Properties

Label 8281.2.a.cl.1.8
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.8446345216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.11758\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.33152 q^{2} +2.30901 q^{3} +3.43596 q^{4} -3.37112 q^{5} +5.38349 q^{6} +3.34797 q^{8} +2.33152 q^{9} -7.85981 q^{10} -2.33152 q^{11} +7.93366 q^{12} -7.78393 q^{15} +0.933914 q^{16} -5.45734 q^{17} +5.43596 q^{18} +7.16819 q^{19} -11.5830 q^{20} -5.43596 q^{22} -6.45242 q^{23} +7.73048 q^{24} +6.36442 q^{25} -1.54354 q^{27} -8.44287 q^{29} -18.1484 q^{30} +3.05121 q^{31} -4.51850 q^{32} -5.38349 q^{33} -12.7239 q^{34} +8.01100 q^{36} -3.05653 q^{37} +16.7127 q^{38} -11.2864 q^{40} +0.937666 q^{41} -4.09209 q^{43} -8.01100 q^{44} -7.85981 q^{45} -15.0439 q^{46} +3.46336 q^{47} +2.15642 q^{48} +14.8387 q^{50} -12.6010 q^{51} -2.34387 q^{53} -3.59878 q^{54} +7.85981 q^{55} +16.5514 q^{57} -19.6847 q^{58} -7.24693 q^{59} -26.7453 q^{60} +6.39013 q^{61} +7.11394 q^{62} -12.4028 q^{64} -12.5517 q^{66} -4.61340 q^{67} -18.7512 q^{68} -14.8987 q^{69} +7.58739 q^{71} +7.80584 q^{72} +2.06996 q^{73} -7.12636 q^{74} +14.6955 q^{75} +24.6296 q^{76} -7.58868 q^{79} -3.14833 q^{80} -10.5586 q^{81} +2.18618 q^{82} +2.89335 q^{83} +18.3973 q^{85} -9.54077 q^{86} -19.4946 q^{87} -7.80584 q^{88} -13.1597 q^{89} -18.3253 q^{90} -22.1703 q^{92} +7.04526 q^{93} +8.07488 q^{94} -24.1648 q^{95} -10.4333 q^{96} +3.55712 q^{97} -5.43596 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 12 q^{4} - 12 q^{8} + 4 q^{9} - 4 q^{11} - 8 q^{15} + 4 q^{16} + 28 q^{18} - 28 q^{22} - 12 q^{23} - 12 q^{25} - 8 q^{29} - 28 q^{30} - 4 q^{36} - 8 q^{37} - 32 q^{43} + 4 q^{44} - 4 q^{46}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.33152 1.64863 0.824315 0.566131i \(-0.191560\pi\)
0.824315 + 0.566131i \(0.191560\pi\)
\(3\) 2.30901 1.33311 0.666553 0.745458i \(-0.267769\pi\)
0.666553 + 0.745458i \(0.267769\pi\)
\(4\) 3.43596 1.71798
\(5\) −3.37112 −1.50761 −0.753804 0.657099i \(-0.771783\pi\)
−0.753804 + 0.657099i \(0.771783\pi\)
\(6\) 5.38349 2.19780
\(7\) 0 0
\(8\) 3.34797 1.18369
\(9\) 2.33152 0.777172
\(10\) −7.85981 −2.48549
\(11\) −2.33152 −0.702978 −0.351489 0.936192i \(-0.614325\pi\)
−0.351489 + 0.936192i \(0.614325\pi\)
\(12\) 7.93366 2.29025
\(13\) 0 0
\(14\) 0 0
\(15\) −7.78393 −2.00980
\(16\) 0.933914 0.233479
\(17\) −5.45734 −1.32360 −0.661800 0.749681i \(-0.730207\pi\)
−0.661800 + 0.749681i \(0.730207\pi\)
\(18\) 5.43596 1.28127
\(19\) 7.16819 1.64450 0.822248 0.569129i \(-0.192720\pi\)
0.822248 + 0.569129i \(0.192720\pi\)
\(20\) −11.5830 −2.59004
\(21\) 0 0
\(22\) −5.43596 −1.15895
\(23\) −6.45242 −1.34542 −0.672711 0.739905i \(-0.734870\pi\)
−0.672711 + 0.739905i \(0.734870\pi\)
\(24\) 7.73048 1.57798
\(25\) 6.36442 1.27288
\(26\) 0 0
\(27\) −1.54354 −0.297054
\(28\) 0 0
\(29\) −8.44287 −1.56780 −0.783900 0.620887i \(-0.786773\pi\)
−0.783900 + 0.620887i \(0.786773\pi\)
\(30\) −18.1484 −3.31342
\(31\) 3.05121 0.548013 0.274007 0.961728i \(-0.411651\pi\)
0.274007 + 0.961728i \(0.411651\pi\)
\(32\) −4.51850 −0.798766
\(33\) −5.38349 −0.937145
\(34\) −12.7239 −2.18213
\(35\) 0 0
\(36\) 8.01100 1.33517
\(37\) −3.05653 −0.502491 −0.251246 0.967923i \(-0.580840\pi\)
−0.251246 + 0.967923i \(0.580840\pi\)
\(38\) 16.7127 2.71117
\(39\) 0 0
\(40\) −11.2864 −1.78454
\(41\) 0.937666 0.146439 0.0732194 0.997316i \(-0.476673\pi\)
0.0732194 + 0.997316i \(0.476673\pi\)
\(42\) 0 0
\(43\) −4.09209 −0.624038 −0.312019 0.950076i \(-0.601005\pi\)
−0.312019 + 0.950076i \(0.601005\pi\)
\(44\) −8.01100 −1.20770
\(45\) −7.85981 −1.17167
\(46\) −15.0439 −2.21810
\(47\) 3.46336 0.505183 0.252591 0.967573i \(-0.418717\pi\)
0.252591 + 0.967573i \(0.418717\pi\)
\(48\) 2.15642 0.311252
\(49\) 0 0
\(50\) 14.8387 2.09852
\(51\) −12.6010 −1.76450
\(52\) 0 0
\(53\) −2.34387 −0.321956 −0.160978 0.986958i \(-0.551465\pi\)
−0.160978 + 0.986958i \(0.551465\pi\)
\(54\) −3.59878 −0.489732
\(55\) 7.85981 1.05982
\(56\) 0 0
\(57\) 16.5514 2.19229
\(58\) −19.6847 −2.58472
\(59\) −7.24693 −0.943470 −0.471735 0.881740i \(-0.656372\pi\)
−0.471735 + 0.881740i \(0.656372\pi\)
\(60\) −26.7453 −3.45280
\(61\) 6.39013 0.818172 0.409086 0.912496i \(-0.365848\pi\)
0.409086 + 0.912496i \(0.365848\pi\)
\(62\) 7.11394 0.903471
\(63\) 0 0
\(64\) −12.4028 −1.55035
\(65\) 0 0
\(66\) −12.5517 −1.54500
\(67\) −4.61340 −0.563616 −0.281808 0.959471i \(-0.590934\pi\)
−0.281808 + 0.959471i \(0.590934\pi\)
\(68\) −18.7512 −2.27392
\(69\) −14.8987 −1.79359
\(70\) 0 0
\(71\) 7.58739 0.900458 0.450229 0.892913i \(-0.351342\pi\)
0.450229 + 0.892913i \(0.351342\pi\)
\(72\) 7.80584 0.919927
\(73\) 2.06996 0.242271 0.121136 0.992636i \(-0.461346\pi\)
0.121136 + 0.992636i \(0.461346\pi\)
\(74\) −7.12636 −0.828422
\(75\) 14.6955 1.69689
\(76\) 24.6296 2.82521
\(77\) 0 0
\(78\) 0 0
\(79\) −7.58868 −0.853794 −0.426897 0.904300i \(-0.640393\pi\)
−0.426897 + 0.904300i \(0.640393\pi\)
\(80\) −3.14833 −0.351994
\(81\) −10.5586 −1.17318
\(82\) 2.18618 0.241424
\(83\) 2.89335 0.317587 0.158793 0.987312i \(-0.449240\pi\)
0.158793 + 0.987312i \(0.449240\pi\)
\(84\) 0 0
\(85\) 18.3973 1.99547
\(86\) −9.54077 −1.02881
\(87\) −19.4946 −2.09004
\(88\) −7.80584 −0.832105
\(89\) −13.1597 −1.39492 −0.697461 0.716622i \(-0.745687\pi\)
−0.697461 + 0.716622i \(0.745687\pi\)
\(90\) −18.3253 −1.93165
\(91\) 0 0
\(92\) −22.1703 −2.31141
\(93\) 7.04526 0.730560
\(94\) 8.07488 0.832860
\(95\) −24.1648 −2.47926
\(96\) −10.4333 −1.06484
\(97\) 3.55712 0.361171 0.180585 0.983559i \(-0.442201\pi\)
0.180585 + 0.983559i \(0.442201\pi\)
\(98\) 0 0
\(99\) −5.43596 −0.546335
\(100\) 21.8679 2.18679
\(101\) 4.72865 0.470518 0.235259 0.971933i \(-0.424406\pi\)
0.235259 + 0.971933i \(0.424406\pi\)
\(102\) −29.3795 −2.90901
\(103\) −5.98286 −0.589508 −0.294754 0.955573i \(-0.595238\pi\)
−0.294754 + 0.955573i \(0.595238\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −5.46477 −0.530786
\(107\) 13.1826 1.27441 0.637206 0.770694i \(-0.280090\pi\)
0.637206 + 0.770694i \(0.280090\pi\)
\(108\) −5.30353 −0.510333
\(109\) −4.11545 −0.394188 −0.197094 0.980385i \(-0.563150\pi\)
−0.197094 + 0.980385i \(0.563150\pi\)
\(110\) 18.3253 1.74725
\(111\) −7.05756 −0.669874
\(112\) 0 0
\(113\) 14.2805 1.34340 0.671699 0.740824i \(-0.265565\pi\)
0.671699 + 0.740824i \(0.265565\pi\)
\(114\) 38.5899 3.61427
\(115\) 21.7518 2.02837
\(116\) −29.0094 −2.69345
\(117\) 0 0
\(118\) −16.8963 −1.55543
\(119\) 0 0
\(120\) −26.0604 −2.37897
\(121\) −5.56404 −0.505822
\(122\) 14.8987 1.34886
\(123\) 2.16508 0.195219
\(124\) 10.4838 0.941477
\(125\) −4.59963 −0.411403
\(126\) 0 0
\(127\) −11.0771 −0.982932 −0.491466 0.870897i \(-0.663539\pi\)
−0.491466 + 0.870897i \(0.663539\pi\)
\(128\) −19.8803 −1.75718
\(129\) −9.44867 −0.831909
\(130\) 0 0
\(131\) −0.672012 −0.0587139 −0.0293570 0.999569i \(-0.509346\pi\)
−0.0293570 + 0.999569i \(0.509346\pi\)
\(132\) −18.4975 −1.61000
\(133\) 0 0
\(134\) −10.7562 −0.929195
\(135\) 5.20344 0.447841
\(136\) −18.2710 −1.56673
\(137\) −7.83875 −0.669709 −0.334855 0.942270i \(-0.608687\pi\)
−0.334855 + 0.942270i \(0.608687\pi\)
\(138\) −34.7365 −2.95697
\(139\) 3.27521 0.277799 0.138900 0.990306i \(-0.455643\pi\)
0.138900 + 0.990306i \(0.455643\pi\)
\(140\) 0 0
\(141\) 7.99692 0.673462
\(142\) 17.6901 1.48452
\(143\) 0 0
\(144\) 2.17744 0.181453
\(145\) 28.4619 2.36363
\(146\) 4.82615 0.399415
\(147\) 0 0
\(148\) −10.5021 −0.863270
\(149\) 14.1637 1.16034 0.580169 0.814496i \(-0.302987\pi\)
0.580169 + 0.814496i \(0.302987\pi\)
\(150\) 34.2628 2.79754
\(151\) 1.34625 0.109556 0.0547781 0.998499i \(-0.482555\pi\)
0.0547781 + 0.998499i \(0.482555\pi\)
\(152\) 23.9989 1.94657
\(153\) −12.7239 −1.02866
\(154\) 0 0
\(155\) −10.2860 −0.826190
\(156\) 0 0
\(157\) −13.0401 −1.04071 −0.520357 0.853949i \(-0.674201\pi\)
−0.520357 + 0.853949i \(0.674201\pi\)
\(158\) −17.6931 −1.40759
\(159\) −5.41202 −0.429201
\(160\) 15.2324 1.20423
\(161\) 0 0
\(162\) −24.6175 −1.93413
\(163\) −4.93256 −0.386348 −0.193174 0.981165i \(-0.561878\pi\)
−0.193174 + 0.981165i \(0.561878\pi\)
\(164\) 3.22179 0.251579
\(165\) 18.1484 1.41285
\(166\) 6.74590 0.523583
\(167\) −3.64256 −0.281870 −0.140935 0.990019i \(-0.545011\pi\)
−0.140935 + 0.990019i \(0.545011\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 42.8937 3.28979
\(171\) 16.7127 1.27806
\(172\) −14.0603 −1.07209
\(173\) 12.6917 0.964930 0.482465 0.875915i \(-0.339742\pi\)
0.482465 + 0.875915i \(0.339742\pi\)
\(174\) −45.4520 −3.44571
\(175\) 0 0
\(176\) −2.17744 −0.164130
\(177\) −16.7332 −1.25775
\(178\) −30.6820 −2.29971
\(179\) −8.78939 −0.656950 −0.328475 0.944513i \(-0.606535\pi\)
−0.328475 + 0.944513i \(0.606535\pi\)
\(180\) −27.0060 −2.01291
\(181\) −17.1982 −1.27833 −0.639167 0.769068i \(-0.720721\pi\)
−0.639167 + 0.769068i \(0.720721\pi\)
\(182\) 0 0
\(183\) 14.7548 1.09071
\(184\) −21.6025 −1.59256
\(185\) 10.3039 0.757560
\(186\) 16.4261 1.20442
\(187\) 12.7239 0.930462
\(188\) 11.9000 0.867895
\(189\) 0 0
\(190\) −56.3406 −4.08738
\(191\) 1.06780 0.0772636 0.0386318 0.999254i \(-0.487700\pi\)
0.0386318 + 0.999254i \(0.487700\pi\)
\(192\) −28.6381 −2.06678
\(193\) −3.15580 −0.227159 −0.113580 0.993529i \(-0.536232\pi\)
−0.113580 + 0.993529i \(0.536232\pi\)
\(194\) 8.29348 0.595437
\(195\) 0 0
\(196\) 0 0
\(197\) 17.6957 1.26076 0.630382 0.776285i \(-0.282898\pi\)
0.630382 + 0.776285i \(0.282898\pi\)
\(198\) −12.6740 −0.900704
\(199\) 12.9895 0.920803 0.460402 0.887711i \(-0.347705\pi\)
0.460402 + 0.887711i \(0.347705\pi\)
\(200\) 21.3079 1.50670
\(201\) −10.6524 −0.751360
\(202\) 11.0249 0.775710
\(203\) 0 0
\(204\) −43.2967 −3.03138
\(205\) −3.16098 −0.220773
\(206\) −13.9491 −0.971881
\(207\) −15.0439 −1.04562
\(208\) 0 0
\(209\) −16.7127 −1.15605
\(210\) 0 0
\(211\) 27.5402 1.89595 0.947974 0.318348i \(-0.103128\pi\)
0.947974 + 0.318348i \(0.103128\pi\)
\(212\) −8.05346 −0.553114
\(213\) 17.5193 1.20041
\(214\) 30.7355 2.10103
\(215\) 13.7949 0.940805
\(216\) −5.16771 −0.351618
\(217\) 0 0
\(218\) −9.59523 −0.649871
\(219\) 4.77956 0.322973
\(220\) 27.0060 1.82074
\(221\) 0 0
\(222\) −16.4548 −1.10437
\(223\) 8.70197 0.582727 0.291363 0.956612i \(-0.405891\pi\)
0.291363 + 0.956612i \(0.405891\pi\)
\(224\) 0 0
\(225\) 14.8387 0.989250
\(226\) 33.2953 2.21477
\(227\) 21.9669 1.45800 0.728998 0.684516i \(-0.239987\pi\)
0.728998 + 0.684516i \(0.239987\pi\)
\(228\) 56.8700 3.76631
\(229\) −20.5188 −1.35592 −0.677959 0.735100i \(-0.737135\pi\)
−0.677959 + 0.735100i \(0.737135\pi\)
\(230\) 50.7148 3.34403
\(231\) 0 0
\(232\) −28.2664 −1.85578
\(233\) −17.2888 −1.13263 −0.566313 0.824190i \(-0.691631\pi\)
−0.566313 + 0.824190i \(0.691631\pi\)
\(234\) 0 0
\(235\) −11.6754 −0.761618
\(236\) −24.9002 −1.62086
\(237\) −17.5223 −1.13820
\(238\) 0 0
\(239\) −3.25961 −0.210847 −0.105423 0.994427i \(-0.533620\pi\)
−0.105423 + 0.994427i \(0.533620\pi\)
\(240\) −7.26953 −0.469246
\(241\) −1.46571 −0.0944149 −0.0472074 0.998885i \(-0.515032\pi\)
−0.0472074 + 0.998885i \(0.515032\pi\)
\(242\) −12.9726 −0.833913
\(243\) −19.7492 −1.26691
\(244\) 21.9562 1.40560
\(245\) 0 0
\(246\) 5.04791 0.321843
\(247\) 0 0
\(248\) 10.2154 0.648676
\(249\) 6.68077 0.423377
\(250\) −10.7241 −0.678252
\(251\) −17.1028 −1.07952 −0.539761 0.841818i \(-0.681485\pi\)
−0.539761 + 0.841818i \(0.681485\pi\)
\(252\) 0 0
\(253\) 15.0439 0.945802
\(254\) −25.8264 −1.62049
\(255\) 42.4796 2.66017
\(256\) −21.5456 −1.34660
\(257\) −3.85011 −0.240163 −0.120082 0.992764i \(-0.538316\pi\)
−0.120082 + 0.992764i \(0.538316\pi\)
\(258\) −22.0297 −1.37151
\(259\) 0 0
\(260\) 0 0
\(261\) −19.6847 −1.21845
\(262\) −1.56681 −0.0967976
\(263\) −30.5159 −1.88169 −0.940844 0.338840i \(-0.889966\pi\)
−0.940844 + 0.338840i \(0.889966\pi\)
\(264\) −18.0237 −1.10928
\(265\) 7.90147 0.485383
\(266\) 0 0
\(267\) −30.3858 −1.85958
\(268\) −15.8515 −0.968282
\(269\) −16.7771 −1.02292 −0.511460 0.859307i \(-0.670895\pi\)
−0.511460 + 0.859307i \(0.670895\pi\)
\(270\) 12.1319 0.738324
\(271\) 31.1772 1.89388 0.946941 0.321407i \(-0.104156\pi\)
0.946941 + 0.321407i \(0.104156\pi\)
\(272\) −5.09669 −0.309032
\(273\) 0 0
\(274\) −18.2762 −1.10410
\(275\) −14.8387 −0.894810
\(276\) −51.1913 −3.08135
\(277\) 0.395882 0.0237863 0.0118931 0.999929i \(-0.496214\pi\)
0.0118931 + 0.999929i \(0.496214\pi\)
\(278\) 7.63619 0.457988
\(279\) 7.11394 0.425900
\(280\) 0 0
\(281\) 22.9459 1.36884 0.684420 0.729088i \(-0.260056\pi\)
0.684420 + 0.729088i \(0.260056\pi\)
\(282\) 18.6449 1.11029
\(283\) −19.3515 −1.15033 −0.575164 0.818038i \(-0.695062\pi\)
−0.575164 + 0.818038i \(0.695062\pi\)
\(284\) 26.0700 1.54697
\(285\) −55.7967 −3.30511
\(286\) 0 0
\(287\) 0 0
\(288\) −10.5350 −0.620778
\(289\) 12.7826 0.751916
\(290\) 66.3593 3.89675
\(291\) 8.21342 0.481479
\(292\) 7.11232 0.416217
\(293\) −15.7723 −0.921429 −0.460715 0.887548i \(-0.652407\pi\)
−0.460715 + 0.887548i \(0.652407\pi\)
\(294\) 0 0
\(295\) 24.4302 1.42238
\(296\) −10.2332 −0.594792
\(297\) 3.59878 0.208822
\(298\) 33.0229 1.91297
\(299\) 0 0
\(300\) 50.4932 2.91523
\(301\) 0 0
\(302\) 3.13880 0.180618
\(303\) 10.9185 0.627250
\(304\) 6.69448 0.383955
\(305\) −21.5419 −1.23348
\(306\) −29.6659 −1.69589
\(307\) 19.2535 1.09885 0.549427 0.835542i \(-0.314846\pi\)
0.549427 + 0.835542i \(0.314846\pi\)
\(308\) 0 0
\(309\) −13.8145 −0.785877
\(310\) −23.9819 −1.36208
\(311\) −3.06464 −0.173780 −0.0868898 0.996218i \(-0.527693\pi\)
−0.0868898 + 0.996218i \(0.527693\pi\)
\(312\) 0 0
\(313\) 35.2751 1.99387 0.996934 0.0782450i \(-0.0249316\pi\)
0.996934 + 0.0782450i \(0.0249316\pi\)
\(314\) −30.4032 −1.71575
\(315\) 0 0
\(316\) −26.0744 −1.46680
\(317\) −32.7065 −1.83698 −0.918490 0.395444i \(-0.870591\pi\)
−0.918490 + 0.395444i \(0.870591\pi\)
\(318\) −12.6182 −0.707594
\(319\) 19.6847 1.10213
\(320\) 41.8112 2.33732
\(321\) 30.4388 1.69893
\(322\) 0 0
\(323\) −39.1193 −2.17665
\(324\) −36.2789 −2.01549
\(325\) 0 0
\(326\) −11.5003 −0.636944
\(327\) −9.50260 −0.525495
\(328\) 3.13928 0.173338
\(329\) 0 0
\(330\) 42.3132 2.32926
\(331\) −4.77703 −0.262569 −0.131285 0.991345i \(-0.541910\pi\)
−0.131285 + 0.991345i \(0.541910\pi\)
\(332\) 9.94145 0.545608
\(333\) −7.12636 −0.390522
\(334\) −8.49269 −0.464699
\(335\) 15.5523 0.849713
\(336\) 0 0
\(337\) 26.2392 1.42934 0.714669 0.699463i \(-0.246577\pi\)
0.714669 + 0.699463i \(0.246577\pi\)
\(338\) 0 0
\(339\) 32.9738 1.79089
\(340\) 63.2125 3.42818
\(341\) −7.11394 −0.385241
\(342\) 38.9660 2.10704
\(343\) 0 0
\(344\) −13.7002 −0.738665
\(345\) 50.2252 2.70403
\(346\) 29.5908 1.59081
\(347\) −10.4442 −0.560675 −0.280338 0.959901i \(-0.590446\pi\)
−0.280338 + 0.959901i \(0.590446\pi\)
\(348\) −66.9829 −3.59066
\(349\) 23.4688 1.25626 0.628128 0.778110i \(-0.283822\pi\)
0.628128 + 0.778110i \(0.283822\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.5350 0.561515
\(353\) 2.93135 0.156020 0.0780099 0.996953i \(-0.475143\pi\)
0.0780099 + 0.996953i \(0.475143\pi\)
\(354\) −39.0137 −2.07356
\(355\) −25.5780 −1.35754
\(356\) −45.2162 −2.39645
\(357\) 0 0
\(358\) −20.4926 −1.08307
\(359\) 17.1014 0.902576 0.451288 0.892378i \(-0.350965\pi\)
0.451288 + 0.892378i \(0.350965\pi\)
\(360\) −26.3144 −1.38689
\(361\) 32.3830 1.70437
\(362\) −40.0979 −2.10750
\(363\) −12.8474 −0.674314
\(364\) 0 0
\(365\) −6.97809 −0.365250
\(366\) 34.4012 1.79818
\(367\) 1.04860 0.0547365 0.0273683 0.999625i \(-0.491287\pi\)
0.0273683 + 0.999625i \(0.491287\pi\)
\(368\) −6.02600 −0.314127
\(369\) 2.18618 0.113808
\(370\) 24.0238 1.24894
\(371\) 0 0
\(372\) 24.2073 1.25509
\(373\) −15.0107 −0.777226 −0.388613 0.921401i \(-0.627046\pi\)
−0.388613 + 0.921401i \(0.627046\pi\)
\(374\) 29.6659 1.53399
\(375\) −10.6206 −0.548444
\(376\) 11.5952 0.597978
\(377\) 0 0
\(378\) 0 0
\(379\) 27.1497 1.39459 0.697294 0.716786i \(-0.254387\pi\)
0.697294 + 0.716786i \(0.254387\pi\)
\(380\) −83.0294 −4.25932
\(381\) −25.5771 −1.31035
\(382\) 2.48960 0.127379
\(383\) −16.0264 −0.818911 −0.409455 0.912330i \(-0.634281\pi\)
−0.409455 + 0.912330i \(0.634281\pi\)
\(384\) −45.9037 −2.34251
\(385\) 0 0
\(386\) −7.35779 −0.374502
\(387\) −9.54077 −0.484985
\(388\) 12.2221 0.620485
\(389\) 7.99427 0.405326 0.202663 0.979249i \(-0.435040\pi\)
0.202663 + 0.979249i \(0.435040\pi\)
\(390\) 0 0
\(391\) 35.2130 1.78080
\(392\) 0 0
\(393\) −1.55168 −0.0782719
\(394\) 41.2577 2.07853
\(395\) 25.5823 1.28719
\(396\) −18.6778 −0.938593
\(397\) −12.2087 −0.612738 −0.306369 0.951913i \(-0.599114\pi\)
−0.306369 + 0.951913i \(0.599114\pi\)
\(398\) 30.2853 1.51806
\(399\) 0 0
\(400\) 5.94383 0.297191
\(401\) −37.8412 −1.88970 −0.944850 0.327503i \(-0.893793\pi\)
−0.944850 + 0.327503i \(0.893793\pi\)
\(402\) −24.8362 −1.23872
\(403\) 0 0
\(404\) 16.2475 0.808341
\(405\) 35.5942 1.76869
\(406\) 0 0
\(407\) 7.12636 0.353240
\(408\) −42.1879 −2.08861
\(409\) 0.235074 0.0116237 0.00581184 0.999983i \(-0.498150\pi\)
0.00581184 + 0.999983i \(0.498150\pi\)
\(410\) −7.36988 −0.363972
\(411\) −18.0997 −0.892794
\(412\) −20.5569 −1.01276
\(413\) 0 0
\(414\) −35.0751 −1.72385
\(415\) −9.75383 −0.478797
\(416\) 0 0
\(417\) 7.56248 0.370336
\(418\) −38.9660 −1.90589
\(419\) −0.444046 −0.0216931 −0.0108465 0.999941i \(-0.503453\pi\)
−0.0108465 + 0.999941i \(0.503453\pi\)
\(420\) 0 0
\(421\) −9.45998 −0.461051 −0.230526 0.973066i \(-0.574045\pi\)
−0.230526 + 0.973066i \(0.574045\pi\)
\(422\) 64.2105 3.12572
\(423\) 8.07488 0.392614
\(424\) −7.84721 −0.381094
\(425\) −34.7328 −1.68479
\(426\) 40.8466 1.97903
\(427\) 0 0
\(428\) 45.2950 2.18942
\(429\) 0 0
\(430\) 32.1630 1.55104
\(431\) −21.5446 −1.03777 −0.518883 0.854845i \(-0.673652\pi\)
−0.518883 + 0.854845i \(0.673652\pi\)
\(432\) −1.44153 −0.0693557
\(433\) 13.1590 0.632380 0.316190 0.948696i \(-0.397596\pi\)
0.316190 + 0.948696i \(0.397596\pi\)
\(434\) 0 0
\(435\) 65.7187 3.15097
\(436\) −14.1405 −0.677208
\(437\) −46.2522 −2.21254
\(438\) 11.1436 0.532463
\(439\) 29.7847 1.42155 0.710773 0.703422i \(-0.248345\pi\)
0.710773 + 0.703422i \(0.248345\pi\)
\(440\) 26.3144 1.25449
\(441\) 0 0
\(442\) 0 0
\(443\) 14.8467 0.705387 0.352693 0.935739i \(-0.385266\pi\)
0.352693 + 0.935739i \(0.385266\pi\)
\(444\) −24.2495 −1.15083
\(445\) 44.3628 2.10300
\(446\) 20.2888 0.960701
\(447\) 32.7041 1.54685
\(448\) 0 0
\(449\) 26.2227 1.23753 0.618763 0.785578i \(-0.287634\pi\)
0.618763 + 0.785578i \(0.287634\pi\)
\(450\) 34.5968 1.63091
\(451\) −2.18618 −0.102943
\(452\) 49.0674 2.30793
\(453\) 3.10850 0.146050
\(454\) 51.2162 2.40369
\(455\) 0 0
\(456\) 55.4136 2.59498
\(457\) 15.8708 0.742406 0.371203 0.928552i \(-0.378945\pi\)
0.371203 + 0.928552i \(0.378945\pi\)
\(458\) −47.8398 −2.23541
\(459\) 8.42361 0.393180
\(460\) 74.7385 3.48470
\(461\) 22.0886 1.02877 0.514384 0.857560i \(-0.328020\pi\)
0.514384 + 0.857560i \(0.328020\pi\)
\(462\) 0 0
\(463\) −18.2887 −0.849949 −0.424974 0.905205i \(-0.639717\pi\)
−0.424974 + 0.905205i \(0.639717\pi\)
\(464\) −7.88491 −0.366048
\(465\) −23.7504 −1.10140
\(466\) −40.3091 −1.86728
\(467\) −4.53318 −0.209771 −0.104885 0.994484i \(-0.533448\pi\)
−0.104885 + 0.994484i \(0.533448\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −27.2213 −1.25563
\(471\) −30.1097 −1.38738
\(472\) −24.2625 −1.11677
\(473\) 9.54077 0.438685
\(474\) −40.8536 −1.87647
\(475\) 45.6214 2.09325
\(476\) 0 0
\(477\) −5.46477 −0.250215
\(478\) −7.59984 −0.347609
\(479\) −10.4461 −0.477293 −0.238646 0.971107i \(-0.576704\pi\)
−0.238646 + 0.971107i \(0.576704\pi\)
\(480\) 35.1717 1.60536
\(481\) 0 0
\(482\) −3.41733 −0.155655
\(483\) 0 0
\(484\) −19.1178 −0.868992
\(485\) −11.9915 −0.544505
\(486\) −46.0456 −2.08867
\(487\) −35.9143 −1.62743 −0.813715 0.581263i \(-0.802559\pi\)
−0.813715 + 0.581263i \(0.802559\pi\)
\(488\) 21.3939 0.968458
\(489\) −11.3893 −0.515042
\(490\) 0 0
\(491\) 7.70248 0.347608 0.173804 0.984780i \(-0.444394\pi\)
0.173804 + 0.984780i \(0.444394\pi\)
\(492\) 7.43913 0.335382
\(493\) 46.0756 2.07514
\(494\) 0 0
\(495\) 18.3253 0.823659
\(496\) 2.84957 0.127949
\(497\) 0 0
\(498\) 15.5763 0.697992
\(499\) −8.49078 −0.380099 −0.190050 0.981774i \(-0.560865\pi\)
−0.190050 + 0.981774i \(0.560865\pi\)
\(500\) −15.8041 −0.706783
\(501\) −8.41071 −0.375763
\(502\) −39.8755 −1.77973
\(503\) −30.4001 −1.35547 −0.677736 0.735305i \(-0.737039\pi\)
−0.677736 + 0.735305i \(0.737039\pi\)
\(504\) 0 0
\(505\) −15.9408 −0.709357
\(506\) 35.0751 1.55928
\(507\) 0 0
\(508\) −38.0604 −1.68866
\(509\) −15.5801 −0.690578 −0.345289 0.938496i \(-0.612219\pi\)
−0.345289 + 0.938496i \(0.612219\pi\)
\(510\) 99.0418 4.38564
\(511\) 0 0
\(512\) −10.4733 −0.462860
\(513\) −11.0644 −0.488504
\(514\) −8.97660 −0.395941
\(515\) 20.1689 0.888748
\(516\) −32.4653 −1.42920
\(517\) −8.07488 −0.355133
\(518\) 0 0
\(519\) 29.3052 1.28635
\(520\) 0 0
\(521\) −27.1574 −1.18979 −0.594893 0.803805i \(-0.702806\pi\)
−0.594893 + 0.803805i \(0.702806\pi\)
\(522\) −45.8951 −2.00877
\(523\) 18.0575 0.789598 0.394799 0.918767i \(-0.370814\pi\)
0.394799 + 0.918767i \(0.370814\pi\)
\(524\) −2.30901 −0.100869
\(525\) 0 0
\(526\) −71.1482 −3.10221
\(527\) −16.6515 −0.725350
\(528\) −5.02772 −0.218803
\(529\) 18.6337 0.810160
\(530\) 18.4224 0.800217
\(531\) −16.8963 −0.733238
\(532\) 0 0
\(533\) 0 0
\(534\) −70.8449 −3.06576
\(535\) −44.4401 −1.92131
\(536\) −15.4455 −0.667145
\(537\) −20.2948 −0.875783
\(538\) −39.1162 −1.68642
\(539\) 0 0
\(540\) 17.8788 0.769382
\(541\) −39.9882 −1.71923 −0.859613 0.510945i \(-0.829295\pi\)
−0.859613 + 0.510945i \(0.829295\pi\)
\(542\) 72.6902 3.12231
\(543\) −39.7108 −1.70415
\(544\) 24.6590 1.05725
\(545\) 13.8736 0.594282
\(546\) 0 0
\(547\) −22.6124 −0.966836 −0.483418 0.875390i \(-0.660605\pi\)
−0.483418 + 0.875390i \(0.660605\pi\)
\(548\) −26.9336 −1.15055
\(549\) 14.8987 0.635860
\(550\) −34.5968 −1.47521
\(551\) −60.5201 −2.57824
\(552\) −49.8803 −2.12305
\(553\) 0 0
\(554\) 0.923005 0.0392147
\(555\) 23.7919 1.00991
\(556\) 11.2535 0.477254
\(557\) 9.97372 0.422600 0.211300 0.977421i \(-0.432230\pi\)
0.211300 + 0.977421i \(0.432230\pi\)
\(558\) 16.5863 0.702152
\(559\) 0 0
\(560\) 0 0
\(561\) 29.3795 1.24040
\(562\) 53.4988 2.25671
\(563\) 21.5279 0.907294 0.453647 0.891181i \(-0.350123\pi\)
0.453647 + 0.891181i \(0.350123\pi\)
\(564\) 27.4771 1.15700
\(565\) −48.1413 −2.02532
\(566\) −45.1183 −1.89646
\(567\) 0 0
\(568\) 25.4024 1.06586
\(569\) −33.1004 −1.38764 −0.693819 0.720149i \(-0.744073\pi\)
−0.693819 + 0.720149i \(0.744073\pi\)
\(570\) −130.091 −5.44891
\(571\) 19.9357 0.834284 0.417142 0.908841i \(-0.363032\pi\)
0.417142 + 0.908841i \(0.363032\pi\)
\(572\) 0 0
\(573\) 2.46557 0.103001
\(574\) 0 0
\(575\) −41.0659 −1.71257
\(576\) −28.9173 −1.20489
\(577\) 29.4695 1.22683 0.613416 0.789760i \(-0.289795\pi\)
0.613416 + 0.789760i \(0.289795\pi\)
\(578\) 29.8028 1.23963
\(579\) −7.28676 −0.302827
\(580\) 97.7939 4.06067
\(581\) 0 0
\(582\) 19.1497 0.793781
\(583\) 5.46477 0.226328
\(584\) 6.93018 0.286773
\(585\) 0 0
\(586\) −36.7734 −1.51910
\(587\) 6.98859 0.288450 0.144225 0.989545i \(-0.453931\pi\)
0.144225 + 0.989545i \(0.453931\pi\)
\(588\) 0 0
\(589\) 21.8717 0.901206
\(590\) 56.9595 2.34498
\(591\) 40.8594 1.68073
\(592\) −2.85454 −0.117321
\(593\) 0.970248 0.0398433 0.0199216 0.999802i \(-0.493658\pi\)
0.0199216 + 0.999802i \(0.493658\pi\)
\(594\) 8.39061 0.344271
\(595\) 0 0
\(596\) 48.6660 1.99344
\(597\) 29.9929 1.22753
\(598\) 0 0
\(599\) −22.5998 −0.923404 −0.461702 0.887035i \(-0.652761\pi\)
−0.461702 + 0.887035i \(0.652761\pi\)
\(600\) 49.2001 2.00858
\(601\) 30.4292 1.24123 0.620617 0.784114i \(-0.286882\pi\)
0.620617 + 0.784114i \(0.286882\pi\)
\(602\) 0 0
\(603\) −10.7562 −0.438027
\(604\) 4.62567 0.188216
\(605\) 18.7570 0.762581
\(606\) 25.4566 1.03410
\(607\) 32.1576 1.30524 0.652618 0.757687i \(-0.273671\pi\)
0.652618 + 0.757687i \(0.273671\pi\)
\(608\) −32.3895 −1.31357
\(609\) 0 0
\(610\) −50.2252 −2.03356
\(611\) 0 0
\(612\) −43.7188 −1.76723
\(613\) −13.9209 −0.562258 −0.281129 0.959670i \(-0.590709\pi\)
−0.281129 + 0.959670i \(0.590709\pi\)
\(614\) 44.8898 1.81160
\(615\) −7.29873 −0.294313
\(616\) 0 0
\(617\) 10.1679 0.409344 0.204672 0.978831i \(-0.434387\pi\)
0.204672 + 0.978831i \(0.434387\pi\)
\(618\) −32.2086 −1.29562
\(619\) −43.7905 −1.76009 −0.880044 0.474893i \(-0.842487\pi\)
−0.880044 + 0.474893i \(0.842487\pi\)
\(620\) −35.3422 −1.41938
\(621\) 9.95954 0.399663
\(622\) −7.14525 −0.286498
\(623\) 0 0
\(624\) 0 0
\(625\) −16.3162 −0.652650
\(626\) 82.2445 3.28715
\(627\) −38.5899 −1.54113
\(628\) −44.8053 −1.78793
\(629\) 16.6806 0.665097
\(630\) 0 0
\(631\) −16.0893 −0.640504 −0.320252 0.947332i \(-0.603768\pi\)
−0.320252 + 0.947332i \(0.603768\pi\)
\(632\) −25.4067 −1.01062
\(633\) 63.5906 2.52750
\(634\) −76.2557 −3.02850
\(635\) 37.3421 1.48188
\(636\) −18.5955 −0.737359
\(637\) 0 0
\(638\) 45.8951 1.81700
\(639\) 17.6901 0.699810
\(640\) 67.0187 2.64915
\(641\) −49.2508 −1.94529 −0.972645 0.232296i \(-0.925376\pi\)
−0.972645 + 0.232296i \(0.925376\pi\)
\(642\) 70.9684 2.80090
\(643\) −2.67158 −0.105357 −0.0526784 0.998612i \(-0.516776\pi\)
−0.0526784 + 0.998612i \(0.516776\pi\)
\(644\) 0 0
\(645\) 31.8526 1.25419
\(646\) −91.2072 −3.58850
\(647\) 33.3628 1.31163 0.655814 0.754923i \(-0.272326\pi\)
0.655814 + 0.754923i \(0.272326\pi\)
\(648\) −35.3498 −1.38867
\(649\) 16.8963 0.663239
\(650\) 0 0
\(651\) 0 0
\(652\) −16.9481 −0.663738
\(653\) 23.8487 0.933274 0.466637 0.884449i \(-0.345466\pi\)
0.466637 + 0.884449i \(0.345466\pi\)
\(654\) −22.1554 −0.866347
\(655\) 2.26543 0.0885177
\(656\) 0.875700 0.0341903
\(657\) 4.82615 0.188286
\(658\) 0 0
\(659\) −17.1623 −0.668547 −0.334274 0.942476i \(-0.608491\pi\)
−0.334274 + 0.942476i \(0.608491\pi\)
\(660\) 62.3571 2.42725
\(661\) 0.466403 0.0181410 0.00907048 0.999959i \(-0.497113\pi\)
0.00907048 + 0.999959i \(0.497113\pi\)
\(662\) −11.1377 −0.432880
\(663\) 0 0
\(664\) 9.68686 0.375923
\(665\) 0 0
\(666\) −16.6152 −0.643826
\(667\) 54.4769 2.10935
\(668\) −12.5157 −0.484248
\(669\) 20.0929 0.776837
\(670\) 36.2604 1.40086
\(671\) −14.8987 −0.575157
\(672\) 0 0
\(673\) 17.5412 0.676165 0.338082 0.941117i \(-0.390222\pi\)
0.338082 + 0.941117i \(0.390222\pi\)
\(674\) 61.1770 2.35645
\(675\) −9.82372 −0.378115
\(676\) 0 0
\(677\) −9.71961 −0.373555 −0.186777 0.982402i \(-0.559804\pi\)
−0.186777 + 0.982402i \(0.559804\pi\)
\(678\) 76.8790 2.95252
\(679\) 0 0
\(680\) 61.5937 2.36201
\(681\) 50.7218 1.94366
\(682\) −16.5863 −0.635121
\(683\) 36.1154 1.38192 0.690960 0.722893i \(-0.257188\pi\)
0.690960 + 0.722893i \(0.257188\pi\)
\(684\) 57.4244 2.19568
\(685\) 26.4253 1.00966
\(686\) 0 0
\(687\) −47.3780 −1.80758
\(688\) −3.82166 −0.145700
\(689\) 0 0
\(690\) 117.101 4.45795
\(691\) 8.77269 0.333729 0.166864 0.985980i \(-0.446636\pi\)
0.166864 + 0.985980i \(0.446636\pi\)
\(692\) 43.6081 1.65773
\(693\) 0 0
\(694\) −24.3509 −0.924346
\(695\) −11.0411 −0.418813
\(696\) −65.2674 −2.47396
\(697\) −5.11717 −0.193826
\(698\) 54.7178 2.07110
\(699\) −39.9199 −1.50991
\(700\) 0 0
\(701\) 1.51585 0.0572530 0.0286265 0.999590i \(-0.490887\pi\)
0.0286265 + 0.999590i \(0.490887\pi\)
\(702\) 0 0
\(703\) −21.9098 −0.826345
\(704\) 28.9173 1.08986
\(705\) −26.9586 −1.01532
\(706\) 6.83448 0.257219
\(707\) 0 0
\(708\) −57.4947 −2.16078
\(709\) 15.1020 0.567168 0.283584 0.958947i \(-0.408477\pi\)
0.283584 + 0.958947i \(0.408477\pi\)
\(710\) −59.6355 −2.23808
\(711\) −17.6931 −0.663544
\(712\) −44.0582 −1.65115
\(713\) −19.6877 −0.737309
\(714\) 0 0
\(715\) 0 0
\(716\) −30.2000 −1.12863
\(717\) −7.52647 −0.281081
\(718\) 39.8721 1.48801
\(719\) −19.1989 −0.715999 −0.357999 0.933722i \(-0.616541\pi\)
−0.357999 + 0.933722i \(0.616541\pi\)
\(720\) −7.34039 −0.273560
\(721\) 0 0
\(722\) 75.5014 2.80987
\(723\) −3.38434 −0.125865
\(724\) −59.0925 −2.19615
\(725\) −53.7340 −1.99563
\(726\) −29.9539 −1.11169
\(727\) 2.41101 0.0894195 0.0447098 0.999000i \(-0.485764\pi\)
0.0447098 + 0.999000i \(0.485764\pi\)
\(728\) 0 0
\(729\) −13.9254 −0.515755
\(730\) −16.2695 −0.602162
\(731\) 22.3319 0.825976
\(732\) 50.6971 1.87382
\(733\) −13.4992 −0.498604 −0.249302 0.968426i \(-0.580201\pi\)
−0.249302 + 0.968426i \(0.580201\pi\)
\(734\) 2.44483 0.0902403
\(735\) 0 0
\(736\) 29.1553 1.07468
\(737\) 10.7562 0.396210
\(738\) 5.09712 0.187628
\(739\) 0.0428191 0.00157513 0.000787563 1.00000i \(-0.499749\pi\)
0.000787563 1.00000i \(0.499749\pi\)
\(740\) 35.4039 1.30147
\(741\) 0 0
\(742\) 0 0
\(743\) 21.6508 0.794289 0.397145 0.917756i \(-0.370001\pi\)
0.397145 + 0.917756i \(0.370001\pi\)
\(744\) 23.5873 0.864753
\(745\) −47.7475 −1.74933
\(746\) −34.9977 −1.28136
\(747\) 6.74590 0.246819
\(748\) 43.7188 1.59852
\(749\) 0 0
\(750\) −24.7620 −0.904181
\(751\) −44.8858 −1.63791 −0.818953 0.573860i \(-0.805445\pi\)
−0.818953 + 0.573860i \(0.805445\pi\)
\(752\) 3.23448 0.117949
\(753\) −39.4906 −1.43912
\(754\) 0 0
\(755\) −4.53837 −0.165168
\(756\) 0 0
\(757\) −7.55451 −0.274573 −0.137287 0.990531i \(-0.543838\pi\)
−0.137287 + 0.990531i \(0.543838\pi\)
\(758\) 63.3000 2.29916
\(759\) 34.7365 1.26085
\(760\) −80.9030 −2.93466
\(761\) 23.3891 0.847856 0.423928 0.905696i \(-0.360651\pi\)
0.423928 + 0.905696i \(0.360651\pi\)
\(762\) −59.6333 −2.16029
\(763\) 0 0
\(764\) 3.66894 0.132737
\(765\) 42.8937 1.55082
\(766\) −37.3658 −1.35008
\(767\) 0 0
\(768\) −49.7489 −1.79516
\(769\) −43.8509 −1.58130 −0.790652 0.612266i \(-0.790258\pi\)
−0.790652 + 0.612266i \(0.790258\pi\)
\(770\) 0 0
\(771\) −8.88994 −0.320163
\(772\) −10.8432 −0.390255
\(773\) −43.1225 −1.55101 −0.775505 0.631341i \(-0.782505\pi\)
−0.775505 + 0.631341i \(0.782505\pi\)
\(774\) −22.2445 −0.799560
\(775\) 19.4192 0.697558
\(776\) 11.9091 0.427513
\(777\) 0 0
\(778\) 18.6388 0.668232
\(779\) 6.72137 0.240818
\(780\) 0 0
\(781\) −17.6901 −0.633002
\(782\) 82.0997 2.93588
\(783\) 13.0319 0.465721
\(784\) 0 0
\(785\) 43.9597 1.56899
\(786\) −3.61777 −0.129041
\(787\) −24.8960 −0.887446 −0.443723 0.896164i \(-0.646343\pi\)
−0.443723 + 0.896164i \(0.646343\pi\)
\(788\) 60.8017 2.16597
\(789\) −70.4613 −2.50849
\(790\) 59.6456 2.12210
\(791\) 0 0
\(792\) −18.1994 −0.646689
\(793\) 0 0
\(794\) −28.4648 −1.01018
\(795\) 18.2445 0.647067
\(796\) 44.6315 1.58192
\(797\) −31.2422 −1.10665 −0.553327 0.832964i \(-0.686642\pi\)
−0.553327 + 0.832964i \(0.686642\pi\)
\(798\) 0 0
\(799\) −18.9007 −0.668660
\(800\) −28.7577 −1.01674
\(801\) −30.6820 −1.08409
\(802\) −88.2274 −3.11542
\(803\) −4.82615 −0.170311
\(804\) −36.6011 −1.29082
\(805\) 0 0
\(806\) 0 0
\(807\) −38.7386 −1.36366
\(808\) 15.8314 0.556945
\(809\) 39.5458 1.39036 0.695179 0.718837i \(-0.255325\pi\)
0.695179 + 0.718837i \(0.255325\pi\)
\(810\) 82.9884 2.91592
\(811\) −43.8260 −1.53894 −0.769470 0.638683i \(-0.779480\pi\)
−0.769470 + 0.638683i \(0.779480\pi\)
\(812\) 0 0
\(813\) 71.9885 2.52475
\(814\) 16.6152 0.582363
\(815\) 16.6282 0.582461
\(816\) −11.7683 −0.411973
\(817\) −29.3329 −1.02623
\(818\) 0.548079 0.0191631
\(819\) 0 0
\(820\) −10.8610 −0.379283
\(821\) −45.0324 −1.57164 −0.785820 0.618455i \(-0.787759\pi\)
−0.785820 + 0.618455i \(0.787759\pi\)
\(822\) −42.1998 −1.47189
\(823\) 25.1987 0.878373 0.439186 0.898396i \(-0.355267\pi\)
0.439186 + 0.898396i \(0.355267\pi\)
\(824\) −20.0304 −0.697793
\(825\) −34.2628 −1.19288
\(826\) 0 0
\(827\) 22.3091 0.775762 0.387881 0.921709i \(-0.373207\pi\)
0.387881 + 0.921709i \(0.373207\pi\)
\(828\) −51.6903 −1.79636
\(829\) −26.1963 −0.909834 −0.454917 0.890534i \(-0.650331\pi\)
−0.454917 + 0.890534i \(0.650331\pi\)
\(830\) −22.7412 −0.789359
\(831\) 0.914095 0.0317096
\(832\) 0 0
\(833\) 0 0
\(834\) 17.6320 0.610547
\(835\) 12.2795 0.424950
\(836\) −57.4244 −1.98606
\(837\) −4.70965 −0.162789
\(838\) −1.03530 −0.0357639
\(839\) 43.4414 1.49976 0.749882 0.661571i \(-0.230110\pi\)
0.749882 + 0.661571i \(0.230110\pi\)
\(840\) 0 0
\(841\) 42.2820 1.45800
\(842\) −22.0561 −0.760103
\(843\) 52.9823 1.82481
\(844\) 94.6272 3.25720
\(845\) 0 0
\(846\) 18.8267 0.647275
\(847\) 0 0
\(848\) −2.18898 −0.0751697
\(849\) −44.6828 −1.53351
\(850\) −80.9801 −2.77759
\(851\) 19.7220 0.676063
\(852\) 60.1958 2.06227
\(853\) 1.15312 0.0394820 0.0197410 0.999805i \(-0.493716\pi\)
0.0197410 + 0.999805i \(0.493716\pi\)
\(854\) 0 0
\(855\) −56.3406 −1.92681
\(856\) 44.1350 1.50850
\(857\) 25.0087 0.854280 0.427140 0.904185i \(-0.359521\pi\)
0.427140 + 0.904185i \(0.359521\pi\)
\(858\) 0 0
\(859\) 4.08914 0.139520 0.0697598 0.997564i \(-0.477777\pi\)
0.0697598 + 0.997564i \(0.477777\pi\)
\(860\) 47.3988 1.61629
\(861\) 0 0
\(862\) −50.2316 −1.71089
\(863\) −17.3929 −0.592060 −0.296030 0.955179i \(-0.595663\pi\)
−0.296030 + 0.955179i \(0.595663\pi\)
\(864\) 6.97447 0.237276
\(865\) −42.7851 −1.45474
\(866\) 30.6803 1.04256
\(867\) 29.5151 1.00238
\(868\) 0 0
\(869\) 17.6931 0.600198
\(870\) 153.224 5.19478
\(871\) 0 0
\(872\) −13.7784 −0.466595
\(873\) 8.29348 0.280692
\(874\) −107.838 −3.64766
\(875\) 0 0
\(876\) 16.4224 0.554862
\(877\) 14.9816 0.505894 0.252947 0.967480i \(-0.418600\pi\)
0.252947 + 0.967480i \(0.418600\pi\)
\(878\) 69.4434 2.34360
\(879\) −36.4184 −1.22836
\(880\) 7.34039 0.247444
\(881\) −42.6763 −1.43780 −0.718901 0.695112i \(-0.755355\pi\)
−0.718901 + 0.695112i \(0.755355\pi\)
\(882\) 0 0
\(883\) 35.8874 1.20771 0.603854 0.797095i \(-0.293631\pi\)
0.603854 + 0.797095i \(0.293631\pi\)
\(884\) 0 0
\(885\) 56.4096 1.89619
\(886\) 34.6152 1.16292
\(887\) −27.6672 −0.928975 −0.464488 0.885580i \(-0.653761\pi\)
−0.464488 + 0.885580i \(0.653761\pi\)
\(888\) −23.6285 −0.792920
\(889\) 0 0
\(890\) 103.433 3.46707
\(891\) 24.6175 0.824717
\(892\) 29.8996 1.00111
\(893\) 24.8260 0.830771
\(894\) 76.2502 2.55019
\(895\) 29.6300 0.990423
\(896\) 0 0
\(897\) 0 0
\(898\) 61.1386 2.04022
\(899\) −25.7609 −0.859176
\(900\) 50.9854 1.69951
\(901\) 12.7913 0.426140
\(902\) −5.09712 −0.169716
\(903\) 0 0
\(904\) 47.8108 1.59016
\(905\) 57.9772 1.92723
\(906\) 7.24752 0.240783
\(907\) 18.1933 0.604097 0.302049 0.953293i \(-0.402330\pi\)
0.302049 + 0.953293i \(0.402330\pi\)
\(908\) 75.4775 2.50481
\(909\) 11.0249 0.365673
\(910\) 0 0
\(911\) −33.1527 −1.09840 −0.549199 0.835691i \(-0.685067\pi\)
−0.549199 + 0.835691i \(0.685067\pi\)
\(912\) 15.4576 0.511852
\(913\) −6.74590 −0.223257
\(914\) 37.0031 1.22395
\(915\) −49.7403 −1.64436
\(916\) −70.5017 −2.32944
\(917\) 0 0
\(918\) 19.6398 0.648209
\(919\) 2.98328 0.0984092 0.0492046 0.998789i \(-0.484331\pi\)
0.0492046 + 0.998789i \(0.484331\pi\)
\(920\) 72.8245 2.40095
\(921\) 44.4564 1.46489
\(922\) 51.4999 1.69606
\(923\) 0 0
\(924\) 0 0
\(925\) −19.4531 −0.639613
\(926\) −42.6404 −1.40125
\(927\) −13.9491 −0.458149
\(928\) 38.1491 1.25231
\(929\) −33.3980 −1.09575 −0.547876 0.836560i \(-0.684563\pi\)
−0.547876 + 0.836560i \(0.684563\pi\)
\(930\) −55.3744 −1.81580
\(931\) 0 0
\(932\) −59.4036 −1.94583
\(933\) −7.07627 −0.231667
\(934\) −10.5692 −0.345834
\(935\) −42.8937 −1.40277
\(936\) 0 0
\(937\) −51.3187 −1.67651 −0.838254 0.545279i \(-0.816424\pi\)
−0.838254 + 0.545279i \(0.816424\pi\)
\(938\) 0 0
\(939\) 81.4505 2.65804
\(940\) −40.1162 −1.30845
\(941\) −19.0039 −0.619509 −0.309755 0.950817i \(-0.600247\pi\)
−0.309755 + 0.950817i \(0.600247\pi\)
\(942\) −70.2013 −2.28728
\(943\) −6.05021 −0.197022
\(944\) −6.76801 −0.220280
\(945\) 0 0
\(946\) 22.2445 0.723229
\(947\) 46.7080 1.51780 0.758902 0.651204i \(-0.225736\pi\)
0.758902 + 0.651204i \(0.225736\pi\)
\(948\) −60.2061 −1.95540
\(949\) 0 0
\(950\) 106.367 3.45100
\(951\) −75.5196 −2.44889
\(952\) 0 0
\(953\) −1.73113 −0.0560769 −0.0280385 0.999607i \(-0.508926\pi\)
−0.0280385 + 0.999607i \(0.508926\pi\)
\(954\) −12.7412 −0.412512
\(955\) −3.59969 −0.116483
\(956\) −11.1999 −0.362231
\(957\) 45.4520 1.46926
\(958\) −24.3551 −0.786879
\(959\) 0 0
\(960\) 96.5424 3.11589
\(961\) −21.6901 −0.699681
\(962\) 0 0
\(963\) 30.7355 0.990437
\(964\) −5.03613 −0.162203
\(965\) 10.6386 0.342467
\(966\) 0 0
\(967\) 4.88811 0.157191 0.0785955 0.996907i \(-0.474956\pi\)
0.0785955 + 0.996907i \(0.474956\pi\)
\(968\) −18.6282 −0.598734
\(969\) −90.3267 −2.90171
\(970\) −27.9583 −0.897687
\(971\) 8.57152 0.275073 0.137537 0.990497i \(-0.456082\pi\)
0.137537 + 0.990497i \(0.456082\pi\)
\(972\) −67.8576 −2.17653
\(973\) 0 0
\(974\) −83.7347 −2.68303
\(975\) 0 0
\(976\) 5.96783 0.191026
\(977\) 40.0382 1.28093 0.640467 0.767985i \(-0.278741\pi\)
0.640467 + 0.767985i \(0.278741\pi\)
\(978\) −26.5543 −0.849114
\(979\) 30.6820 0.980600
\(980\) 0 0
\(981\) −9.59523 −0.306352
\(982\) 17.9584 0.573077
\(983\) −23.9120 −0.762675 −0.381337 0.924436i \(-0.624536\pi\)
−0.381337 + 0.924436i \(0.624536\pi\)
\(984\) 7.24862 0.231077
\(985\) −59.6541 −1.90074
\(986\) 107.426 3.42114
\(987\) 0 0
\(988\) 0 0
\(989\) 26.4039 0.839594
\(990\) 42.7256 1.35791
\(991\) 41.0138 1.30285 0.651424 0.758714i \(-0.274172\pi\)
0.651424 + 0.758714i \(0.274172\pi\)
\(992\) −13.7869 −0.437734
\(993\) −11.0302 −0.350033
\(994\) 0 0
\(995\) −43.7892 −1.38821
\(996\) 22.9549 0.727354
\(997\) 25.4245 0.805201 0.402600 0.915376i \(-0.368106\pi\)
0.402600 + 0.915376i \(0.368106\pi\)
\(998\) −19.7964 −0.626643
\(999\) 4.71787 0.149267
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cl.1.8 8
7.6 odd 2 inner 8281.2.a.cl.1.7 8
13.4 even 6 637.2.f.l.393.7 yes 16
13.10 even 6 637.2.f.l.295.7 16
13.12 even 2 8281.2.a.ci.1.2 8
91.4 even 6 637.2.h.m.471.1 16
91.10 odd 6 637.2.g.m.373.7 16
91.17 odd 6 637.2.h.m.471.2 16
91.23 even 6 637.2.h.m.165.1 16
91.30 even 6 637.2.g.m.263.8 16
91.62 odd 6 637.2.f.l.295.8 yes 16
91.69 odd 6 637.2.f.l.393.8 yes 16
91.75 odd 6 637.2.h.m.165.2 16
91.82 odd 6 637.2.g.m.263.7 16
91.88 even 6 637.2.g.m.373.8 16
91.90 odd 2 8281.2.a.ci.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.f.l.295.7 16 13.10 even 6
637.2.f.l.295.8 yes 16 91.62 odd 6
637.2.f.l.393.7 yes 16 13.4 even 6
637.2.f.l.393.8 yes 16 91.69 odd 6
637.2.g.m.263.7 16 91.82 odd 6
637.2.g.m.263.8 16 91.30 even 6
637.2.g.m.373.7 16 91.10 odd 6
637.2.g.m.373.8 16 91.88 even 6
637.2.h.m.165.1 16 91.23 even 6
637.2.h.m.165.2 16 91.75 odd 6
637.2.h.m.471.1 16 91.4 even 6
637.2.h.m.471.2 16 91.17 odd 6
8281.2.a.ci.1.1 8 91.90 odd 2
8281.2.a.ci.1.2 8 13.12 even 2
8281.2.a.cl.1.7 8 7.6 odd 2 inner
8281.2.a.cl.1.8 8 1.1 even 1 trivial