Properties

Label 8281.2.a.cl.1.5
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.8446345216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.282452\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.52077 q^{2} -2.12621 q^{3} +0.312752 q^{4} -0.589391 q^{5} -3.23349 q^{6} -2.56592 q^{8} +1.52077 q^{9} -0.896331 q^{10} -1.52077 q^{11} -0.664976 q^{12} +1.25317 q^{15} -4.52769 q^{16} +4.79479 q^{17} +2.31275 q^{18} -1.68391 q^{19} -0.184333 q^{20} -2.31275 q^{22} +1.77394 q^{23} +5.45569 q^{24} -4.65262 q^{25} +3.14515 q^{27} +6.89251 q^{29} +1.90579 q^{30} +6.08640 q^{31} -1.75375 q^{32} +3.23349 q^{33} +7.29179 q^{34} +0.475625 q^{36} -1.40913 q^{37} -2.56085 q^{38} +1.51233 q^{40} -1.35546 q^{41} -11.5596 q^{43} -0.475625 q^{44} -0.896331 q^{45} +2.69777 q^{46} +0.464832 q^{47} +9.62682 q^{48} -7.07558 q^{50} -10.1947 q^{51} +8.24681 q^{53} +4.78306 q^{54} +0.896331 q^{55} +3.58035 q^{57} +10.4819 q^{58} +11.8756 q^{59} +0.391931 q^{60} +2.48017 q^{61} +9.25603 q^{62} +6.38833 q^{64} +4.91740 q^{66} +7.57284 q^{67} +1.49958 q^{68} -3.77178 q^{69} -6.60471 q^{71} -3.90219 q^{72} +16.3712 q^{73} -2.14296 q^{74} +9.89245 q^{75} -0.526647 q^{76} -14.9623 q^{79} +2.66858 q^{80} -11.2496 q^{81} -2.06134 q^{82} -10.1222 q^{83} -2.82601 q^{85} -17.5795 q^{86} -14.6549 q^{87} +3.90219 q^{88} -16.4850 q^{89} -1.36312 q^{90} +0.554804 q^{92} -12.9410 q^{93} +0.706904 q^{94} +0.992484 q^{95} +3.72883 q^{96} +0.973869 q^{97} -2.31275 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 12 q^{4} - 12 q^{8} + 4 q^{9} - 4 q^{11} - 8 q^{15} + 4 q^{16} + 28 q^{18} - 28 q^{22} - 12 q^{23} - 12 q^{25} - 8 q^{29} - 28 q^{30} - 4 q^{36} - 8 q^{37} - 32 q^{43} + 4 q^{44} - 4 q^{46}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.52077 1.07535 0.537675 0.843152i \(-0.319303\pi\)
0.537675 + 0.843152i \(0.319303\pi\)
\(3\) −2.12621 −1.22757 −0.613784 0.789474i \(-0.710354\pi\)
−0.613784 + 0.789474i \(0.710354\pi\)
\(4\) 0.312752 0.156376
\(5\) −0.589391 −0.263584 −0.131792 0.991277i \(-0.542073\pi\)
−0.131792 + 0.991277i \(0.542073\pi\)
\(6\) −3.23349 −1.32006
\(7\) 0 0
\(8\) −2.56592 −0.907190
\(9\) 1.52077 0.506924
\(10\) −0.896331 −0.283445
\(11\) −1.52077 −0.458530 −0.229265 0.973364i \(-0.573632\pi\)
−0.229265 + 0.973364i \(0.573632\pi\)
\(12\) −0.664976 −0.191962
\(13\) 0 0
\(14\) 0 0
\(15\) 1.25317 0.323567
\(16\) −4.52769 −1.13192
\(17\) 4.79479 1.16291 0.581454 0.813579i \(-0.302484\pi\)
0.581454 + 0.813579i \(0.302484\pi\)
\(18\) 2.31275 0.545121
\(19\) −1.68391 −0.386316 −0.193158 0.981168i \(-0.561873\pi\)
−0.193158 + 0.981168i \(0.561873\pi\)
\(20\) −0.184333 −0.0412182
\(21\) 0 0
\(22\) −2.31275 −0.493080
\(23\) 1.77394 0.369893 0.184946 0.982749i \(-0.440789\pi\)
0.184946 + 0.982749i \(0.440789\pi\)
\(24\) 5.45569 1.11364
\(25\) −4.65262 −0.930524
\(26\) 0 0
\(27\) 3.14515 0.605284
\(28\) 0 0
\(29\) 6.89251 1.27991 0.639953 0.768414i \(-0.278954\pi\)
0.639953 + 0.768414i \(0.278954\pi\)
\(30\) 1.90579 0.347948
\(31\) 6.08640 1.09315 0.546575 0.837410i \(-0.315931\pi\)
0.546575 + 0.837410i \(0.315931\pi\)
\(32\) −1.75375 −0.310021
\(33\) 3.23349 0.562878
\(34\) 7.29179 1.25053
\(35\) 0 0
\(36\) 0.475625 0.0792708
\(37\) −1.40913 −0.231659 −0.115830 0.993269i \(-0.536953\pi\)
−0.115830 + 0.993269i \(0.536953\pi\)
\(38\) −2.56085 −0.415425
\(39\) 0 0
\(40\) 1.51233 0.239121
\(41\) −1.35546 −0.211687 −0.105843 0.994383i \(-0.533754\pi\)
−0.105843 + 0.994383i \(0.533754\pi\)
\(42\) 0 0
\(43\) −11.5596 −1.76282 −0.881408 0.472356i \(-0.843404\pi\)
−0.881408 + 0.472356i \(0.843404\pi\)
\(44\) −0.475625 −0.0717031
\(45\) −0.896331 −0.133617
\(46\) 2.69777 0.397764
\(47\) 0.464832 0.0678027 0.0339013 0.999425i \(-0.489207\pi\)
0.0339013 + 0.999425i \(0.489207\pi\)
\(48\) 9.62682 1.38951
\(49\) 0 0
\(50\) −7.07558 −1.00064
\(51\) −10.1947 −1.42755
\(52\) 0 0
\(53\) 8.24681 1.13279 0.566393 0.824135i \(-0.308338\pi\)
0.566393 + 0.824135i \(0.308338\pi\)
\(54\) 4.78306 0.650892
\(55\) 0.896331 0.120861
\(56\) 0 0
\(57\) 3.58035 0.474230
\(58\) 10.4819 1.37635
\(59\) 11.8756 1.54608 0.773038 0.634359i \(-0.218736\pi\)
0.773038 + 0.634359i \(0.218736\pi\)
\(60\) 0.391931 0.0505981
\(61\) 2.48017 0.317553 0.158777 0.987315i \(-0.449245\pi\)
0.158777 + 0.987315i \(0.449245\pi\)
\(62\) 9.25603 1.17552
\(63\) 0 0
\(64\) 6.38833 0.798541
\(65\) 0 0
\(66\) 4.91740 0.605290
\(67\) 7.57284 0.925169 0.462585 0.886575i \(-0.346922\pi\)
0.462585 + 0.886575i \(0.346922\pi\)
\(68\) 1.49958 0.181851
\(69\) −3.77178 −0.454069
\(70\) 0 0
\(71\) −6.60471 −0.783834 −0.391917 0.920000i \(-0.628188\pi\)
−0.391917 + 0.920000i \(0.628188\pi\)
\(72\) −3.90219 −0.459877
\(73\) 16.3712 1.91610 0.958049 0.286604i \(-0.0925263\pi\)
0.958049 + 0.286604i \(0.0925263\pi\)
\(74\) −2.14296 −0.249114
\(75\) 9.89245 1.14228
\(76\) −0.526647 −0.0604105
\(77\) 0 0
\(78\) 0 0
\(79\) −14.9623 −1.68339 −0.841696 0.539951i \(-0.818443\pi\)
−0.841696 + 0.539951i \(0.818443\pi\)
\(80\) 2.66858 0.298356
\(81\) −11.2496 −1.24995
\(82\) −2.06134 −0.227637
\(83\) −10.1222 −1.11105 −0.555526 0.831499i \(-0.687483\pi\)
−0.555526 + 0.831499i \(0.687483\pi\)
\(84\) 0 0
\(85\) −2.82601 −0.306524
\(86\) −17.5795 −1.89564
\(87\) −14.6549 −1.57117
\(88\) 3.90219 0.415974
\(89\) −16.4850 −1.74741 −0.873703 0.486460i \(-0.838288\pi\)
−0.873703 + 0.486460i \(0.838288\pi\)
\(90\) −1.36312 −0.143685
\(91\) 0 0
\(92\) 0.554804 0.0578423
\(93\) −12.9410 −1.34192
\(94\) 0.706904 0.0729115
\(95\) 0.992484 0.101827
\(96\) 3.72883 0.380573
\(97\) 0.973869 0.0988814 0.0494407 0.998777i \(-0.484256\pi\)
0.0494407 + 0.998777i \(0.484256\pi\)
\(98\) 0 0
\(99\) −2.31275 −0.232440
\(100\) −1.45511 −0.145511
\(101\) −2.94023 −0.292564 −0.146282 0.989243i \(-0.546731\pi\)
−0.146282 + 0.989243i \(0.546731\pi\)
\(102\) −15.5039 −1.53511
\(103\) 0.528682 0.0520926 0.0260463 0.999661i \(-0.491708\pi\)
0.0260463 + 0.999661i \(0.491708\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.5415 1.21814
\(107\) −19.3224 −1.86797 −0.933983 0.357318i \(-0.883691\pi\)
−0.933983 + 0.357318i \(0.883691\pi\)
\(108\) 0.983651 0.0946518
\(109\) 5.73240 0.549064 0.274532 0.961578i \(-0.411477\pi\)
0.274532 + 0.961578i \(0.411477\pi\)
\(110\) 1.36312 0.129968
\(111\) 2.99610 0.284377
\(112\) 0 0
\(113\) 5.14959 0.484433 0.242216 0.970222i \(-0.422126\pi\)
0.242216 + 0.970222i \(0.422126\pi\)
\(114\) 5.44491 0.509962
\(115\) −1.04555 −0.0974978
\(116\) 2.15564 0.200147
\(117\) 0 0
\(118\) 18.0602 1.66257
\(119\) 0 0
\(120\) −3.21554 −0.293537
\(121\) −8.68725 −0.789750
\(122\) 3.77178 0.341481
\(123\) 2.88199 0.259860
\(124\) 1.90353 0.170942
\(125\) 5.68917 0.508855
\(126\) 0 0
\(127\) −9.00331 −0.798915 −0.399457 0.916752i \(-0.630801\pi\)
−0.399457 + 0.916752i \(0.630801\pi\)
\(128\) 13.2227 1.16873
\(129\) 24.5781 2.16398
\(130\) 0 0
\(131\) 6.79840 0.593979 0.296989 0.954881i \(-0.404017\pi\)
0.296989 + 0.954881i \(0.404017\pi\)
\(132\) 1.01128 0.0880205
\(133\) 0 0
\(134\) 11.5166 0.994880
\(135\) −1.85372 −0.159543
\(136\) −12.3031 −1.05498
\(137\) 14.0756 1.20256 0.601279 0.799039i \(-0.294658\pi\)
0.601279 + 0.799039i \(0.294658\pi\)
\(138\) −5.73602 −0.488283
\(139\) 17.2863 1.46620 0.733101 0.680120i \(-0.238072\pi\)
0.733101 + 0.680120i \(0.238072\pi\)
\(140\) 0 0
\(141\) −0.988330 −0.0832324
\(142\) −10.0443 −0.842896
\(143\) 0 0
\(144\) −6.88559 −0.573799
\(145\) −4.06238 −0.337363
\(146\) 24.8968 2.06048
\(147\) 0 0
\(148\) −0.440707 −0.0362259
\(149\) 17.1252 1.40295 0.701475 0.712694i \(-0.252525\pi\)
0.701475 + 0.712694i \(0.252525\pi\)
\(150\) 15.0442 1.22835
\(151\) −15.7975 −1.28558 −0.642789 0.766043i \(-0.722223\pi\)
−0.642789 + 0.766043i \(0.722223\pi\)
\(152\) 4.32079 0.350462
\(153\) 7.29179 0.589507
\(154\) 0 0
\(155\) −3.58727 −0.288137
\(156\) 0 0
\(157\) −3.78351 −0.301957 −0.150979 0.988537i \(-0.548242\pi\)
−0.150979 + 0.988537i \(0.548242\pi\)
\(158\) −22.7543 −1.81023
\(159\) −17.5344 −1.39057
\(160\) 1.03364 0.0817166
\(161\) 0 0
\(162\) −17.1080 −1.34413
\(163\) −1.71551 −0.134369 −0.0671847 0.997741i \(-0.521402\pi\)
−0.0671847 + 0.997741i \(0.521402\pi\)
\(164\) −0.423922 −0.0331027
\(165\) −1.90579 −0.148365
\(166\) −15.3935 −1.19477
\(167\) −12.6521 −0.979049 −0.489524 0.871990i \(-0.662830\pi\)
−0.489524 + 0.871990i \(0.662830\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −4.29772 −0.329620
\(171\) −2.56085 −0.195833
\(172\) −3.61527 −0.275662
\(173\) −11.4874 −0.873372 −0.436686 0.899614i \(-0.643848\pi\)
−0.436686 + 0.899614i \(0.643848\pi\)
\(174\) −22.2868 −1.68956
\(175\) 0 0
\(176\) 6.88559 0.519021
\(177\) −25.2501 −1.89792
\(178\) −25.0699 −1.87907
\(179\) −2.18451 −0.163278 −0.0816389 0.996662i \(-0.526015\pi\)
−0.0816389 + 0.996662i \(0.526015\pi\)
\(180\) −0.280329 −0.0208945
\(181\) −11.5981 −0.862081 −0.431041 0.902333i \(-0.641853\pi\)
−0.431041 + 0.902333i \(0.641853\pi\)
\(182\) 0 0
\(183\) −5.27337 −0.389819
\(184\) −4.55180 −0.335563
\(185\) 0.830527 0.0610616
\(186\) −19.6803 −1.44303
\(187\) −7.29179 −0.533229
\(188\) 0.145377 0.0106027
\(189\) 0 0
\(190\) 1.50934 0.109499
\(191\) 17.7592 1.28501 0.642506 0.766281i \(-0.277895\pi\)
0.642506 + 0.766281i \(0.277895\pi\)
\(192\) −13.5829 −0.980264
\(193\) −22.6379 −1.62951 −0.814756 0.579804i \(-0.803129\pi\)
−0.814756 + 0.579804i \(0.803129\pi\)
\(194\) 1.48103 0.106332
\(195\) 0 0
\(196\) 0 0
\(197\) −20.0063 −1.42539 −0.712696 0.701474i \(-0.752526\pi\)
−0.712696 + 0.701474i \(0.752526\pi\)
\(198\) −3.51717 −0.249954
\(199\) −1.84885 −0.131062 −0.0655309 0.997851i \(-0.520874\pi\)
−0.0655309 + 0.997851i \(0.520874\pi\)
\(200\) 11.9383 0.844162
\(201\) −16.1015 −1.13571
\(202\) −4.47143 −0.314609
\(203\) 0 0
\(204\) −3.18842 −0.223234
\(205\) 0.798895 0.0557972
\(206\) 0.804005 0.0560177
\(207\) 2.69777 0.187508
\(208\) 0 0
\(209\) 2.56085 0.177138
\(210\) 0 0
\(211\) −16.1695 −1.11315 −0.556576 0.830796i \(-0.687885\pi\)
−0.556576 + 0.830796i \(0.687885\pi\)
\(212\) 2.57920 0.177140
\(213\) 14.0430 0.962210
\(214\) −29.3850 −2.00871
\(215\) 6.81310 0.464650
\(216\) −8.07020 −0.549108
\(217\) 0 0
\(218\) 8.71768 0.590436
\(219\) −34.8085 −2.35214
\(220\) 0.280329 0.0188998
\(221\) 0 0
\(222\) 4.55639 0.305805
\(223\) 12.4318 0.832494 0.416247 0.909252i \(-0.363345\pi\)
0.416247 + 0.909252i \(0.363345\pi\)
\(224\) 0 0
\(225\) −7.07558 −0.471705
\(226\) 7.83136 0.520934
\(227\) −1.23497 −0.0819681 −0.0409841 0.999160i \(-0.513049\pi\)
−0.0409841 + 0.999160i \(0.513049\pi\)
\(228\) 1.11976 0.0741581
\(229\) −6.55514 −0.433176 −0.216588 0.976263i \(-0.569493\pi\)
−0.216588 + 0.976263i \(0.569493\pi\)
\(230\) −1.59004 −0.104844
\(231\) 0 0
\(232\) −17.6856 −1.16112
\(233\) 6.29887 0.412653 0.206326 0.978483i \(-0.433849\pi\)
0.206326 + 0.978483i \(0.433849\pi\)
\(234\) 0 0
\(235\) −0.273968 −0.0178717
\(236\) 3.71413 0.241769
\(237\) 31.8130 2.06648
\(238\) 0 0
\(239\) 18.9193 1.22379 0.611895 0.790939i \(-0.290408\pi\)
0.611895 + 0.790939i \(0.290408\pi\)
\(240\) −5.67397 −0.366253
\(241\) −22.2968 −1.43626 −0.718131 0.695908i \(-0.755002\pi\)
−0.718131 + 0.695908i \(0.755002\pi\)
\(242\) −13.2113 −0.849257
\(243\) 14.4835 0.929118
\(244\) 0.775678 0.0496577
\(245\) 0 0
\(246\) 4.38285 0.279440
\(247\) 0 0
\(248\) −15.6172 −0.991695
\(249\) 21.5219 1.36389
\(250\) 8.65194 0.547197
\(251\) −6.95315 −0.438879 −0.219439 0.975626i \(-0.570423\pi\)
−0.219439 + 0.975626i \(0.570423\pi\)
\(252\) 0 0
\(253\) −2.69777 −0.169607
\(254\) −13.6920 −0.859113
\(255\) 6.00869 0.376279
\(256\) 7.33206 0.458254
\(257\) 21.1551 1.31962 0.659811 0.751432i \(-0.270636\pi\)
0.659811 + 0.751432i \(0.270636\pi\)
\(258\) 37.3777 2.32703
\(259\) 0 0
\(260\) 0 0
\(261\) 10.4819 0.648816
\(262\) 10.3388 0.638735
\(263\) −8.42992 −0.519811 −0.259906 0.965634i \(-0.583691\pi\)
−0.259906 + 0.965634i \(0.583691\pi\)
\(264\) −8.29687 −0.510637
\(265\) −4.86060 −0.298584
\(266\) 0 0
\(267\) 35.0506 2.14506
\(268\) 2.36842 0.144674
\(269\) −5.83039 −0.355485 −0.177743 0.984077i \(-0.556879\pi\)
−0.177743 + 0.984077i \(0.556879\pi\)
\(270\) −2.81909 −0.171565
\(271\) −18.4299 −1.11954 −0.559769 0.828648i \(-0.689110\pi\)
−0.559769 + 0.828648i \(0.689110\pi\)
\(272\) −21.7093 −1.31632
\(273\) 0 0
\(274\) 21.4058 1.29317
\(275\) 7.07558 0.426673
\(276\) −1.17963 −0.0710054
\(277\) −6.18307 −0.371505 −0.185752 0.982597i \(-0.559472\pi\)
−0.185752 + 0.982597i \(0.559472\pi\)
\(278\) 26.2885 1.57668
\(279\) 9.25603 0.554144
\(280\) 0 0
\(281\) 5.64049 0.336483 0.168242 0.985746i \(-0.446191\pi\)
0.168242 + 0.985746i \(0.446191\pi\)
\(282\) −1.50303 −0.0895039
\(283\) −16.4554 −0.978173 −0.489086 0.872235i \(-0.662670\pi\)
−0.489086 + 0.872235i \(0.662670\pi\)
\(284\) −2.06563 −0.122573
\(285\) −2.11023 −0.124999
\(286\) 0 0
\(287\) 0 0
\(288\) −2.66705 −0.157157
\(289\) 5.99003 0.352355
\(290\) −6.17797 −0.362783
\(291\) −2.07065 −0.121384
\(292\) 5.12011 0.299632
\(293\) −30.6171 −1.78867 −0.894335 0.447397i \(-0.852351\pi\)
−0.894335 + 0.447397i \(0.852351\pi\)
\(294\) 0 0
\(295\) −6.99940 −0.407521
\(296\) 3.61571 0.210159
\(297\) −4.78306 −0.277541
\(298\) 26.0435 1.50866
\(299\) 0 0
\(300\) 3.09388 0.178625
\(301\) 0 0
\(302\) −24.0244 −1.38245
\(303\) 6.25156 0.359143
\(304\) 7.62424 0.437280
\(305\) −1.46179 −0.0837019
\(306\) 11.0892 0.633925
\(307\) 9.96020 0.568459 0.284229 0.958756i \(-0.408262\pi\)
0.284229 + 0.958756i \(0.408262\pi\)
\(308\) 0 0
\(309\) −1.12409 −0.0639472
\(310\) −5.45543 −0.309847
\(311\) 27.7468 1.57337 0.786687 0.617352i \(-0.211795\pi\)
0.786687 + 0.617352i \(0.211795\pi\)
\(312\) 0 0
\(313\) −16.5227 −0.933920 −0.466960 0.884278i \(-0.654651\pi\)
−0.466960 + 0.884278i \(0.654651\pi\)
\(314\) −5.75387 −0.324710
\(315\) 0 0
\(316\) −4.67949 −0.263242
\(317\) −23.6793 −1.32996 −0.664980 0.746861i \(-0.731560\pi\)
−0.664980 + 0.746861i \(0.731560\pi\)
\(318\) −26.6659 −1.49535
\(319\) −10.4819 −0.586876
\(320\) −3.76523 −0.210483
\(321\) 41.0835 2.29306
\(322\) 0 0
\(323\) −8.07401 −0.449250
\(324\) −3.51832 −0.195462
\(325\) 0 0
\(326\) −2.60891 −0.144494
\(327\) −12.1883 −0.674014
\(328\) 3.47800 0.192040
\(329\) 0 0
\(330\) −2.89827 −0.159545
\(331\) −7.95209 −0.437086 −0.218543 0.975827i \(-0.570130\pi\)
−0.218543 + 0.975827i \(0.570130\pi\)
\(332\) −3.16573 −0.173742
\(333\) −2.14296 −0.117434
\(334\) −19.2410 −1.05282
\(335\) −4.46337 −0.243860
\(336\) 0 0
\(337\) −7.91326 −0.431063 −0.215531 0.976497i \(-0.569148\pi\)
−0.215531 + 0.976497i \(0.569148\pi\)
\(338\) 0 0
\(339\) −10.9491 −0.594674
\(340\) −0.883839 −0.0479329
\(341\) −9.25603 −0.501242
\(342\) −3.89447 −0.210589
\(343\) 0 0
\(344\) 29.6609 1.59921
\(345\) 2.22305 0.119685
\(346\) −17.4698 −0.939180
\(347\) 7.13571 0.383065 0.191533 0.981486i \(-0.438654\pi\)
0.191533 + 0.981486i \(0.438654\pi\)
\(348\) −4.58335 −0.245694
\(349\) 1.37680 0.0736987 0.0368493 0.999321i \(-0.488268\pi\)
0.0368493 + 0.999321i \(0.488268\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.66705 0.142154
\(353\) 0.693215 0.0368961 0.0184481 0.999830i \(-0.494127\pi\)
0.0184481 + 0.999830i \(0.494127\pi\)
\(354\) −38.3997 −2.04092
\(355\) 3.89276 0.206606
\(356\) −5.15571 −0.273252
\(357\) 0 0
\(358\) −3.32214 −0.175581
\(359\) 5.80365 0.306305 0.153152 0.988203i \(-0.451057\pi\)
0.153152 + 0.988203i \(0.451057\pi\)
\(360\) 2.29991 0.121216
\(361\) −16.1644 −0.850760
\(362\) −17.6381 −0.927038
\(363\) 18.4709 0.969472
\(364\) 0 0
\(365\) −9.64902 −0.505053
\(366\) −8.01960 −0.419191
\(367\) −7.35157 −0.383749 −0.191874 0.981420i \(-0.561457\pi\)
−0.191874 + 0.981420i \(0.561457\pi\)
\(368\) −8.03187 −0.418690
\(369\) −2.06134 −0.107309
\(370\) 1.26304 0.0656625
\(371\) 0 0
\(372\) −4.04731 −0.209843
\(373\) 18.3988 0.952656 0.476328 0.879268i \(-0.341967\pi\)
0.476328 + 0.879268i \(0.341967\pi\)
\(374\) −11.0892 −0.573407
\(375\) −12.0964 −0.624654
\(376\) −1.19272 −0.0615099
\(377\) 0 0
\(378\) 0 0
\(379\) 4.85101 0.249180 0.124590 0.992208i \(-0.460239\pi\)
0.124590 + 0.992208i \(0.460239\pi\)
\(380\) 0.310401 0.0159232
\(381\) 19.1429 0.980723
\(382\) 27.0078 1.38184
\(383\) −22.8205 −1.16607 −0.583037 0.812446i \(-0.698136\pi\)
−0.583037 + 0.812446i \(0.698136\pi\)
\(384\) −28.1142 −1.43470
\(385\) 0 0
\(386\) −34.4271 −1.75229
\(387\) −17.5795 −0.893615
\(388\) 0.304579 0.0154627
\(389\) −20.3122 −1.02987 −0.514933 0.857230i \(-0.672183\pi\)
−0.514933 + 0.857230i \(0.672183\pi\)
\(390\) 0 0
\(391\) 8.50569 0.430151
\(392\) 0 0
\(393\) −14.4548 −0.729150
\(394\) −30.4251 −1.53279
\(395\) 8.81866 0.443715
\(396\) −0.723317 −0.0363481
\(397\) −34.1377 −1.71332 −0.856662 0.515878i \(-0.827466\pi\)
−0.856662 + 0.515878i \(0.827466\pi\)
\(398\) −2.81169 −0.140937
\(399\) 0 0
\(400\) 21.0656 1.05328
\(401\) 3.02596 0.151109 0.0755547 0.997142i \(-0.475927\pi\)
0.0755547 + 0.997142i \(0.475927\pi\)
\(402\) −24.4867 −1.22128
\(403\) 0 0
\(404\) −0.919564 −0.0457500
\(405\) 6.63040 0.329467
\(406\) 0 0
\(407\) 2.14296 0.106223
\(408\) 26.1589 1.29506
\(409\) 5.38325 0.266184 0.133092 0.991104i \(-0.457509\pi\)
0.133092 + 0.991104i \(0.457509\pi\)
\(410\) 1.21494 0.0600015
\(411\) −29.9276 −1.47622
\(412\) 0.165346 0.00814602
\(413\) 0 0
\(414\) 4.10269 0.201636
\(415\) 5.96592 0.292856
\(416\) 0 0
\(417\) −36.7543 −1.79986
\(418\) 3.89447 0.190485
\(419\) −5.88235 −0.287371 −0.143686 0.989623i \(-0.545895\pi\)
−0.143686 + 0.989623i \(0.545895\pi\)
\(420\) 0 0
\(421\) 28.7614 1.40174 0.700872 0.713287i \(-0.252794\pi\)
0.700872 + 0.713287i \(0.252794\pi\)
\(422\) −24.5901 −1.19703
\(423\) 0.706904 0.0343708
\(424\) −21.1607 −1.02765
\(425\) −22.3083 −1.08211
\(426\) 21.3562 1.03471
\(427\) 0 0
\(428\) −6.04311 −0.292105
\(429\) 0 0
\(430\) 10.3612 0.499661
\(431\) −8.38588 −0.403934 −0.201967 0.979392i \(-0.564733\pi\)
−0.201967 + 0.979392i \(0.564733\pi\)
\(432\) −14.2403 −0.685135
\(433\) 27.5993 1.32634 0.663168 0.748471i \(-0.269212\pi\)
0.663168 + 0.748471i \(0.269212\pi\)
\(434\) 0 0
\(435\) 8.63749 0.414136
\(436\) 1.79282 0.0858604
\(437\) −2.98717 −0.142896
\(438\) −52.9359 −2.52937
\(439\) −31.1737 −1.48784 −0.743921 0.668268i \(-0.767036\pi\)
−0.743921 + 0.668268i \(0.767036\pi\)
\(440\) −2.29991 −0.109644
\(441\) 0 0
\(442\) 0 0
\(443\) −23.5883 −1.12071 −0.560357 0.828251i \(-0.689336\pi\)
−0.560357 + 0.828251i \(0.689336\pi\)
\(444\) 0.937036 0.0444698
\(445\) 9.71611 0.460588
\(446\) 18.9059 0.895221
\(447\) −36.4118 −1.72222
\(448\) 0 0
\(449\) −2.82656 −0.133394 −0.0666968 0.997773i \(-0.521246\pi\)
−0.0666968 + 0.997773i \(0.521246\pi\)
\(450\) −10.7604 −0.507248
\(451\) 2.06134 0.0970649
\(452\) 1.61054 0.0757536
\(453\) 33.5887 1.57814
\(454\) −1.87812 −0.0881444
\(455\) 0 0
\(456\) −9.18691 −0.430217
\(457\) 37.7432 1.76555 0.882776 0.469795i \(-0.155672\pi\)
0.882776 + 0.469795i \(0.155672\pi\)
\(458\) −9.96888 −0.465815
\(459\) 15.0803 0.703890
\(460\) −0.326997 −0.0152463
\(461\) 34.6586 1.61421 0.807106 0.590407i \(-0.201033\pi\)
0.807106 + 0.590407i \(0.201033\pi\)
\(462\) 0 0
\(463\) −18.5114 −0.860296 −0.430148 0.902758i \(-0.641539\pi\)
−0.430148 + 0.902758i \(0.641539\pi\)
\(464\) −31.2071 −1.44875
\(465\) 7.62730 0.353707
\(466\) 9.57916 0.443746
\(467\) −6.62783 −0.306700 −0.153350 0.988172i \(-0.549006\pi\)
−0.153350 + 0.988172i \(0.549006\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.416643 −0.0192183
\(471\) 8.04455 0.370673
\(472\) −30.4720 −1.40259
\(473\) 17.5795 0.808305
\(474\) 48.3804 2.22219
\(475\) 7.83460 0.359476
\(476\) 0 0
\(477\) 12.5415 0.574237
\(478\) 28.7720 1.31600
\(479\) −17.4526 −0.797430 −0.398715 0.917075i \(-0.630544\pi\)
−0.398715 + 0.917075i \(0.630544\pi\)
\(480\) −2.19774 −0.100313
\(481\) 0 0
\(482\) −33.9083 −1.54448
\(483\) 0 0
\(484\) −2.71695 −0.123498
\(485\) −0.573990 −0.0260635
\(486\) 22.0261 0.999126
\(487\) 35.5138 1.60928 0.804641 0.593762i \(-0.202358\pi\)
0.804641 + 0.593762i \(0.202358\pi\)
\(488\) −6.36393 −0.288081
\(489\) 3.64754 0.164948
\(490\) 0 0
\(491\) −29.8118 −1.34539 −0.672695 0.739920i \(-0.734863\pi\)
−0.672695 + 0.739920i \(0.734863\pi\)
\(492\) 0.901347 0.0406359
\(493\) 33.0481 1.48841
\(494\) 0 0
\(495\) 1.36312 0.0612675
\(496\) −27.5573 −1.23736
\(497\) 0 0
\(498\) 32.7299 1.46666
\(499\) 7.50966 0.336178 0.168089 0.985772i \(-0.446240\pi\)
0.168089 + 0.985772i \(0.446240\pi\)
\(500\) 1.77930 0.0795726
\(501\) 26.9010 1.20185
\(502\) −10.5742 −0.471948
\(503\) −0.984343 −0.0438897 −0.0219448 0.999759i \(-0.506986\pi\)
−0.0219448 + 0.999759i \(0.506986\pi\)
\(504\) 0 0
\(505\) 1.73295 0.0771152
\(506\) −4.10269 −0.182387
\(507\) 0 0
\(508\) −2.81580 −0.124931
\(509\) 12.9792 0.575291 0.287646 0.957737i \(-0.407127\pi\)
0.287646 + 0.957737i \(0.407127\pi\)
\(510\) 9.13786 0.404631
\(511\) 0 0
\(512\) −15.2950 −0.675949
\(513\) −5.29616 −0.233831
\(514\) 32.1722 1.41905
\(515\) −0.311600 −0.0137308
\(516\) 7.68683 0.338394
\(517\) −0.706904 −0.0310896
\(518\) 0 0
\(519\) 24.4247 1.07212
\(520\) 0 0
\(521\) 19.4146 0.850569 0.425285 0.905060i \(-0.360174\pi\)
0.425285 + 0.905060i \(0.360174\pi\)
\(522\) 15.9407 0.697704
\(523\) −27.2719 −1.19252 −0.596259 0.802792i \(-0.703347\pi\)
−0.596259 + 0.802792i \(0.703347\pi\)
\(524\) 2.12621 0.0928840
\(525\) 0 0
\(526\) −12.8200 −0.558979
\(527\) 29.1830 1.27123
\(528\) −14.6402 −0.637134
\(529\) −19.8531 −0.863179
\(530\) −7.39187 −0.321082
\(531\) 18.0602 0.783744
\(532\) 0 0
\(533\) 0 0
\(534\) 53.3040 2.30669
\(535\) 11.3884 0.492365
\(536\) −19.4313 −0.839305
\(537\) 4.64473 0.200435
\(538\) −8.86670 −0.382271
\(539\) 0 0
\(540\) −0.579755 −0.0249487
\(541\) 30.0990 1.29406 0.647029 0.762465i \(-0.276011\pi\)
0.647029 + 0.762465i \(0.276011\pi\)
\(542\) −28.0278 −1.20389
\(543\) 24.6600 1.05826
\(544\) −8.40885 −0.360526
\(545\) −3.37863 −0.144724
\(546\) 0 0
\(547\) −26.1451 −1.11788 −0.558942 0.829207i \(-0.688793\pi\)
−0.558942 + 0.829207i \(0.688793\pi\)
\(548\) 4.40216 0.188051
\(549\) 3.77178 0.160976
\(550\) 10.7604 0.458823
\(551\) −11.6064 −0.494449
\(552\) 9.67809 0.411927
\(553\) 0 0
\(554\) −9.40305 −0.399497
\(555\) −1.76588 −0.0749573
\(556\) 5.40631 0.229279
\(557\) −17.9063 −0.758716 −0.379358 0.925250i \(-0.623855\pi\)
−0.379358 + 0.925250i \(0.623855\pi\)
\(558\) 14.0763 0.595899
\(559\) 0 0
\(560\) 0 0
\(561\) 15.5039 0.654575
\(562\) 8.57790 0.361837
\(563\) 31.6549 1.33410 0.667048 0.745015i \(-0.267558\pi\)
0.667048 + 0.745015i \(0.267558\pi\)
\(564\) −0.309102 −0.0130155
\(565\) −3.03512 −0.127689
\(566\) −25.0250 −1.05188
\(567\) 0 0
\(568\) 16.9472 0.711087
\(569\) −26.1111 −1.09463 −0.547317 0.836925i \(-0.684351\pi\)
−0.547317 + 0.836925i \(0.684351\pi\)
\(570\) −3.20918 −0.134418
\(571\) 13.3041 0.556760 0.278380 0.960471i \(-0.410203\pi\)
0.278380 + 0.960471i \(0.410203\pi\)
\(572\) 0 0
\(573\) −37.7599 −1.57744
\(574\) 0 0
\(575\) −8.25348 −0.344194
\(576\) 9.71520 0.404800
\(577\) −16.7713 −0.698198 −0.349099 0.937086i \(-0.613512\pi\)
−0.349099 + 0.937086i \(0.613512\pi\)
\(578\) 9.10948 0.378905
\(579\) 48.1329 2.00034
\(580\) −1.27052 −0.0527554
\(581\) 0 0
\(582\) −3.14899 −0.130530
\(583\) −12.5415 −0.519417
\(584\) −42.0071 −1.73827
\(585\) 0 0
\(586\) −46.5617 −1.92345
\(587\) −10.0652 −0.415436 −0.207718 0.978189i \(-0.566604\pi\)
−0.207718 + 0.978189i \(0.566604\pi\)
\(588\) 0 0
\(589\) −10.2490 −0.422301
\(590\) −10.6445 −0.438227
\(591\) 42.5377 1.74977
\(592\) 6.38009 0.262220
\(593\) 39.4322 1.61929 0.809643 0.586923i \(-0.199661\pi\)
0.809643 + 0.586923i \(0.199661\pi\)
\(594\) −7.27395 −0.298454
\(595\) 0 0
\(596\) 5.35593 0.219388
\(597\) 3.93105 0.160887
\(598\) 0 0
\(599\) 13.7720 0.562709 0.281355 0.959604i \(-0.409216\pi\)
0.281355 + 0.959604i \(0.409216\pi\)
\(600\) −25.3833 −1.03627
\(601\) −33.2623 −1.35680 −0.678399 0.734694i \(-0.737326\pi\)
−0.678399 + 0.734694i \(0.737326\pi\)
\(602\) 0 0
\(603\) 11.5166 0.468991
\(604\) −4.94068 −0.201034
\(605\) 5.12019 0.208165
\(606\) 9.50720 0.386204
\(607\) −43.9649 −1.78448 −0.892240 0.451562i \(-0.850867\pi\)
−0.892240 + 0.451562i \(0.850867\pi\)
\(608\) 2.95316 0.119766
\(609\) 0 0
\(610\) −2.22305 −0.0900088
\(611\) 0 0
\(612\) 2.28052 0.0921846
\(613\) −2.70091 −0.109089 −0.0545443 0.998511i \(-0.517371\pi\)
−0.0545443 + 0.998511i \(0.517371\pi\)
\(614\) 15.1472 0.611292
\(615\) −1.69862 −0.0684949
\(616\) 0 0
\(617\) −6.00415 −0.241718 −0.120859 0.992670i \(-0.538565\pi\)
−0.120859 + 0.992670i \(0.538565\pi\)
\(618\) −1.70948 −0.0687655
\(619\) −13.3641 −0.537148 −0.268574 0.963259i \(-0.586552\pi\)
−0.268574 + 0.963259i \(0.586552\pi\)
\(620\) −1.12193 −0.0450576
\(621\) 5.57932 0.223890
\(622\) 42.1965 1.69193
\(623\) 0 0
\(624\) 0 0
\(625\) 19.9099 0.796398
\(626\) −25.1273 −1.00429
\(627\) −5.44491 −0.217449
\(628\) −1.18330 −0.0472188
\(629\) −6.75647 −0.269398
\(630\) 0 0
\(631\) −40.4457 −1.61012 −0.805059 0.593195i \(-0.797866\pi\)
−0.805059 + 0.593195i \(0.797866\pi\)
\(632\) 38.3921 1.52716
\(633\) 34.3797 1.36647
\(634\) −36.0108 −1.43017
\(635\) 5.30648 0.210581
\(636\) −5.48393 −0.217452
\(637\) 0 0
\(638\) −15.9407 −0.631097
\(639\) −10.0443 −0.397345
\(640\) −7.79334 −0.308059
\(641\) 10.2198 0.403658 0.201829 0.979421i \(-0.435311\pi\)
0.201829 + 0.979421i \(0.435311\pi\)
\(642\) 62.4786 2.46584
\(643\) 31.8027 1.25418 0.627088 0.778948i \(-0.284247\pi\)
0.627088 + 0.778948i \(0.284247\pi\)
\(644\) 0 0
\(645\) −14.4861 −0.570389
\(646\) −12.2787 −0.483101
\(647\) 34.5233 1.35725 0.678626 0.734484i \(-0.262576\pi\)
0.678626 + 0.734484i \(0.262576\pi\)
\(648\) 28.8655 1.13394
\(649\) −18.0602 −0.708923
\(650\) 0 0
\(651\) 0 0
\(652\) −0.536530 −0.0210121
\(653\) 10.1180 0.395947 0.197974 0.980207i \(-0.436564\pi\)
0.197974 + 0.980207i \(0.436564\pi\)
\(654\) −18.5356 −0.724800
\(655\) −4.00692 −0.156563
\(656\) 6.13709 0.239613
\(657\) 24.8968 0.971317
\(658\) 0 0
\(659\) −34.7681 −1.35437 −0.677187 0.735811i \(-0.736801\pi\)
−0.677187 + 0.735811i \(0.736801\pi\)
\(660\) −0.596039 −0.0232008
\(661\) −16.5615 −0.644168 −0.322084 0.946711i \(-0.604383\pi\)
−0.322084 + 0.946711i \(0.604383\pi\)
\(662\) −12.0933 −0.470020
\(663\) 0 0
\(664\) 25.9727 1.00794
\(665\) 0 0
\(666\) −3.25896 −0.126282
\(667\) 12.2269 0.473428
\(668\) −3.95697 −0.153100
\(669\) −26.4326 −1.02194
\(670\) −6.78777 −0.262234
\(671\) −3.77178 −0.145608
\(672\) 0 0
\(673\) −41.8874 −1.61464 −0.807321 0.590113i \(-0.799083\pi\)
−0.807321 + 0.590113i \(0.799083\pi\)
\(674\) −12.0343 −0.463543
\(675\) −14.6332 −0.563231
\(676\) 0 0
\(677\) 31.5715 1.21339 0.606696 0.794934i \(-0.292495\pi\)
0.606696 + 0.794934i \(0.292495\pi\)
\(678\) −16.6511 −0.639483
\(679\) 0 0
\(680\) 7.25132 0.278075
\(681\) 2.62582 0.100621
\(682\) −14.0763 −0.539011
\(683\) 26.2676 1.00510 0.502551 0.864548i \(-0.332395\pi\)
0.502551 + 0.864548i \(0.332395\pi\)
\(684\) −0.800911 −0.0306236
\(685\) −8.29602 −0.316975
\(686\) 0 0
\(687\) 13.9376 0.531753
\(688\) 52.3381 1.99537
\(689\) 0 0
\(690\) 3.38076 0.128703
\(691\) 6.10095 0.232091 0.116046 0.993244i \(-0.462978\pi\)
0.116046 + 0.993244i \(0.462978\pi\)
\(692\) −3.59271 −0.136574
\(693\) 0 0
\(694\) 10.8518 0.411929
\(695\) −10.1884 −0.386467
\(696\) 37.6034 1.42535
\(697\) −6.49914 −0.246172
\(698\) 2.09381 0.0792518
\(699\) −13.3927 −0.506560
\(700\) 0 0
\(701\) −20.5701 −0.776921 −0.388461 0.921465i \(-0.626993\pi\)
−0.388461 + 0.921465i \(0.626993\pi\)
\(702\) 0 0
\(703\) 2.37285 0.0894936
\(704\) −9.71520 −0.366155
\(705\) 0.582513 0.0219387
\(706\) 1.05422 0.0396762
\(707\) 0 0
\(708\) −7.89702 −0.296788
\(709\) 43.1529 1.62064 0.810320 0.585988i \(-0.199293\pi\)
0.810320 + 0.585988i \(0.199293\pi\)
\(710\) 5.92000 0.222174
\(711\) −22.7543 −0.853353
\(712\) 42.2992 1.58523
\(713\) 10.7969 0.404348
\(714\) 0 0
\(715\) 0 0
\(716\) −0.683209 −0.0255327
\(717\) −40.2265 −1.50229
\(718\) 8.82603 0.329385
\(719\) −28.2084 −1.05200 −0.525999 0.850485i \(-0.676308\pi\)
−0.525999 + 0.850485i \(0.676308\pi\)
\(720\) 4.05831 0.151244
\(721\) 0 0
\(722\) −24.5824 −0.914864
\(723\) 47.4076 1.76311
\(724\) −3.62733 −0.134809
\(725\) −32.0682 −1.19098
\(726\) 28.0901 1.04252
\(727\) −19.5116 −0.723646 −0.361823 0.932247i \(-0.617845\pi\)
−0.361823 + 0.932247i \(0.617845\pi\)
\(728\) 0 0
\(729\) 2.95370 0.109396
\(730\) −14.6740 −0.543108
\(731\) −55.4257 −2.04999
\(732\) −1.64926 −0.0609582
\(733\) −20.3666 −0.752259 −0.376129 0.926567i \(-0.622745\pi\)
−0.376129 + 0.926567i \(0.622745\pi\)
\(734\) −11.1801 −0.412664
\(735\) 0 0
\(736\) −3.11105 −0.114675
\(737\) −11.5166 −0.424218
\(738\) −3.13484 −0.115395
\(739\) 10.4199 0.383303 0.191651 0.981463i \(-0.438616\pi\)
0.191651 + 0.981463i \(0.438616\pi\)
\(740\) 0.259749 0.00954856
\(741\) 0 0
\(742\) 0 0
\(743\) 17.4094 0.638689 0.319344 0.947639i \(-0.396537\pi\)
0.319344 + 0.947639i \(0.396537\pi\)
\(744\) 33.2055 1.21737
\(745\) −10.0934 −0.369795
\(746\) 27.9805 1.02444
\(747\) −15.3935 −0.563220
\(748\) −2.28052 −0.0833841
\(749\) 0 0
\(750\) −18.3958 −0.671721
\(751\) −1.81525 −0.0662395 −0.0331197 0.999451i \(-0.510544\pi\)
−0.0331197 + 0.999451i \(0.510544\pi\)
\(752\) −2.10461 −0.0767474
\(753\) 14.7839 0.538754
\(754\) 0 0
\(755\) 9.31088 0.338858
\(756\) 0 0
\(757\) 53.5627 1.94677 0.973385 0.229176i \(-0.0736033\pi\)
0.973385 + 0.229176i \(0.0736033\pi\)
\(758\) 7.37728 0.267955
\(759\) 5.73602 0.208204
\(760\) −2.54664 −0.0923762
\(761\) −3.68166 −0.133460 −0.0667300 0.997771i \(-0.521257\pi\)
−0.0667300 + 0.997771i \(0.521257\pi\)
\(762\) 29.1121 1.05462
\(763\) 0 0
\(764\) 5.55423 0.200945
\(765\) −4.29772 −0.155384
\(766\) −34.7048 −1.25394
\(767\) 0 0
\(768\) −15.5895 −0.562538
\(769\) −5.23794 −0.188885 −0.0944424 0.995530i \(-0.530107\pi\)
−0.0944424 + 0.995530i \(0.530107\pi\)
\(770\) 0 0
\(771\) −44.9803 −1.61993
\(772\) −7.08004 −0.254816
\(773\) 40.6138 1.46078 0.730388 0.683032i \(-0.239339\pi\)
0.730388 + 0.683032i \(0.239339\pi\)
\(774\) −26.7344 −0.960948
\(775\) −28.3177 −1.01720
\(776\) −2.49887 −0.0897043
\(777\) 0 0
\(778\) −30.8902 −1.10747
\(779\) 2.28247 0.0817781
\(780\) 0 0
\(781\) 10.0443 0.359412
\(782\) 12.9352 0.462563
\(783\) 21.6780 0.774707
\(784\) 0 0
\(785\) 2.22997 0.0795911
\(786\) −21.9825 −0.784090
\(787\) −34.2000 −1.21910 −0.609550 0.792748i \(-0.708650\pi\)
−0.609550 + 0.792748i \(0.708650\pi\)
\(788\) −6.25701 −0.222897
\(789\) 17.9238 0.638104
\(790\) 13.4112 0.477149
\(791\) 0 0
\(792\) 5.93434 0.210868
\(793\) 0 0
\(794\) −51.9158 −1.84242
\(795\) 10.3347 0.366532
\(796\) −0.578232 −0.0204949
\(797\) 31.3805 1.11156 0.555778 0.831331i \(-0.312421\pi\)
0.555778 + 0.831331i \(0.312421\pi\)
\(798\) 0 0
\(799\) 2.22877 0.0788483
\(800\) 8.15951 0.288482
\(801\) −25.0699 −0.885803
\(802\) 4.60180 0.162495
\(803\) −24.8968 −0.878590
\(804\) −5.03576 −0.177598
\(805\) 0 0
\(806\) 0 0
\(807\) 12.3966 0.436382
\(808\) 7.54441 0.265412
\(809\) −37.9418 −1.33396 −0.666981 0.745075i \(-0.732414\pi\)
−0.666981 + 0.745075i \(0.732414\pi\)
\(810\) 10.0833 0.354292
\(811\) 32.1023 1.12726 0.563632 0.826026i \(-0.309403\pi\)
0.563632 + 0.826026i \(0.309403\pi\)
\(812\) 0 0
\(813\) 39.1859 1.37431
\(814\) 3.25896 0.114227
\(815\) 1.01111 0.0354176
\(816\) 46.1586 1.61588
\(817\) 19.4653 0.681004
\(818\) 8.18670 0.286241
\(819\) 0 0
\(820\) 0.249856 0.00872534
\(821\) 16.9223 0.590594 0.295297 0.955406i \(-0.404581\pi\)
0.295297 + 0.955406i \(0.404581\pi\)
\(822\) −45.5132 −1.58745
\(823\) −14.4733 −0.504508 −0.252254 0.967661i \(-0.581172\pi\)
−0.252254 + 0.967661i \(0.581172\pi\)
\(824\) −1.35656 −0.0472579
\(825\) −15.0442 −0.523771
\(826\) 0 0
\(827\) −27.5792 −0.959021 −0.479511 0.877536i \(-0.659186\pi\)
−0.479511 + 0.877536i \(0.659186\pi\)
\(828\) 0.843731 0.0293217
\(829\) 21.0930 0.732592 0.366296 0.930498i \(-0.380626\pi\)
0.366296 + 0.930498i \(0.380626\pi\)
\(830\) 9.07281 0.314922
\(831\) 13.1465 0.456047
\(832\) 0 0
\(833\) 0 0
\(834\) −55.8949 −1.93548
\(835\) 7.45704 0.258061
\(836\) 0.800911 0.0277001
\(837\) 19.1426 0.661666
\(838\) −8.94572 −0.309025
\(839\) 12.7098 0.438789 0.219395 0.975636i \(-0.429592\pi\)
0.219395 + 0.975636i \(0.429592\pi\)
\(840\) 0 0
\(841\) 18.5067 0.638160
\(842\) 43.7396 1.50736
\(843\) −11.9929 −0.413056
\(844\) −5.05703 −0.174070
\(845\) 0 0
\(846\) 1.07504 0.0369606
\(847\) 0 0
\(848\) −37.3390 −1.28223
\(849\) 34.9877 1.20077
\(850\) −33.9259 −1.16365
\(851\) −2.49971 −0.0856890
\(852\) 4.39197 0.150467
\(853\) 35.0471 1.19999 0.599996 0.800003i \(-0.295169\pi\)
0.599996 + 0.800003i \(0.295169\pi\)
\(854\) 0 0
\(855\) 1.50934 0.0516184
\(856\) 49.5797 1.69460
\(857\) −25.5940 −0.874275 −0.437138 0.899395i \(-0.644008\pi\)
−0.437138 + 0.899395i \(0.644008\pi\)
\(858\) 0 0
\(859\) 0.745486 0.0254357 0.0127178 0.999919i \(-0.495952\pi\)
0.0127178 + 0.999919i \(0.495952\pi\)
\(860\) 2.13081 0.0726600
\(861\) 0 0
\(862\) −12.7530 −0.434370
\(863\) 21.9816 0.748263 0.374132 0.927376i \(-0.377941\pi\)
0.374132 + 0.927376i \(0.377941\pi\)
\(864\) −5.51579 −0.187651
\(865\) 6.77058 0.230207
\(866\) 41.9722 1.42627
\(867\) −12.7361 −0.432540
\(868\) 0 0
\(869\) 22.7543 0.771887
\(870\) 13.1357 0.445341
\(871\) 0 0
\(872\) −14.7089 −0.498106
\(873\) 1.48103 0.0501254
\(874\) −4.54280 −0.153663
\(875\) 0 0
\(876\) −10.8864 −0.367818
\(877\) −29.4190 −0.993411 −0.496705 0.867919i \(-0.665457\pi\)
−0.496705 + 0.867919i \(0.665457\pi\)
\(878\) −47.4082 −1.59995
\(879\) 65.0984 2.19572
\(880\) −4.05831 −0.136806
\(881\) −48.2828 −1.62669 −0.813345 0.581781i \(-0.802356\pi\)
−0.813345 + 0.581781i \(0.802356\pi\)
\(882\) 0 0
\(883\) 16.4465 0.553469 0.276735 0.960946i \(-0.410748\pi\)
0.276735 + 0.960946i \(0.410748\pi\)
\(884\) 0 0
\(885\) 14.8822 0.500260
\(886\) −35.8724 −1.20516
\(887\) −29.1653 −0.979276 −0.489638 0.871926i \(-0.662871\pi\)
−0.489638 + 0.871926i \(0.662871\pi\)
\(888\) −7.68776 −0.257984
\(889\) 0 0
\(890\) 14.7760 0.495293
\(891\) 17.1080 0.573141
\(892\) 3.88806 0.130182
\(893\) −0.782736 −0.0261933
\(894\) −55.3741 −1.85199
\(895\) 1.28753 0.0430374
\(896\) 0 0
\(897\) 0 0
\(898\) −4.29856 −0.143445
\(899\) 41.9506 1.39913
\(900\) −2.21290 −0.0737633
\(901\) 39.5417 1.31733
\(902\) 3.13484 0.104379
\(903\) 0 0
\(904\) −13.2135 −0.439473
\(905\) 6.83583 0.227231
\(906\) 51.0808 1.69705
\(907\) −35.3215 −1.17283 −0.586416 0.810010i \(-0.699461\pi\)
−0.586416 + 0.810010i \(0.699461\pi\)
\(908\) −0.386240 −0.0128178
\(909\) −4.47143 −0.148308
\(910\) 0 0
\(911\) −43.6496 −1.44617 −0.723087 0.690757i \(-0.757278\pi\)
−0.723087 + 0.690757i \(0.757278\pi\)
\(912\) −16.2107 −0.536791
\(913\) 15.3935 0.509452
\(914\) 57.3988 1.89858
\(915\) 3.10808 0.102750
\(916\) −2.05013 −0.0677382
\(917\) 0 0
\(918\) 22.9338 0.756927
\(919\) −17.7878 −0.586765 −0.293382 0.955995i \(-0.594781\pi\)
−0.293382 + 0.955995i \(0.594781\pi\)
\(920\) 2.68279 0.0884491
\(921\) −21.1775 −0.697822
\(922\) 52.7079 1.73584
\(923\) 0 0
\(924\) 0 0
\(925\) 6.55613 0.215564
\(926\) −28.1516 −0.925118
\(927\) 0.804005 0.0264070
\(928\) −12.0877 −0.396798
\(929\) 3.91420 0.128421 0.0642103 0.997936i \(-0.479547\pi\)
0.0642103 + 0.997936i \(0.479547\pi\)
\(930\) 11.5994 0.380359
\(931\) 0 0
\(932\) 1.96998 0.0645289
\(933\) −58.9955 −1.93142
\(934\) −10.0794 −0.329809
\(935\) 4.29772 0.140550
\(936\) 0 0
\(937\) 0.207362 0.00677421 0.00338710 0.999994i \(-0.498922\pi\)
0.00338710 + 0.999994i \(0.498922\pi\)
\(938\) 0 0
\(939\) 35.1308 1.14645
\(940\) −0.0856839 −0.00279470
\(941\) 27.4656 0.895355 0.447677 0.894195i \(-0.352251\pi\)
0.447677 + 0.894195i \(0.352251\pi\)
\(942\) 12.2339 0.398603
\(943\) −2.40451 −0.0783015
\(944\) −53.7692 −1.75004
\(945\) 0 0
\(946\) 26.7344 0.869210
\(947\) 23.0363 0.748580 0.374290 0.927312i \(-0.377886\pi\)
0.374290 + 0.927312i \(0.377886\pi\)
\(948\) 9.94959 0.323148
\(949\) 0 0
\(950\) 11.9147 0.386563
\(951\) 50.3471 1.63262
\(952\) 0 0
\(953\) 14.4562 0.468281 0.234140 0.972203i \(-0.424772\pi\)
0.234140 + 0.972203i \(0.424772\pi\)
\(954\) 19.0728 0.617505
\(955\) −10.4671 −0.338708
\(956\) 5.91706 0.191371
\(957\) 22.2868 0.720431
\(958\) −26.5414 −0.857515
\(959\) 0 0
\(960\) 8.00567 0.258382
\(961\) 6.04426 0.194976
\(962\) 0 0
\(963\) −29.3850 −0.946917
\(964\) −6.97336 −0.224597
\(965\) 13.3426 0.429513
\(966\) 0 0
\(967\) −32.3357 −1.03984 −0.519922 0.854213i \(-0.674039\pi\)
−0.519922 + 0.854213i \(0.674039\pi\)
\(968\) 22.2908 0.716454
\(969\) 17.1671 0.551485
\(970\) −0.872909 −0.0280274
\(971\) −24.6235 −0.790206 −0.395103 0.918637i \(-0.629291\pi\)
−0.395103 + 0.918637i \(0.629291\pi\)
\(972\) 4.52974 0.145292
\(973\) 0 0
\(974\) 54.0084 1.73054
\(975\) 0 0
\(976\) −11.2294 −0.359446
\(977\) −6.00992 −0.192274 −0.0961372 0.995368i \(-0.530649\pi\)
−0.0961372 + 0.995368i \(0.530649\pi\)
\(978\) 5.54709 0.177376
\(979\) 25.0699 0.801239
\(980\) 0 0
\(981\) 8.71768 0.278334
\(982\) −45.3371 −1.44676
\(983\) −35.9093 −1.14533 −0.572664 0.819790i \(-0.694090\pi\)
−0.572664 + 0.819790i \(0.694090\pi\)
\(984\) −7.39496 −0.235743
\(985\) 11.7916 0.375710
\(986\) 50.2587 1.60056
\(987\) 0 0
\(988\) 0 0
\(989\) −20.5060 −0.652053
\(990\) 2.07299 0.0658840
\(991\) 28.0000 0.889449 0.444724 0.895668i \(-0.353302\pi\)
0.444724 + 0.895668i \(0.353302\pi\)
\(992\) −10.6740 −0.338900
\(993\) 16.9078 0.536553
\(994\) 0 0
\(995\) 1.08970 0.0345457
\(996\) 6.73101 0.213280
\(997\) 33.0081 1.04538 0.522688 0.852524i \(-0.324929\pi\)
0.522688 + 0.852524i \(0.324929\pi\)
\(998\) 11.4205 0.361509
\(999\) −4.43191 −0.140219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cl.1.5 8
7.6 odd 2 inner 8281.2.a.cl.1.6 8
13.4 even 6 637.2.f.l.393.6 yes 16
13.10 even 6 637.2.f.l.295.6 yes 16
13.12 even 2 8281.2.a.ci.1.3 8
91.4 even 6 637.2.h.m.471.4 16
91.10 odd 6 637.2.g.m.373.6 16
91.17 odd 6 637.2.h.m.471.3 16
91.23 even 6 637.2.h.m.165.4 16
91.30 even 6 637.2.g.m.263.5 16
91.62 odd 6 637.2.f.l.295.5 16
91.69 odd 6 637.2.f.l.393.5 yes 16
91.75 odd 6 637.2.h.m.165.3 16
91.82 odd 6 637.2.g.m.263.6 16
91.88 even 6 637.2.g.m.373.5 16
91.90 odd 2 8281.2.a.ci.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.f.l.295.5 16 91.62 odd 6
637.2.f.l.295.6 yes 16 13.10 even 6
637.2.f.l.393.5 yes 16 91.69 odd 6
637.2.f.l.393.6 yes 16 13.4 even 6
637.2.g.m.263.5 16 91.30 even 6
637.2.g.m.263.6 16 91.82 odd 6
637.2.g.m.373.5 16 91.88 even 6
637.2.g.m.373.6 16 91.10 odd 6
637.2.h.m.165.3 16 91.75 odd 6
637.2.h.m.165.4 16 91.23 even 6
637.2.h.m.471.3 16 91.17 odd 6
637.2.h.m.471.4 16 91.4 even 6
8281.2.a.ci.1.3 8 13.12 even 2
8281.2.a.ci.1.4 8 91.90 odd 2
8281.2.a.cl.1.5 8 1.1 even 1 trivial
8281.2.a.cl.1.6 8 7.6 odd 2 inner