
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ce.1.6 6
7.2 even 3 1183.2.e.g.508.1 12
7.4 even 3 1183.2.e.g.170.1 12
7.6 odd 2 8281.2.a.cf.1.6 6
13.4 even 6 637.2.f.k.393.6 12
13.10 even 6 637.2.f.k.295.6 12
13.12 even 2 8281.2.a.bz.1.1 6
91.4 even 6 91.2.h.b.16.1 yes 12
91.10 odd 6 637.2.g.l.373.6 12
91.17 odd 6 637.2.h.l.471.1 12
91.23 even 6 91.2.h.b.74.1 yes 12
91.25 even 6 1183.2.e.h.170.6 12
91.30 even 6 91.2.g.b.81.6 yes 12
91.51 even 6 1183.2.e.h.508.6 12
91.62 odd 6 637.2.f.j.295.6 12
91.69 odd 6 637.2.f.j.393.6 12
91.75 odd 6 637.2.h.l.165.1 12
91.82 odd 6 637.2.g.l.263.6 12
91.88 even 6 91.2.g.b.9.6 12
91.90 odd 2 8281.2.a.ca.1.1 6
273.23 odd 6 819.2.s.d.802.6 12
273.95 odd 6 819.2.s.d.289.6 12
273.179 odd 6 819.2.n.d.100.1 12
273.212 odd 6 819.2.n.d.172.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.6 12 91.88 even 6
91.2.g.b.81.6 yes 12 91.30 even 6
91.2.h.b.16.1 yes 12 91.4 even 6
91.2.h.b.74.1 yes 12 91.23 even 6
637.2.f.j.295.6 12 91.62 odd 6
637.2.f.j.393.6 12 91.69 odd 6
637.2.f.k.295.6 12 13.10 even 6
637.2.f.k.393.6 12 13.4 even 6
637.2.g.l.263.6 12 91.82 odd 6
637.2.g.l.373.6 12 91.10 odd 6
637.2.h.l.165.1 12 91.75 odd 6
637.2.h.l.471.1 12 91.17 odd 6
819.2.n.d.100.1 12 273.179 odd 6
819.2.n.d.172.1 12 273.212 odd 6
819.2.s.d.289.6 12 273.95 odd 6
819.2.s.d.802.6 12 273.23 odd 6
1183.2.e.g.170.1 12 7.4 even 3
1183.2.e.g.508.1 12 7.2 even 3
1183.2.e.h.170.6 12 91.25 even 6
1183.2.e.h.508.6 12 91.51 even 6
8281.2.a.bz.1.1 6 13.12 even 2
8281.2.a.ca.1.1 6 91.90 odd 2
8281.2.a.ce.1.6 6 1.1 even 1 trivial
8281.2.a.cf.1.6 6 7.6 odd 2