Properties

Label 8281.2.a.ce.1.6
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.6995813.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.363441\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38804 q^{2} -2.75148 q^{3} +3.70272 q^{4} -0.982280 q^{5} -6.57063 q^{6} +4.06616 q^{8} +4.57063 q^{9} -2.34572 q^{10} +0.587802 q^{11} -10.1880 q^{12} +2.70272 q^{15} +2.30470 q^{16} -6.45420 q^{17} +10.9148 q^{18} +3.82689 q^{19} -3.63711 q^{20} +1.40369 q^{22} +8.26001 q^{23} -11.1880 q^{24} -4.03513 q^{25} -4.32156 q^{27} -3.96018 q^{29} +6.45420 q^{30} +2.98872 q^{31} -2.62861 q^{32} -1.61733 q^{33} -15.4129 q^{34} +16.9238 q^{36} -1.75588 q^{37} +9.13877 q^{38} -3.99411 q^{40} -3.67169 q^{41} +6.38085 q^{43} +2.17647 q^{44} -4.48964 q^{45} +19.7252 q^{46} +4.34059 q^{47} -6.34134 q^{48} -9.63603 q^{50} +17.7586 q^{51} +0.425541 q^{53} -10.3200 q^{54} -0.577387 q^{55} -10.5296 q^{57} -9.45706 q^{58} -6.00863 q^{59} +10.0074 q^{60} +2.20674 q^{61} +7.13717 q^{62} -10.8866 q^{64} -3.86223 q^{66} -7.01303 q^{67} -23.8981 q^{68} -22.7272 q^{69} -3.60253 q^{71} +18.5849 q^{72} -4.93427 q^{73} -4.19311 q^{74} +11.1026 q^{75} +14.1699 q^{76} +2.78541 q^{79} -2.26386 q^{80} -1.82122 q^{81} -8.76812 q^{82} +2.86819 q^{83} +6.33983 q^{85} +15.2377 q^{86} +10.8964 q^{87} +2.39010 q^{88} +2.09311 q^{89} -10.7214 q^{90} +30.5845 q^{92} -8.22340 q^{93} +10.3655 q^{94} -3.75908 q^{95} +7.23255 q^{96} -7.69704 q^{97} +2.68663 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - q^{3} + 4 q^{4} + q^{5} - 9 q^{6} + 3 q^{8} - 3 q^{9} - 4 q^{10} + 4 q^{11} - 5 q^{12} - 2 q^{15} - 8 q^{16} - 5 q^{17} + 3 q^{18} - q^{19} - q^{20} + 5 q^{22} + q^{23} - 11 q^{24}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38804 1.68860 0.844299 0.535873i \(-0.180017\pi\)
0.844299 + 0.535873i \(0.180017\pi\)
\(3\) −2.75148 −1.58857 −0.794283 0.607548i \(-0.792153\pi\)
−0.794283 + 0.607548i \(0.792153\pi\)
\(4\) 3.70272 1.85136
\(5\) −0.982280 −0.439289 −0.219644 0.975580i \(-0.570490\pi\)
−0.219644 + 0.975580i \(0.570490\pi\)
\(6\) −6.57063 −2.68245
\(7\) 0 0
\(8\) 4.06616 1.43761
\(9\) 4.57063 1.52354
\(10\) −2.34572 −0.741782
\(11\) 0.587802 0.177229 0.0886146 0.996066i \(-0.471756\pi\)
0.0886146 + 0.996066i \(0.471756\pi\)
\(12\) −10.1880 −2.94101
\(13\) 0 0
\(14\) 0 0
\(15\) 2.70272 0.697840
\(16\) 2.30470 0.576176
\(17\) −6.45420 −1.56537 −0.782687 0.622416i \(-0.786151\pi\)
−0.782687 + 0.622416i \(0.786151\pi\)
\(18\) 10.9148 2.57265
\(19\) 3.82689 0.877950 0.438975 0.898499i \(-0.355342\pi\)
0.438975 + 0.898499i \(0.355342\pi\)
\(20\) −3.63711 −0.813282
\(21\) 0 0
\(22\) 1.40369 0.299269
\(23\) 8.26001 1.72233 0.861166 0.508324i \(-0.169735\pi\)
0.861166 + 0.508324i \(0.169735\pi\)
\(24\) −11.1880 −2.28373
\(25\) −4.03513 −0.807025
\(26\) 0 0
\(27\) −4.32156 −0.831685
\(28\) 0 0
\(29\) −3.96018 −0.735387 −0.367694 0.929947i \(-0.619853\pi\)
−0.367694 + 0.929947i \(0.619853\pi\)
\(30\) 6.45420 1.17837
\(31\) 2.98872 0.536790 0.268395 0.963309i \(-0.413507\pi\)
0.268395 + 0.963309i \(0.413507\pi\)
\(32\) −2.62861 −0.464676
\(33\) −1.61733 −0.281540
\(34\) −15.4129 −2.64329
\(35\) 0 0
\(36\) 16.9238 2.82063
\(37\) −1.75588 −0.288665 −0.144333 0.989529i \(-0.546104\pi\)
−0.144333 + 0.989529i \(0.546104\pi\)
\(38\) 9.13877 1.48250
\(39\) 0 0
\(40\) −3.99411 −0.631524
\(41\) −3.67169 −0.573421 −0.286710 0.958017i \(-0.592562\pi\)
−0.286710 + 0.958017i \(0.592562\pi\)
\(42\) 0 0
\(43\) 6.38085 0.973070 0.486535 0.873661i \(-0.338261\pi\)
0.486535 + 0.873661i \(0.338261\pi\)
\(44\) 2.17647 0.328115
\(45\) −4.48964 −0.669276
\(46\) 19.7252 2.90832
\(47\) 4.34059 0.633141 0.316570 0.948569i \(-0.397469\pi\)
0.316570 + 0.948569i \(0.397469\pi\)
\(48\) −6.34134 −0.915294
\(49\) 0 0
\(50\) −9.63603 −1.36274
\(51\) 17.7586 2.48670
\(52\) 0 0
\(53\) 0.425541 0.0584525 0.0292263 0.999573i \(-0.490696\pi\)
0.0292263 + 0.999573i \(0.490696\pi\)
\(54\) −10.3200 −1.40438
\(55\) −0.577387 −0.0778548
\(56\) 0 0
\(57\) −10.5296 −1.39468
\(58\) −9.45706 −1.24177
\(59\) −6.00863 −0.782256 −0.391128 0.920336i \(-0.627915\pi\)
−0.391128 + 0.920336i \(0.627915\pi\)
\(60\) 10.0074 1.29195
\(61\) 2.20674 0.282544 0.141272 0.989971i \(-0.454881\pi\)
0.141272 + 0.989971i \(0.454881\pi\)
\(62\) 7.13717 0.906422
\(63\) 0 0
\(64\) −10.8866 −1.36083
\(65\) 0 0
\(66\) −3.86223 −0.475408
\(67\) −7.01303 −0.856778 −0.428389 0.903594i \(-0.640919\pi\)
−0.428389 + 0.903594i \(0.640919\pi\)
\(68\) −23.8981 −2.89807
\(69\) −22.7272 −2.73604
\(70\) 0 0
\(71\) −3.60253 −0.427542 −0.213771 0.976884i \(-0.568575\pi\)
−0.213771 + 0.976884i \(0.568575\pi\)
\(72\) 18.5849 2.19026
\(73\) −4.93427 −0.577513 −0.288756 0.957403i \(-0.593242\pi\)
−0.288756 + 0.957403i \(0.593242\pi\)
\(74\) −4.19311 −0.487439
\(75\) 11.1026 1.28201
\(76\) 14.1699 1.62540
\(77\) 0 0
\(78\) 0 0
\(79\) 2.78541 0.313383 0.156691 0.987648i \(-0.449917\pi\)
0.156691 + 0.987648i \(0.449917\pi\)
\(80\) −2.26386 −0.253108
\(81\) −1.82122 −0.202357
\(82\) −8.76812 −0.968277
\(83\) 2.86819 0.314825 0.157412 0.987533i \(-0.449685\pi\)
0.157412 + 0.987533i \(0.449685\pi\)
\(84\) 0 0
\(85\) 6.33983 0.687651
\(86\) 15.2377 1.64312
\(87\) 10.8964 1.16821
\(88\) 2.39010 0.254786
\(89\) 2.09311 0.221870 0.110935 0.993828i \(-0.464616\pi\)
0.110935 + 0.993828i \(0.464616\pi\)
\(90\) −10.7214 −1.13014
\(91\) 0 0
\(92\) 30.5845 3.18866
\(93\) −8.22340 −0.852727
\(94\) 10.3655 1.06912
\(95\) −3.75908 −0.385674
\(96\) 7.23255 0.738169
\(97\) −7.69704 −0.781516 −0.390758 0.920493i \(-0.627787\pi\)
−0.390758 + 0.920493i \(0.627787\pi\)
\(98\) 0 0
\(99\) 2.68663 0.270016
\(100\) −14.9409 −1.49409
\(101\) −2.63732 −0.262423 −0.131212 0.991354i \(-0.541887\pi\)
−0.131212 + 0.991354i \(0.541887\pi\)
\(102\) 42.4082 4.19903
\(103\) −10.8619 −1.07026 −0.535128 0.844771i \(-0.679737\pi\)
−0.535128 + 0.844771i \(0.679737\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.01621 0.0987027
\(107\) −15.9805 −1.54489 −0.772446 0.635080i \(-0.780967\pi\)
−0.772446 + 0.635080i \(0.780967\pi\)
\(108\) −16.0015 −1.53975
\(109\) −9.23477 −0.884530 −0.442265 0.896884i \(-0.645825\pi\)
−0.442265 + 0.896884i \(0.645825\pi\)
\(110\) −1.37882 −0.131465
\(111\) 4.83127 0.458564
\(112\) 0 0
\(113\) 10.1802 0.957677 0.478838 0.877903i \(-0.341058\pi\)
0.478838 + 0.877903i \(0.341058\pi\)
\(114\) −25.1451 −2.35506
\(115\) −8.11364 −0.756601
\(116\) −14.6635 −1.36147
\(117\) 0 0
\(118\) −14.3488 −1.32092
\(119\) 0 0
\(120\) 10.9897 1.00322
\(121\) −10.6545 −0.968590
\(122\) 5.26978 0.477104
\(123\) 10.1026 0.910917
\(124\) 11.0664 0.993792
\(125\) 8.87502 0.793806
\(126\) 0 0
\(127\) 4.25026 0.377149 0.188575 0.982059i \(-0.439613\pi\)
0.188575 + 0.982059i \(0.439613\pi\)
\(128\) −20.7404 −1.83321
\(129\) −17.5568 −1.54579
\(130\) 0 0
\(131\) −2.16957 −0.189556 −0.0947779 0.995498i \(-0.530214\pi\)
−0.0947779 + 0.995498i \(0.530214\pi\)
\(132\) −5.98851 −0.521233
\(133\) 0 0
\(134\) −16.7474 −1.44675
\(135\) 4.24498 0.365350
\(136\) −26.2438 −2.25039
\(137\) −8.36316 −0.714513 −0.357257 0.934006i \(-0.616288\pi\)
−0.357257 + 0.934006i \(0.616288\pi\)
\(138\) −54.2735 −4.62007
\(139\) −0.576914 −0.0489332 −0.0244666 0.999701i \(-0.507789\pi\)
−0.0244666 + 0.999701i \(0.507789\pi\)
\(140\) 0 0
\(141\) −11.9430 −1.00579
\(142\) −8.60298 −0.721946
\(143\) 0 0
\(144\) 10.5340 0.877830
\(145\) 3.89001 0.323048
\(146\) −11.7832 −0.975187
\(147\) 0 0
\(148\) −6.50154 −0.534423
\(149\) −2.80662 −0.229928 −0.114964 0.993370i \(-0.536675\pi\)
−0.114964 + 0.993370i \(0.536675\pi\)
\(150\) 26.5133 2.16480
\(151\) 23.0109 1.87260 0.936300 0.351202i \(-0.114227\pi\)
0.936300 + 0.351202i \(0.114227\pi\)
\(152\) 15.5608 1.26215
\(153\) −29.4998 −2.38492
\(154\) 0 0
\(155\) −2.93576 −0.235806
\(156\) 0 0
\(157\) 22.5760 1.80176 0.900879 0.434071i \(-0.142923\pi\)
0.900879 + 0.434071i \(0.142923\pi\)
\(158\) 6.65165 0.529177
\(159\) −1.17087 −0.0928557
\(160\) 2.58203 0.204127
\(161\) 0 0
\(162\) −4.34913 −0.341700
\(163\) −8.17714 −0.640483 −0.320242 0.947336i \(-0.603764\pi\)
−0.320242 + 0.947336i \(0.603764\pi\)
\(164\) −13.5952 −1.06161
\(165\) 1.58867 0.123678
\(166\) 6.84934 0.531612
\(167\) 2.32771 0.180124 0.0900619 0.995936i \(-0.471293\pi\)
0.0900619 + 0.995936i \(0.471293\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 15.1398 1.16117
\(171\) 17.4913 1.33760
\(172\) 23.6265 1.80150
\(173\) −8.13372 −0.618396 −0.309198 0.950998i \(-0.600061\pi\)
−0.309198 + 0.950998i \(0.600061\pi\)
\(174\) 26.0209 1.97264
\(175\) 0 0
\(176\) 1.35471 0.102115
\(177\) 16.5326 1.24267
\(178\) 4.99843 0.374648
\(179\) −20.9925 −1.56906 −0.784528 0.620093i \(-0.787095\pi\)
−0.784528 + 0.620093i \(0.787095\pi\)
\(180\) −16.6239 −1.23907
\(181\) −1.60807 −0.119527 −0.0597635 0.998213i \(-0.519035\pi\)
−0.0597635 + 0.998213i \(0.519035\pi\)
\(182\) 0 0
\(183\) −6.07180 −0.448841
\(184\) 33.5865 2.47603
\(185\) 1.72477 0.126807
\(186\) −19.6378 −1.43991
\(187\) −3.79379 −0.277430
\(188\) 16.0720 1.17217
\(189\) 0 0
\(190\) −8.97683 −0.651247
\(191\) −11.5622 −0.836614 −0.418307 0.908306i \(-0.637376\pi\)
−0.418307 + 0.908306i \(0.637376\pi\)
\(192\) 29.9543 2.16176
\(193\) −23.5788 −1.69724 −0.848621 0.529001i \(-0.822567\pi\)
−0.848621 + 0.529001i \(0.822567\pi\)
\(194\) −18.3808 −1.31967
\(195\) 0 0
\(196\) 0 0
\(197\) 1.47094 0.104800 0.0524002 0.998626i \(-0.483313\pi\)
0.0524002 + 0.998626i \(0.483313\pi\)
\(198\) 6.41577 0.455949
\(199\) 9.39399 0.665922 0.332961 0.942941i \(-0.391952\pi\)
0.332961 + 0.942941i \(0.391952\pi\)
\(200\) −16.4075 −1.16018
\(201\) 19.2962 1.36105
\(202\) −6.29802 −0.443127
\(203\) 0 0
\(204\) 65.7551 4.60378
\(205\) 3.60662 0.251897
\(206\) −25.9386 −1.80723
\(207\) 37.7535 2.62405
\(208\) 0 0
\(209\) 2.24946 0.155598
\(210\) 0 0
\(211\) −8.94219 −0.615605 −0.307803 0.951450i \(-0.599594\pi\)
−0.307803 + 0.951450i \(0.599594\pi\)
\(212\) 1.57566 0.108217
\(213\) 9.91229 0.679179
\(214\) −38.1620 −2.60870
\(215\) −6.26778 −0.427459
\(216\) −17.5722 −1.19563
\(217\) 0 0
\(218\) −22.0530 −1.49362
\(219\) 13.5765 0.917418
\(220\) −2.13790 −0.144137
\(221\) 0 0
\(222\) 11.5373 0.774330
\(223\) −21.8196 −1.46115 −0.730574 0.682833i \(-0.760748\pi\)
−0.730574 + 0.682833i \(0.760748\pi\)
\(224\) 0 0
\(225\) −18.4431 −1.22954
\(226\) 24.3108 1.61713
\(227\) 18.5525 1.23137 0.615687 0.787990i \(-0.288878\pi\)
0.615687 + 0.787990i \(0.288878\pi\)
\(228\) −38.9882 −2.58206
\(229\) −19.3505 −1.27872 −0.639359 0.768909i \(-0.720800\pi\)
−0.639359 + 0.768909i \(0.720800\pi\)
\(230\) −19.3757 −1.27759
\(231\) 0 0
\(232\) −16.1027 −1.05720
\(233\) 16.1634 1.05890 0.529450 0.848341i \(-0.322398\pi\)
0.529450 + 0.848341i \(0.322398\pi\)
\(234\) 0 0
\(235\) −4.26368 −0.278132
\(236\) −22.2483 −1.44824
\(237\) −7.66398 −0.497829
\(238\) 0 0
\(239\) −16.1037 −1.04166 −0.520831 0.853660i \(-0.674378\pi\)
−0.520831 + 0.853660i \(0.674378\pi\)
\(240\) 6.22897 0.402079
\(241\) 4.00600 0.258049 0.129025 0.991641i \(-0.458815\pi\)
0.129025 + 0.991641i \(0.458815\pi\)
\(242\) −25.4433 −1.63556
\(243\) 17.9757 1.15314
\(244\) 8.17095 0.523092
\(245\) 0 0
\(246\) 24.1253 1.53817
\(247\) 0 0
\(248\) 12.1526 0.771692
\(249\) −7.89176 −0.500120
\(250\) 21.1939 1.34042
\(251\) 3.24688 0.204941 0.102471 0.994736i \(-0.467325\pi\)
0.102471 + 0.994736i \(0.467325\pi\)
\(252\) 0 0
\(253\) 4.85525 0.305247
\(254\) 10.1498 0.636853
\(255\) −17.4439 −1.09238
\(256\) −27.7557 −1.73473
\(257\) −26.8924 −1.67750 −0.838751 0.544516i \(-0.816713\pi\)
−0.838751 + 0.544516i \(0.816713\pi\)
\(258\) −41.9262 −2.61021
\(259\) 0 0
\(260\) 0 0
\(261\) −18.1005 −1.12040
\(262\) −5.18100 −0.320084
\(263\) −3.80706 −0.234753 −0.117377 0.993087i \(-0.537448\pi\)
−0.117377 + 0.993087i \(0.537448\pi\)
\(264\) −6.57631 −0.404744
\(265\) −0.418000 −0.0256775
\(266\) 0 0
\(267\) −5.75915 −0.352455
\(268\) −25.9673 −1.58620
\(269\) −23.8381 −1.45343 −0.726716 0.686938i \(-0.758954\pi\)
−0.726716 + 0.686938i \(0.758954\pi\)
\(270\) 10.1372 0.616929
\(271\) −9.90135 −0.601464 −0.300732 0.953709i \(-0.597231\pi\)
−0.300732 + 0.953709i \(0.597231\pi\)
\(272\) −14.8750 −0.901931
\(273\) 0 0
\(274\) −19.9715 −1.20653
\(275\) −2.37186 −0.143028
\(276\) −84.1526 −5.06539
\(277\) 11.7858 0.708139 0.354069 0.935219i \(-0.384798\pi\)
0.354069 + 0.935219i \(0.384798\pi\)
\(278\) −1.37769 −0.0826285
\(279\) 13.6603 0.817823
\(280\) 0 0
\(281\) −12.9976 −0.775372 −0.387686 0.921791i \(-0.626726\pi\)
−0.387686 + 0.921791i \(0.626726\pi\)
\(282\) −28.5204 −1.69837
\(283\) −16.8050 −0.998952 −0.499476 0.866328i \(-0.666474\pi\)
−0.499476 + 0.866328i \(0.666474\pi\)
\(284\) −13.3392 −0.791534
\(285\) 10.3430 0.612668
\(286\) 0 0
\(287\) 0 0
\(288\) −12.0144 −0.707955
\(289\) 24.6567 1.45039
\(290\) 9.28948 0.545497
\(291\) 21.1783 1.24149
\(292\) −18.2702 −1.06918
\(293\) 14.0956 0.823476 0.411738 0.911302i \(-0.364922\pi\)
0.411738 + 0.911302i \(0.364922\pi\)
\(294\) 0 0
\(295\) 5.90215 0.343637
\(296\) −7.13970 −0.414987
\(297\) −2.54022 −0.147399
\(298\) −6.70232 −0.388255
\(299\) 0 0
\(300\) 41.1097 2.37347
\(301\) 0 0
\(302\) 54.9508 3.16207
\(303\) 7.25654 0.416877
\(304\) 8.81986 0.505854
\(305\) −2.16764 −0.124119
\(306\) −70.4466 −4.02716
\(307\) −15.8786 −0.906240 −0.453120 0.891450i \(-0.649689\pi\)
−0.453120 + 0.891450i \(0.649689\pi\)
\(308\) 0 0
\(309\) 29.8863 1.70017
\(310\) −7.01070 −0.398181
\(311\) −28.6034 −1.62195 −0.810975 0.585081i \(-0.801063\pi\)
−0.810975 + 0.585081i \(0.801063\pi\)
\(312\) 0 0
\(313\) −18.5792 −1.05016 −0.525080 0.851053i \(-0.675965\pi\)
−0.525080 + 0.851053i \(0.675965\pi\)
\(314\) 53.9122 3.04244
\(315\) 0 0
\(316\) 10.3136 0.580184
\(317\) −30.6445 −1.72117 −0.860584 0.509309i \(-0.829901\pi\)
−0.860584 + 0.509309i \(0.829901\pi\)
\(318\) −2.79607 −0.156796
\(319\) −2.32781 −0.130332
\(320\) 10.6937 0.597796
\(321\) 43.9700 2.45416
\(322\) 0 0
\(323\) −24.6995 −1.37432
\(324\) −6.74346 −0.374637
\(325\) 0 0
\(326\) −19.5273 −1.08152
\(327\) 25.4093 1.40514
\(328\) −14.9297 −0.824353
\(329\) 0 0
\(330\) 3.79379 0.208842
\(331\) −27.2277 −1.49657 −0.748284 0.663378i \(-0.769122\pi\)
−0.748284 + 0.663378i \(0.769122\pi\)
\(332\) 10.6201 0.582854
\(333\) −8.02549 −0.439794
\(334\) 5.55867 0.304157
\(335\) 6.88876 0.376373
\(336\) 0 0
\(337\) −12.3160 −0.670898 −0.335449 0.942058i \(-0.608888\pi\)
−0.335449 + 0.942058i \(0.608888\pi\)
\(338\) 0 0
\(339\) −28.0107 −1.52133
\(340\) 23.4746 1.27309
\(341\) 1.75678 0.0951348
\(342\) 41.7699 2.25866
\(343\) 0 0
\(344\) 25.9456 1.39889
\(345\) 22.3245 1.20191
\(346\) −19.4236 −1.04422
\(347\) 6.14506 0.329884 0.164942 0.986303i \(-0.447256\pi\)
0.164942 + 0.986303i \(0.447256\pi\)
\(348\) 40.3462 2.16278
\(349\) −13.0313 −0.697547 −0.348774 0.937207i \(-0.613402\pi\)
−0.348774 + 0.937207i \(0.613402\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.54510 −0.0823541
\(353\) −31.6665 −1.68544 −0.842718 0.538356i \(-0.819046\pi\)
−0.842718 + 0.538356i \(0.819046\pi\)
\(354\) 39.4805 2.09836
\(355\) 3.53870 0.187814
\(356\) 7.75021 0.410761
\(357\) 0 0
\(358\) −50.1310 −2.64950
\(359\) −19.9322 −1.05198 −0.525991 0.850490i \(-0.676305\pi\)
−0.525991 + 0.850490i \(0.676305\pi\)
\(360\) −18.2556 −0.962155
\(361\) −4.35488 −0.229204
\(362\) −3.84014 −0.201833
\(363\) 29.3156 1.53867
\(364\) 0 0
\(365\) 4.84684 0.253695
\(366\) −14.4997 −0.757911
\(367\) 19.7190 1.02932 0.514662 0.857393i \(-0.327918\pi\)
0.514662 + 0.857393i \(0.327918\pi\)
\(368\) 19.0369 0.992366
\(369\) −16.7819 −0.873632
\(370\) 4.11881 0.214127
\(371\) 0 0
\(372\) −30.4490 −1.57870
\(373\) 17.5469 0.908544 0.454272 0.890863i \(-0.349899\pi\)
0.454272 + 0.890863i \(0.349899\pi\)
\(374\) −9.05972 −0.468467
\(375\) −24.4194 −1.26101
\(376\) 17.6496 0.910207
\(377\) 0 0
\(378\) 0 0
\(379\) 11.7014 0.601058 0.300529 0.953773i \(-0.402837\pi\)
0.300529 + 0.953773i \(0.402837\pi\)
\(380\) −13.9188 −0.714021
\(381\) −11.6945 −0.599127
\(382\) −27.6110 −1.41270
\(383\) 21.5288 1.10007 0.550036 0.835141i \(-0.314614\pi\)
0.550036 + 0.835141i \(0.314614\pi\)
\(384\) 57.0669 2.91218
\(385\) 0 0
\(386\) −56.3072 −2.86596
\(387\) 29.1645 1.48252
\(388\) −28.5000 −1.44687
\(389\) 26.4910 1.34315 0.671574 0.740938i \(-0.265619\pi\)
0.671574 + 0.740938i \(0.265619\pi\)
\(390\) 0 0
\(391\) −53.3118 −2.69609
\(392\) 0 0
\(393\) 5.96951 0.301122
\(394\) 3.51267 0.176966
\(395\) −2.73605 −0.137665
\(396\) 9.94784 0.499898
\(397\) 33.7989 1.69632 0.848160 0.529740i \(-0.177711\pi\)
0.848160 + 0.529740i \(0.177711\pi\)
\(398\) 22.4332 1.12447
\(399\) 0 0
\(400\) −9.29977 −0.464989
\(401\) −21.6119 −1.07925 −0.539623 0.841907i \(-0.681433\pi\)
−0.539623 + 0.841907i \(0.681433\pi\)
\(402\) 46.0800 2.29826
\(403\) 0 0
\(404\) −9.76527 −0.485840
\(405\) 1.78895 0.0888934
\(406\) 0 0
\(407\) −1.03211 −0.0511599
\(408\) 72.2093 3.57489
\(409\) −7.74217 −0.382826 −0.191413 0.981510i \(-0.561307\pi\)
−0.191413 + 0.981510i \(0.561307\pi\)
\(410\) 8.61275 0.425353
\(411\) 23.0111 1.13505
\(412\) −40.2186 −1.98143
\(413\) 0 0
\(414\) 90.1567 4.43096
\(415\) −2.81736 −0.138299
\(416\) 0 0
\(417\) 1.58737 0.0777337
\(418\) 5.37179 0.262743
\(419\) −8.10194 −0.395806 −0.197903 0.980222i \(-0.563413\pi\)
−0.197903 + 0.980222i \(0.563413\pi\)
\(420\) 0 0
\(421\) 32.1124 1.56506 0.782530 0.622612i \(-0.213929\pi\)
0.782530 + 0.622612i \(0.213929\pi\)
\(422\) −21.3543 −1.03951
\(423\) 19.8393 0.964618
\(424\) 1.73032 0.0840316
\(425\) 26.0435 1.26330
\(426\) 23.6709 1.14686
\(427\) 0 0
\(428\) −59.1713 −2.86015
\(429\) 0 0
\(430\) −14.9677 −0.721806
\(431\) 29.5281 1.42232 0.711159 0.703031i \(-0.248171\pi\)
0.711159 + 0.703031i \(0.248171\pi\)
\(432\) −9.95992 −0.479197
\(433\) 22.0910 1.06163 0.530813 0.847489i \(-0.321887\pi\)
0.530813 + 0.847489i \(0.321887\pi\)
\(434\) 0 0
\(435\) −10.7033 −0.513183
\(436\) −34.1938 −1.63758
\(437\) 31.6102 1.51212
\(438\) 32.4213 1.54915
\(439\) −6.35580 −0.303346 −0.151673 0.988431i \(-0.548466\pi\)
−0.151673 + 0.988431i \(0.548466\pi\)
\(440\) −2.34775 −0.111924
\(441\) 0 0
\(442\) 0 0
\(443\) −13.5627 −0.644383 −0.322192 0.946675i \(-0.604420\pi\)
−0.322192 + 0.946675i \(0.604420\pi\)
\(444\) 17.8889 0.848967
\(445\) −2.05602 −0.0974648
\(446\) −52.1060 −2.46729
\(447\) 7.72237 0.365255
\(448\) 0 0
\(449\) −21.9118 −1.03408 −0.517041 0.855961i \(-0.672966\pi\)
−0.517041 + 0.855961i \(0.672966\pi\)
\(450\) −44.0428 −2.07620
\(451\) −2.15823 −0.101627
\(452\) 37.6946 1.77300
\(453\) −63.3139 −2.97475
\(454\) 44.3041 2.07930
\(455\) 0 0
\(456\) −42.8151 −2.00500
\(457\) −15.2146 −0.711710 −0.355855 0.934541i \(-0.615810\pi\)
−0.355855 + 0.934541i \(0.615810\pi\)
\(458\) −46.2097 −2.15924
\(459\) 27.8922 1.30190
\(460\) −30.0426 −1.40074
\(461\) 16.2163 0.755267 0.377633 0.925955i \(-0.376738\pi\)
0.377633 + 0.925955i \(0.376738\pi\)
\(462\) 0 0
\(463\) 1.44769 0.0672799 0.0336400 0.999434i \(-0.489290\pi\)
0.0336400 + 0.999434i \(0.489290\pi\)
\(464\) −9.12705 −0.423713
\(465\) 8.07768 0.374593
\(466\) 38.5988 1.78805
\(467\) 14.0067 0.648155 0.324078 0.946031i \(-0.394946\pi\)
0.324078 + 0.946031i \(0.394946\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −10.1818 −0.469652
\(471\) −62.1172 −2.86221
\(472\) −24.4320 −1.12458
\(473\) 3.75068 0.172456
\(474\) −18.3019 −0.840633
\(475\) −15.4420 −0.708528
\(476\) 0 0
\(477\) 1.94499 0.0890550
\(478\) −38.4562 −1.75895
\(479\) 30.0243 1.37185 0.685923 0.727674i \(-0.259399\pi\)
0.685923 + 0.727674i \(0.259399\pi\)
\(480\) −7.10439 −0.324270
\(481\) 0 0
\(482\) 9.56649 0.435742
\(483\) 0 0
\(484\) −39.4506 −1.79321
\(485\) 7.56065 0.343312
\(486\) 42.9267 1.94719
\(487\) 28.4903 1.29102 0.645510 0.763752i \(-0.276645\pi\)
0.645510 + 0.763752i \(0.276645\pi\)
\(488\) 8.97297 0.406187
\(489\) 22.4992 1.01745
\(490\) 0 0
\(491\) −28.4677 −1.28473 −0.642365 0.766399i \(-0.722047\pi\)
−0.642365 + 0.766399i \(0.722047\pi\)
\(492\) 37.4070 1.68644
\(493\) 25.5598 1.15116
\(494\) 0 0
\(495\) −2.63902 −0.118615
\(496\) 6.88812 0.309286
\(497\) 0 0
\(498\) −18.8458 −0.844501
\(499\) 26.2329 1.17434 0.587172 0.809462i \(-0.300241\pi\)
0.587172 + 0.809462i \(0.300241\pi\)
\(500\) 32.8617 1.46962
\(501\) −6.40465 −0.286139
\(502\) 7.75367 0.346063
\(503\) 8.53175 0.380412 0.190206 0.981744i \(-0.439084\pi\)
0.190206 + 0.981744i \(0.439084\pi\)
\(504\) 0 0
\(505\) 2.59059 0.115280
\(506\) 11.5945 0.515440
\(507\) 0 0
\(508\) 15.7375 0.698240
\(509\) 13.0260 0.577366 0.288683 0.957425i \(-0.406783\pi\)
0.288683 + 0.957425i \(0.406783\pi\)
\(510\) −41.6567 −1.84459
\(511\) 0 0
\(512\) −24.8008 −1.09605
\(513\) −16.5382 −0.730177
\(514\) −64.2200 −2.83262
\(515\) 10.6694 0.470151
\(516\) −65.0078 −2.86181
\(517\) 2.55141 0.112211
\(518\) 0 0
\(519\) 22.3798 0.982363
\(520\) 0 0
\(521\) 4.46570 0.195646 0.0978230 0.995204i \(-0.468812\pi\)
0.0978230 + 0.995204i \(0.468812\pi\)
\(522\) −43.2248 −1.89190
\(523\) −2.90811 −0.127163 −0.0635815 0.997977i \(-0.520252\pi\)
−0.0635815 + 0.997977i \(0.520252\pi\)
\(524\) −8.03330 −0.350936
\(525\) 0 0
\(526\) −9.09140 −0.396404
\(527\) −19.2898 −0.840277
\(528\) −3.72746 −0.162217
\(529\) 45.2278 1.96643
\(530\) −0.998200 −0.0433590
\(531\) −27.4632 −1.19180
\(532\) 0 0
\(533\) 0 0
\(534\) −13.7531 −0.595154
\(535\) 15.6973 0.678654
\(536\) −28.5161 −1.23171
\(537\) 57.7605 2.49255
\(538\) −56.9262 −2.45426
\(539\) 0 0
\(540\) 15.7180 0.676394
\(541\) 18.4639 0.793824 0.396912 0.917857i \(-0.370082\pi\)
0.396912 + 0.917857i \(0.370082\pi\)
\(542\) −23.6448 −1.01563
\(543\) 4.42458 0.189877
\(544\) 16.9655 0.727392
\(545\) 9.07112 0.388564
\(546\) 0 0
\(547\) 34.9817 1.49571 0.747856 0.663861i \(-0.231083\pi\)
0.747856 + 0.663861i \(0.231083\pi\)
\(548\) −30.9665 −1.32282
\(549\) 10.0862 0.430469
\(550\) −5.66408 −0.241517
\(551\) −15.1552 −0.645633
\(552\) −92.4127 −3.93334
\(553\) 0 0
\(554\) 28.1449 1.19576
\(555\) −4.74566 −0.201442
\(556\) −2.13615 −0.0905930
\(557\) −0.0531413 −0.00225167 −0.00112583 0.999999i \(-0.500358\pi\)
−0.00112583 + 0.999999i \(0.500358\pi\)
\(558\) 32.6214 1.38097
\(559\) 0 0
\(560\) 0 0
\(561\) 10.4385 0.440716
\(562\) −31.0388 −1.30929
\(563\) 7.98506 0.336530 0.168265 0.985742i \(-0.446184\pi\)
0.168265 + 0.985742i \(0.446184\pi\)
\(564\) −44.2218 −1.86207
\(565\) −9.99985 −0.420697
\(566\) −40.1309 −1.68683
\(567\) 0 0
\(568\) −14.6485 −0.614637
\(569\) −26.7241 −1.12033 −0.560167 0.828380i \(-0.689263\pi\)
−0.560167 + 0.828380i \(0.689263\pi\)
\(570\) 24.6995 1.03455
\(571\) 13.4929 0.564662 0.282331 0.959317i \(-0.408892\pi\)
0.282331 + 0.959317i \(0.408892\pi\)
\(572\) 0 0
\(573\) 31.8132 1.32902
\(574\) 0 0
\(575\) −33.3302 −1.38996
\(576\) −49.7587 −2.07328
\(577\) −12.0132 −0.500118 −0.250059 0.968231i \(-0.580450\pi\)
−0.250059 + 0.968231i \(0.580450\pi\)
\(578\) 58.8811 2.44913
\(579\) 64.8767 2.69618
\(580\) 14.4036 0.598078
\(581\) 0 0
\(582\) 50.5745 2.09638
\(583\) 0.250134 0.0103595
\(584\) −20.0636 −0.830236
\(585\) 0 0
\(586\) 33.6609 1.39052
\(587\) −10.4235 −0.430225 −0.215113 0.976589i \(-0.569012\pi\)
−0.215113 + 0.976589i \(0.569012\pi\)
\(588\) 0 0
\(589\) 11.4375 0.471275
\(590\) 14.0946 0.580264
\(591\) −4.04727 −0.166482
\(592\) −4.04679 −0.166322
\(593\) 22.3501 0.917810 0.458905 0.888485i \(-0.348242\pi\)
0.458905 + 0.888485i \(0.348242\pi\)
\(594\) −6.06615 −0.248897
\(595\) 0 0
\(596\) −10.3921 −0.425679
\(597\) −25.8474 −1.05786
\(598\) 0 0
\(599\) 1.15893 0.0473524 0.0236762 0.999720i \(-0.492463\pi\)
0.0236762 + 0.999720i \(0.492463\pi\)
\(600\) 45.1448 1.84303
\(601\) 42.1813 1.72061 0.860306 0.509778i \(-0.170272\pi\)
0.860306 + 0.509778i \(0.170272\pi\)
\(602\) 0 0
\(603\) −32.0540 −1.30534
\(604\) 85.2029 3.46686
\(605\) 10.4657 0.425491
\(606\) 17.3289 0.703937
\(607\) −18.1569 −0.736965 −0.368482 0.929635i \(-0.620123\pi\)
−0.368482 + 0.929635i \(0.620123\pi\)
\(608\) −10.0594 −0.407962
\(609\) 0 0
\(610\) −5.17640 −0.209586
\(611\) 0 0
\(612\) −109.229 −4.41534
\(613\) 0.902645 0.0364575 0.0182288 0.999834i \(-0.494197\pi\)
0.0182288 + 0.999834i \(0.494197\pi\)
\(614\) −37.9187 −1.53027
\(615\) −9.92354 −0.400156
\(616\) 0 0
\(617\) 26.0436 1.04848 0.524238 0.851572i \(-0.324350\pi\)
0.524238 + 0.851572i \(0.324350\pi\)
\(618\) 71.3696 2.87091
\(619\) −26.8341 −1.07855 −0.539277 0.842128i \(-0.681303\pi\)
−0.539277 + 0.842128i \(0.681303\pi\)
\(620\) −10.8703 −0.436562
\(621\) −35.6961 −1.43244
\(622\) −68.3060 −2.73882
\(623\) 0 0
\(624\) 0 0
\(625\) 11.4579 0.458315
\(626\) −44.3679 −1.77330
\(627\) −6.18933 −0.247178
\(628\) 83.5925 3.33570
\(629\) 11.3328 0.451869
\(630\) 0 0
\(631\) 33.6121 1.33808 0.669039 0.743228i \(-0.266706\pi\)
0.669039 + 0.743228i \(0.266706\pi\)
\(632\) 11.3259 0.450521
\(633\) 24.6042 0.977930
\(634\) −73.1802 −2.90636
\(635\) −4.17494 −0.165678
\(636\) −4.33539 −0.171909
\(637\) 0 0
\(638\) −5.55889 −0.220078
\(639\) −16.4659 −0.651379
\(640\) 20.3729 0.805310
\(641\) 21.1841 0.836722 0.418361 0.908281i \(-0.362605\pi\)
0.418361 + 0.908281i \(0.362605\pi\)
\(642\) 105.002 4.14410
\(643\) −0.661539 −0.0260886 −0.0130443 0.999915i \(-0.504152\pi\)
−0.0130443 + 0.999915i \(0.504152\pi\)
\(644\) 0 0
\(645\) 17.2457 0.679047
\(646\) −58.9834 −2.32067
\(647\) −40.0323 −1.57383 −0.786916 0.617060i \(-0.788324\pi\)
−0.786916 + 0.617060i \(0.788324\pi\)
\(648\) −7.40537 −0.290910
\(649\) −3.53188 −0.138639
\(650\) 0 0
\(651\) 0 0
\(652\) −30.2777 −1.18577
\(653\) 12.7120 0.497460 0.248730 0.968573i \(-0.419987\pi\)
0.248730 + 0.968573i \(0.419987\pi\)
\(654\) 60.6782 2.37271
\(655\) 2.13112 0.0832698
\(656\) −8.46215 −0.330391
\(657\) −22.5527 −0.879867
\(658\) 0 0
\(659\) −14.1904 −0.552781 −0.276391 0.961045i \(-0.589138\pi\)
−0.276391 + 0.961045i \(0.589138\pi\)
\(660\) 5.88239 0.228972
\(661\) −50.1780 −1.95170 −0.975848 0.218449i \(-0.929900\pi\)
−0.975848 + 0.218449i \(0.929900\pi\)
\(662\) −65.0207 −2.52710
\(663\) 0 0
\(664\) 11.6625 0.452594
\(665\) 0 0
\(666\) −19.1652 −0.742635
\(667\) −32.7112 −1.26658
\(668\) 8.61888 0.333474
\(669\) 60.0362 2.32113
\(670\) 16.4506 0.635542
\(671\) 1.29713 0.0500751
\(672\) 0 0
\(673\) −1.87427 −0.0722479 −0.0361240 0.999347i \(-0.511501\pi\)
−0.0361240 + 0.999347i \(0.511501\pi\)
\(674\) −29.4112 −1.13288
\(675\) 17.4380 0.671191
\(676\) 0 0
\(677\) −2.00879 −0.0772041 −0.0386020 0.999255i \(-0.512290\pi\)
−0.0386020 + 0.999255i \(0.512290\pi\)
\(678\) −66.8906 −2.56892
\(679\) 0 0
\(680\) 25.7788 0.988571
\(681\) −51.0469 −1.95612
\(682\) 4.19525 0.160644
\(683\) 14.1012 0.539568 0.269784 0.962921i \(-0.413048\pi\)
0.269784 + 0.962921i \(0.413048\pi\)
\(684\) 64.7655 2.47637
\(685\) 8.21497 0.313878
\(686\) 0 0
\(687\) 53.2425 2.03133
\(688\) 14.7060 0.560660
\(689\) 0 0
\(690\) 53.3118 2.02954
\(691\) 35.6920 1.35779 0.678895 0.734236i \(-0.262459\pi\)
0.678895 + 0.734236i \(0.262459\pi\)
\(692\) −30.1169 −1.14487
\(693\) 0 0
\(694\) 14.6746 0.557041
\(695\) 0.566691 0.0214958
\(696\) 44.3064 1.67943
\(697\) 23.6978 0.897618
\(698\) −31.1191 −1.17788
\(699\) −44.4732 −1.68213
\(700\) 0 0
\(701\) −6.15865 −0.232609 −0.116305 0.993214i \(-0.537105\pi\)
−0.116305 + 0.993214i \(0.537105\pi\)
\(702\) 0 0
\(703\) −6.71957 −0.253434
\(704\) −6.39918 −0.241178
\(705\) 11.7314 0.441831
\(706\) −75.6207 −2.84602
\(707\) 0 0
\(708\) 61.2156 2.30062
\(709\) −34.0371 −1.27829 −0.639144 0.769087i \(-0.720711\pi\)
−0.639144 + 0.769087i \(0.720711\pi\)
\(710\) 8.45054 0.317143
\(711\) 12.7311 0.477452
\(712\) 8.51094 0.318961
\(713\) 24.6869 0.924530
\(714\) 0 0
\(715\) 0 0
\(716\) −77.7295 −2.90489
\(717\) 44.3090 1.65475
\(718\) −47.5989 −1.77637
\(719\) −22.9648 −0.856444 −0.428222 0.903674i \(-0.640860\pi\)
−0.428222 + 0.903674i \(0.640860\pi\)
\(720\) −10.3473 −0.385621
\(721\) 0 0
\(722\) −10.3996 −0.387034
\(723\) −11.0224 −0.409929
\(724\) −5.95424 −0.221288
\(725\) 15.9798 0.593476
\(726\) 70.0067 2.59819
\(727\) 1.06558 0.0395203 0.0197601 0.999805i \(-0.493710\pi\)
0.0197601 + 0.999805i \(0.493710\pi\)
\(728\) 0 0
\(729\) −43.9962 −1.62949
\(730\) 11.5744 0.428389
\(731\) −41.1833 −1.52322
\(732\) −22.4822 −0.830966
\(733\) 26.3378 0.972808 0.486404 0.873734i \(-0.338308\pi\)
0.486404 + 0.873734i \(0.338308\pi\)
\(734\) 47.0897 1.73811
\(735\) 0 0
\(736\) −21.7123 −0.800326
\(737\) −4.12228 −0.151846
\(738\) −40.0759 −1.47521
\(739\) −34.2149 −1.25862 −0.629308 0.777156i \(-0.716662\pi\)
−0.629308 + 0.777156i \(0.716662\pi\)
\(740\) 6.38633 0.234766
\(741\) 0 0
\(742\) 0 0
\(743\) −22.4782 −0.824644 −0.412322 0.911038i \(-0.635282\pi\)
−0.412322 + 0.911038i \(0.635282\pi\)
\(744\) −33.4377 −1.22588
\(745\) 2.75689 0.101005
\(746\) 41.9027 1.53417
\(747\) 13.1094 0.479649
\(748\) −14.0474 −0.513623
\(749\) 0 0
\(750\) −58.3145 −2.12934
\(751\) −42.5424 −1.55239 −0.776197 0.630491i \(-0.782854\pi\)
−0.776197 + 0.630491i \(0.782854\pi\)
\(752\) 10.0038 0.364801
\(753\) −8.93372 −0.325563
\(754\) 0 0
\(755\) −22.6031 −0.822612
\(756\) 0 0
\(757\) −11.2380 −0.408454 −0.204227 0.978924i \(-0.565468\pi\)
−0.204227 + 0.978924i \(0.565468\pi\)
\(758\) 27.9433 1.01495
\(759\) −13.3591 −0.484906
\(760\) −15.2850 −0.554447
\(761\) −12.8084 −0.464306 −0.232153 0.972679i \(-0.574577\pi\)
−0.232153 + 0.972679i \(0.574577\pi\)
\(762\) −27.9269 −1.01168
\(763\) 0 0
\(764\) −42.8117 −1.54887
\(765\) 28.9770 1.04767
\(766\) 51.4117 1.85758
\(767\) 0 0
\(768\) 76.3692 2.75574
\(769\) 51.3517 1.85179 0.925895 0.377781i \(-0.123313\pi\)
0.925895 + 0.377781i \(0.123313\pi\)
\(770\) 0 0
\(771\) 73.9938 2.66482
\(772\) −87.3059 −3.14221
\(773\) −20.0046 −0.719517 −0.359759 0.933045i \(-0.617141\pi\)
−0.359759 + 0.933045i \(0.617141\pi\)
\(774\) 69.6459 2.50337
\(775\) −12.0599 −0.433203
\(776\) −31.2974 −1.12351
\(777\) 0 0
\(778\) 63.2615 2.26804
\(779\) −14.0512 −0.503435
\(780\) 0 0
\(781\) −2.11758 −0.0757729
\(782\) −127.310 −4.55261
\(783\) 17.1142 0.611611
\(784\) 0 0
\(785\) −22.1759 −0.791492
\(786\) 14.2554 0.508474
\(787\) −29.3192 −1.04512 −0.522558 0.852604i \(-0.675022\pi\)
−0.522558 + 0.852604i \(0.675022\pi\)
\(788\) 5.44650 0.194023
\(789\) 10.4750 0.372921
\(790\) −6.53378 −0.232462
\(791\) 0 0
\(792\) 10.9243 0.388177
\(793\) 0 0
\(794\) 80.7131 2.86440
\(795\) 1.15012 0.0407905
\(796\) 34.7833 1.23286
\(797\) 3.10100 0.109843 0.0549215 0.998491i \(-0.482509\pi\)
0.0549215 + 0.998491i \(0.482509\pi\)
\(798\) 0 0
\(799\) −28.0151 −0.991102
\(800\) 10.6068 0.375005
\(801\) 9.56685 0.338028
\(802\) −51.6100 −1.82241
\(803\) −2.90038 −0.102352
\(804\) 71.4484 2.51979
\(805\) 0 0
\(806\) 0 0
\(807\) 65.5899 2.30887
\(808\) −10.7238 −0.377261
\(809\) 7.99003 0.280914 0.140457 0.990087i \(-0.455143\pi\)
0.140457 + 0.990087i \(0.455143\pi\)
\(810\) 4.27207 0.150105
\(811\) 48.2554 1.69448 0.847239 0.531213i \(-0.178263\pi\)
0.847239 + 0.531213i \(0.178263\pi\)
\(812\) 0 0
\(813\) 27.2434 0.955466
\(814\) −2.46472 −0.0863884
\(815\) 8.03224 0.281357
\(816\) 40.9283 1.43278
\(817\) 24.4188 0.854307
\(818\) −18.4886 −0.646439
\(819\) 0 0
\(820\) 13.3543 0.466353
\(821\) 27.5519 0.961569 0.480785 0.876839i \(-0.340352\pi\)
0.480785 + 0.876839i \(0.340352\pi\)
\(822\) 54.9513 1.91665
\(823\) 20.4274 0.712056 0.356028 0.934475i \(-0.384131\pi\)
0.356028 + 0.934475i \(0.384131\pi\)
\(824\) −44.1663 −1.53861
\(825\) 6.52611 0.227210
\(826\) 0 0
\(827\) 27.7142 0.963719 0.481859 0.876249i \(-0.339962\pi\)
0.481859 + 0.876249i \(0.339962\pi\)
\(828\) 139.791 4.85806
\(829\) 9.25664 0.321496 0.160748 0.986995i \(-0.448609\pi\)
0.160748 + 0.986995i \(0.448609\pi\)
\(830\) −6.72797 −0.233531
\(831\) −32.4283 −1.12493
\(832\) 0 0
\(833\) 0 0
\(834\) 3.79069 0.131261
\(835\) −2.28647 −0.0791264
\(836\) 8.32912 0.288069
\(837\) −12.9159 −0.446440
\(838\) −19.3477 −0.668357
\(839\) 30.3739 1.04862 0.524312 0.851526i \(-0.324323\pi\)
0.524312 + 0.851526i \(0.324323\pi\)
\(840\) 0 0
\(841\) −13.3170 −0.459205
\(842\) 76.6855 2.64276
\(843\) 35.7626 1.23173
\(844\) −33.1104 −1.13971
\(845\) 0 0
\(846\) 47.3769 1.62885
\(847\) 0 0
\(848\) 0.980745 0.0336789
\(849\) 46.2385 1.58690
\(850\) 62.1929 2.13320
\(851\) −14.5036 −0.497177
\(852\) 36.7025 1.25741
\(853\) 5.30773 0.181733 0.0908666 0.995863i \(-0.471036\pi\)
0.0908666 + 0.995863i \(0.471036\pi\)
\(854\) 0 0
\(855\) −17.1814 −0.587591
\(856\) −64.9793 −2.22095
\(857\) −16.6371 −0.568314 −0.284157 0.958778i \(-0.591714\pi\)
−0.284157 + 0.958778i \(0.591714\pi\)
\(858\) 0 0
\(859\) −10.5885 −0.361276 −0.180638 0.983550i \(-0.557816\pi\)
−0.180638 + 0.983550i \(0.557816\pi\)
\(860\) −23.2078 −0.791381
\(861\) 0 0
\(862\) 70.5142 2.40172
\(863\) 56.0632 1.90841 0.954207 0.299148i \(-0.0967025\pi\)
0.954207 + 0.299148i \(0.0967025\pi\)
\(864\) 11.3597 0.386464
\(865\) 7.98959 0.271654
\(866\) 52.7541 1.79266
\(867\) −67.8424 −2.30405
\(868\) 0 0
\(869\) 1.63727 0.0555405
\(870\) −25.5598 −0.866559
\(871\) 0 0
\(872\) −37.5501 −1.27161
\(873\) −35.1804 −1.19067
\(874\) 75.4863 2.55336
\(875\) 0 0
\(876\) 50.2702 1.69847
\(877\) 3.66051 0.123607 0.0618033 0.998088i \(-0.480315\pi\)
0.0618033 + 0.998088i \(0.480315\pi\)
\(878\) −15.1779 −0.512229
\(879\) −38.7838 −1.30815
\(880\) −1.33071 −0.0448581
\(881\) 10.2299 0.344653 0.172326 0.985040i \(-0.444872\pi\)
0.172326 + 0.985040i \(0.444872\pi\)
\(882\) 0 0
\(883\) −3.98979 −0.134267 −0.0671335 0.997744i \(-0.521385\pi\)
−0.0671335 + 0.997744i \(0.521385\pi\)
\(884\) 0 0
\(885\) −16.2396 −0.545890
\(886\) −32.3882 −1.08810
\(887\) −14.2208 −0.477487 −0.238743 0.971083i \(-0.576735\pi\)
−0.238743 + 0.971083i \(0.576735\pi\)
\(888\) 19.6447 0.659234
\(889\) 0 0
\(890\) −4.90986 −0.164579
\(891\) −1.07052 −0.0358636
\(892\) −80.7919 −2.70511
\(893\) 16.6110 0.555866
\(894\) 18.4413 0.616769
\(895\) 20.6206 0.689269
\(896\) 0 0
\(897\) 0 0
\(898\) −52.3262 −1.74615
\(899\) −11.8359 −0.394749
\(900\) −68.2896 −2.27632
\(901\) −2.74652 −0.0915000
\(902\) −5.15392 −0.171607
\(903\) 0 0
\(904\) 41.3945 1.37676
\(905\) 1.57958 0.0525069
\(906\) −151.196 −5.02315
\(907\) 43.4253 1.44191 0.720956 0.692981i \(-0.243703\pi\)
0.720956 + 0.692981i \(0.243703\pi\)
\(908\) 68.6949 2.27972
\(909\) −12.0542 −0.399814
\(910\) 0 0
\(911\) 24.8617 0.823706 0.411853 0.911250i \(-0.364882\pi\)
0.411853 + 0.911250i \(0.364882\pi\)
\(912\) −24.2677 −0.803582
\(913\) 1.68593 0.0557961
\(914\) −36.3331 −1.20179
\(915\) 5.96421 0.197171
\(916\) −71.6495 −2.36737
\(917\) 0 0
\(918\) 66.6076 2.19838
\(919\) −1.66327 −0.0548664 −0.0274332 0.999624i \(-0.508733\pi\)
−0.0274332 + 0.999624i \(0.508733\pi\)
\(920\) −32.9914 −1.08769
\(921\) 43.6896 1.43962
\(922\) 38.7250 1.27534
\(923\) 0 0
\(924\) 0 0
\(925\) 7.08521 0.232960
\(926\) 3.45714 0.113609
\(927\) −49.6458 −1.63058
\(928\) 10.4098 0.341717
\(929\) −9.49521 −0.311528 −0.155764 0.987794i \(-0.549784\pi\)
−0.155764 + 0.987794i \(0.549784\pi\)
\(930\) 19.2898 0.632537
\(931\) 0 0
\(932\) 59.8486 1.96040
\(933\) 78.7016 2.57657
\(934\) 33.4486 1.09447
\(935\) 3.72657 0.121872
\(936\) 0 0
\(937\) −6.41678 −0.209627 −0.104813 0.994492i \(-0.533425\pi\)
−0.104813 + 0.994492i \(0.533425\pi\)
\(938\) 0 0
\(939\) 51.1203 1.66825
\(940\) −15.7872 −0.514922
\(941\) 51.5186 1.67946 0.839730 0.543005i \(-0.182713\pi\)
0.839730 + 0.543005i \(0.182713\pi\)
\(942\) −148.338 −4.83312
\(943\) −30.3282 −0.987621
\(944\) −13.8481 −0.450717
\(945\) 0 0
\(946\) 8.95676 0.291209
\(947\) 8.40219 0.273034 0.136517 0.990638i \(-0.456409\pi\)
0.136517 + 0.990638i \(0.456409\pi\)
\(948\) −28.3776 −0.921661
\(949\) 0 0
\(950\) −36.8761 −1.19642
\(951\) 84.3177 2.73419
\(952\) 0 0
\(953\) −36.0911 −1.16910 −0.584552 0.811356i \(-0.698730\pi\)
−0.584552 + 0.811356i \(0.698730\pi\)
\(954\) 4.64471 0.150378
\(955\) 11.3573 0.367515
\(956\) −59.6275 −1.92849
\(957\) 6.40491 0.207041
\(958\) 71.6991 2.31649
\(959\) 0 0
\(960\) −29.4235 −0.949639
\(961\) −22.0676 −0.711857
\(962\) 0 0
\(963\) −73.0409 −2.35371
\(964\) 14.8331 0.477743
\(965\) 23.1610 0.745580
\(966\) 0 0
\(967\) −3.18338 −0.102371 −0.0511853 0.998689i \(-0.516300\pi\)
−0.0511853 + 0.998689i \(0.516300\pi\)
\(968\) −43.3229 −1.39245
\(969\) 67.9602 2.18320
\(970\) 18.0551 0.579715
\(971\) 37.7476 1.21138 0.605690 0.795701i \(-0.292897\pi\)
0.605690 + 0.795701i \(0.292897\pi\)
\(972\) 66.5591 2.13488
\(973\) 0 0
\(974\) 68.0359 2.18001
\(975\) 0 0
\(976\) 5.08589 0.162795
\(977\) 21.3076 0.681692 0.340846 0.940119i \(-0.389287\pi\)
0.340846 + 0.940119i \(0.389287\pi\)
\(978\) 53.7290 1.71806
\(979\) 1.23034 0.0393217
\(980\) 0 0
\(981\) −42.2087 −1.34762
\(982\) −67.9819 −2.16939
\(983\) 22.0316 0.702700 0.351350 0.936244i \(-0.385723\pi\)
0.351350 + 0.936244i \(0.385723\pi\)
\(984\) 41.0787 1.30954
\(985\) −1.44488 −0.0460377
\(986\) 61.0378 1.94384
\(987\) 0 0
\(988\) 0 0
\(989\) 52.7059 1.67595
\(990\) −6.30208 −0.200293
\(991\) −22.0259 −0.699676 −0.349838 0.936810i \(-0.613763\pi\)
−0.349838 + 0.936810i \(0.613763\pi\)
\(992\) −7.85617 −0.249434
\(993\) 74.9164 2.37740
\(994\) 0 0
\(995\) −9.22753 −0.292532
\(996\) −29.2210 −0.925902
\(997\) 10.0820 0.319301 0.159651 0.987174i \(-0.448963\pi\)
0.159651 + 0.987174i \(0.448963\pi\)
\(998\) 62.6450 1.98299
\(999\) 7.58815 0.240078
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ce.1.6 6
7.2 even 3 1183.2.e.g.508.1 12
7.4 even 3 1183.2.e.g.170.1 12
7.6 odd 2 8281.2.a.cf.1.6 6
13.4 even 6 637.2.f.k.393.6 12
13.10 even 6 637.2.f.k.295.6 12
13.12 even 2 8281.2.a.bz.1.1 6
91.4 even 6 91.2.h.b.16.1 yes 12
91.10 odd 6 637.2.g.l.373.6 12
91.17 odd 6 637.2.h.l.471.1 12
91.23 even 6 91.2.h.b.74.1 yes 12
91.25 even 6 1183.2.e.h.170.6 12
91.30 even 6 91.2.g.b.81.6 yes 12
91.51 even 6 1183.2.e.h.508.6 12
91.62 odd 6 637.2.f.j.295.6 12
91.69 odd 6 637.2.f.j.393.6 12
91.75 odd 6 637.2.h.l.165.1 12
91.82 odd 6 637.2.g.l.263.6 12
91.88 even 6 91.2.g.b.9.6 12
91.90 odd 2 8281.2.a.ca.1.1 6
273.23 odd 6 819.2.s.d.802.6 12
273.95 odd 6 819.2.s.d.289.6 12
273.179 odd 6 819.2.n.d.100.1 12
273.212 odd 6 819.2.n.d.172.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.6 12 91.88 even 6
91.2.g.b.81.6 yes 12 91.30 even 6
91.2.h.b.16.1 yes 12 91.4 even 6
91.2.h.b.74.1 yes 12 91.23 even 6
637.2.f.j.295.6 12 91.62 odd 6
637.2.f.j.393.6 12 91.69 odd 6
637.2.f.k.295.6 12 13.10 even 6
637.2.f.k.393.6 12 13.4 even 6
637.2.g.l.263.6 12 91.82 odd 6
637.2.g.l.373.6 12 91.10 odd 6
637.2.h.l.165.1 12 91.75 odd 6
637.2.h.l.471.1 12 91.17 odd 6
819.2.n.d.100.1 12 273.179 odd 6
819.2.n.d.172.1 12 273.212 odd 6
819.2.s.d.289.6 12 273.95 odd 6
819.2.s.d.802.6 12 273.23 odd 6
1183.2.e.g.170.1 12 7.4 even 3
1183.2.e.g.508.1 12 7.2 even 3
1183.2.e.h.170.6 12 91.25 even 6
1183.2.e.h.508.6 12 91.51 even 6
8281.2.a.bz.1.1 6 13.12 even 2
8281.2.a.ca.1.1 6 91.90 odd 2
8281.2.a.ce.1.6 6 1.1 even 1 trivial
8281.2.a.cf.1.6 6 7.6 odd 2