Properties

Label 8281.2.a.cu.1.3
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1183)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37543 q^{2} -0.696489 q^{3} +3.64268 q^{4} -2.62567 q^{5} +1.65446 q^{6} -3.90209 q^{8} -2.51490 q^{9} +6.23710 q^{10} +4.46749 q^{11} -2.53709 q^{12} +1.82875 q^{15} +1.98378 q^{16} -2.35221 q^{17} +5.97398 q^{18} +6.82253 q^{19} -9.56448 q^{20} -10.6122 q^{22} +1.91154 q^{23} +2.71776 q^{24} +1.89414 q^{25} +3.84107 q^{27} +7.24773 q^{29} -4.34408 q^{30} +7.55820 q^{31} +3.09183 q^{32} -3.11156 q^{33} +5.58752 q^{34} -9.16100 q^{36} -5.94991 q^{37} -16.2065 q^{38} +10.2456 q^{40} +0.271667 q^{41} -3.28422 q^{43} +16.2737 q^{44} +6.60330 q^{45} -4.54073 q^{46} +8.10744 q^{47} -1.38168 q^{48} -4.49940 q^{50} +1.63829 q^{51} +7.19152 q^{53} -9.12421 q^{54} -11.7302 q^{55} -4.75182 q^{57} -17.2165 q^{58} +9.04443 q^{59} +6.66156 q^{60} +7.88752 q^{61} -17.9540 q^{62} -11.3120 q^{64} +7.39130 q^{66} -7.00361 q^{67} -8.56836 q^{68} -1.33136 q^{69} +6.84206 q^{71} +9.81337 q^{72} -0.348014 q^{73} +14.1336 q^{74} -1.31925 q^{75} +24.8523 q^{76} -12.5248 q^{79} -5.20875 q^{80} +4.86944 q^{81} -0.645327 q^{82} +13.4536 q^{83} +6.17612 q^{85} +7.80146 q^{86} -5.04797 q^{87} -17.4325 q^{88} -6.00512 q^{89} -15.6857 q^{90} +6.96312 q^{92} -5.26420 q^{93} -19.2587 q^{94} -17.9137 q^{95} -2.15343 q^{96} +12.6274 q^{97} -11.2353 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - q^{2} + 23 q^{4} + 13 q^{5} + 14 q^{6} + 26 q^{9} + 5 q^{10} - q^{11} + 5 q^{12} + 5 q^{15} + 17 q^{16} - 5 q^{17} + 24 q^{19} + 34 q^{20} - 14 q^{22} + 11 q^{23} + 32 q^{24} + 33 q^{25} - 21 q^{27}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.37543 −1.67969 −0.839843 0.542830i \(-0.817353\pi\)
−0.839843 + 0.542830i \(0.817353\pi\)
\(3\) −0.696489 −0.402118 −0.201059 0.979579i \(-0.564438\pi\)
−0.201059 + 0.979579i \(0.564438\pi\)
\(4\) 3.64268 1.82134
\(5\) −2.62567 −1.17423 −0.587117 0.809502i \(-0.699737\pi\)
−0.587117 + 0.809502i \(0.699737\pi\)
\(6\) 1.65446 0.675432
\(7\) 0 0
\(8\) −3.90209 −1.37960
\(9\) −2.51490 −0.838301
\(10\) 6.23710 1.97234
\(11\) 4.46749 1.34700 0.673500 0.739188i \(-0.264790\pi\)
0.673500 + 0.739188i \(0.264790\pi\)
\(12\) −2.53709 −0.732395
\(13\) 0 0
\(14\) 0 0
\(15\) 1.82875 0.472181
\(16\) 1.98378 0.495945
\(17\) −2.35221 −0.570495 −0.285247 0.958454i \(-0.592076\pi\)
−0.285247 + 0.958454i \(0.592076\pi\)
\(18\) 5.97398 1.40808
\(19\) 6.82253 1.56520 0.782598 0.622527i \(-0.213894\pi\)
0.782598 + 0.622527i \(0.213894\pi\)
\(20\) −9.56448 −2.13868
\(21\) 0 0
\(22\) −10.6122 −2.26253
\(23\) 1.91154 0.398583 0.199291 0.979940i \(-0.436136\pi\)
0.199291 + 0.979940i \(0.436136\pi\)
\(24\) 2.71776 0.554761
\(25\) 1.89414 0.378828
\(26\) 0 0
\(27\) 3.84107 0.739214
\(28\) 0 0
\(29\) 7.24773 1.34587 0.672935 0.739702i \(-0.265033\pi\)
0.672935 + 0.739702i \(0.265033\pi\)
\(30\) −4.34408 −0.793116
\(31\) 7.55820 1.35749 0.678746 0.734373i \(-0.262524\pi\)
0.678746 + 0.734373i \(0.262524\pi\)
\(32\) 3.09183 0.546564
\(33\) −3.11156 −0.541653
\(34\) 5.58752 0.958251
\(35\) 0 0
\(36\) −9.16100 −1.52683
\(37\) −5.94991 −0.978159 −0.489079 0.872239i \(-0.662667\pi\)
−0.489079 + 0.872239i \(0.662667\pi\)
\(38\) −16.2065 −2.62904
\(39\) 0 0
\(40\) 10.2456 1.61997
\(41\) 0.271667 0.0424273 0.0212136 0.999775i \(-0.493247\pi\)
0.0212136 + 0.999775i \(0.493247\pi\)
\(42\) 0 0
\(43\) −3.28422 −0.500840 −0.250420 0.968137i \(-0.580569\pi\)
−0.250420 + 0.968137i \(0.580569\pi\)
\(44\) 16.2737 2.45335
\(45\) 6.60330 0.984362
\(46\) −4.54073 −0.669494
\(47\) 8.10744 1.18259 0.591296 0.806455i \(-0.298617\pi\)
0.591296 + 0.806455i \(0.298617\pi\)
\(48\) −1.38168 −0.199429
\(49\) 0 0
\(50\) −4.49940 −0.636311
\(51\) 1.63829 0.229406
\(52\) 0 0
\(53\) 7.19152 0.987831 0.493916 0.869510i \(-0.335565\pi\)
0.493916 + 0.869510i \(0.335565\pi\)
\(54\) −9.12421 −1.24165
\(55\) −11.7302 −1.58169
\(56\) 0 0
\(57\) −4.75182 −0.629394
\(58\) −17.2165 −2.26064
\(59\) 9.04443 1.17748 0.588742 0.808321i \(-0.299623\pi\)
0.588742 + 0.808321i \(0.299623\pi\)
\(60\) 6.66156 0.860004
\(61\) 7.88752 1.00989 0.504947 0.863150i \(-0.331512\pi\)
0.504947 + 0.863150i \(0.331512\pi\)
\(62\) −17.9540 −2.28016
\(63\) 0 0
\(64\) −11.3120 −1.41400
\(65\) 0 0
\(66\) 7.39130 0.909807
\(67\) −7.00361 −0.855628 −0.427814 0.903867i \(-0.640716\pi\)
−0.427814 + 0.903867i \(0.640716\pi\)
\(68\) −8.56836 −1.03907
\(69\) −1.33136 −0.160277
\(70\) 0 0
\(71\) 6.84206 0.812004 0.406002 0.913872i \(-0.366923\pi\)
0.406002 + 0.913872i \(0.366923\pi\)
\(72\) 9.81337 1.15652
\(73\) −0.348014 −0.0407319 −0.0203660 0.999793i \(-0.506483\pi\)
−0.0203660 + 0.999793i \(0.506483\pi\)
\(74\) 14.1336 1.64300
\(75\) −1.31925 −0.152334
\(76\) 24.8523 2.85076
\(77\) 0 0
\(78\) 0 0
\(79\) −12.5248 −1.40915 −0.704577 0.709628i \(-0.748863\pi\)
−0.704577 + 0.709628i \(0.748863\pi\)
\(80\) −5.20875 −0.582356
\(81\) 4.86944 0.541049
\(82\) −0.645327 −0.0712645
\(83\) 13.4536 1.47673 0.738363 0.674404i \(-0.235599\pi\)
0.738363 + 0.674404i \(0.235599\pi\)
\(84\) 0 0
\(85\) 6.17612 0.669895
\(86\) 7.80146 0.841253
\(87\) −5.04797 −0.541199
\(88\) −17.4325 −1.85832
\(89\) −6.00512 −0.636541 −0.318271 0.948000i \(-0.603102\pi\)
−0.318271 + 0.948000i \(0.603102\pi\)
\(90\) −15.6857 −1.65342
\(91\) 0 0
\(92\) 6.96312 0.725956
\(93\) −5.26420 −0.545873
\(94\) −19.2587 −1.98638
\(95\) −17.9137 −1.83791
\(96\) −2.15343 −0.219784
\(97\) 12.6274 1.28212 0.641060 0.767491i \(-0.278495\pi\)
0.641060 + 0.767491i \(0.278495\pi\)
\(98\) 0 0
\(99\) −11.2353 −1.12919
\(100\) 6.89975 0.689975
\(101\) −13.5168 −1.34497 −0.672486 0.740110i \(-0.734773\pi\)
−0.672486 + 0.740110i \(0.734773\pi\)
\(102\) −3.89165 −0.385330
\(103\) −13.4747 −1.32770 −0.663852 0.747864i \(-0.731080\pi\)
−0.663852 + 0.747864i \(0.731080\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −17.0830 −1.65925
\(107\) −2.26178 −0.218654 −0.109327 0.994006i \(-0.534870\pi\)
−0.109327 + 0.994006i \(0.534870\pi\)
\(108\) 13.9918 1.34636
\(109\) 14.5403 1.39270 0.696352 0.717700i \(-0.254805\pi\)
0.696352 + 0.717700i \(0.254805\pi\)
\(110\) 27.8642 2.65675
\(111\) 4.14405 0.393336
\(112\) 0 0
\(113\) −2.50654 −0.235795 −0.117898 0.993026i \(-0.537615\pi\)
−0.117898 + 0.993026i \(0.537615\pi\)
\(114\) 11.2876 1.05718
\(115\) −5.01906 −0.468030
\(116\) 26.4012 2.45129
\(117\) 0 0
\(118\) −21.4844 −1.97780
\(119\) 0 0
\(120\) −7.13595 −0.651420
\(121\) 8.95847 0.814406
\(122\) −18.7363 −1.69630
\(123\) −0.189213 −0.0170608
\(124\) 27.5321 2.47246
\(125\) 8.15497 0.729402
\(126\) 0 0
\(127\) 1.37935 0.122397 0.0611987 0.998126i \(-0.480508\pi\)
0.0611987 + 0.998126i \(0.480508\pi\)
\(128\) 20.6873 1.82851
\(129\) 2.28743 0.201397
\(130\) 0 0
\(131\) 13.2587 1.15842 0.579209 0.815179i \(-0.303362\pi\)
0.579209 + 0.815179i \(0.303362\pi\)
\(132\) −11.3344 −0.986536
\(133\) 0 0
\(134\) 16.6366 1.43719
\(135\) −10.0854 −0.868011
\(136\) 9.17853 0.787052
\(137\) −19.2541 −1.64499 −0.822494 0.568774i \(-0.807418\pi\)
−0.822494 + 0.568774i \(0.807418\pi\)
\(138\) 3.16257 0.269216
\(139\) 9.81673 0.832644 0.416322 0.909217i \(-0.363319\pi\)
0.416322 + 0.909217i \(0.363319\pi\)
\(140\) 0 0
\(141\) −5.64675 −0.475542
\(142\) −16.2529 −1.36391
\(143\) 0 0
\(144\) −4.98902 −0.415752
\(145\) −19.0301 −1.58037
\(146\) 0.826684 0.0684168
\(147\) 0 0
\(148\) −21.6736 −1.78156
\(149\) 6.34667 0.519939 0.259970 0.965617i \(-0.416287\pi\)
0.259970 + 0.965617i \(0.416287\pi\)
\(150\) 3.13378 0.255872
\(151\) −3.17436 −0.258326 −0.129163 0.991623i \(-0.541229\pi\)
−0.129163 + 0.991623i \(0.541229\pi\)
\(152\) −26.6221 −2.15934
\(153\) 5.91558 0.478246
\(154\) 0 0
\(155\) −19.8453 −1.59401
\(156\) 0 0
\(157\) −0.402481 −0.0321215 −0.0160607 0.999871i \(-0.505113\pi\)
−0.0160607 + 0.999871i \(0.505113\pi\)
\(158\) 29.7519 2.36693
\(159\) −5.00882 −0.397225
\(160\) −8.11813 −0.641795
\(161\) 0 0
\(162\) −11.5670 −0.908792
\(163\) −11.8864 −0.931012 −0.465506 0.885045i \(-0.654128\pi\)
−0.465506 + 0.885045i \(0.654128\pi\)
\(164\) 0.989597 0.0772746
\(165\) 8.16993 0.636028
\(166\) −31.9582 −2.48043
\(167\) −0.438220 −0.0339105 −0.0169552 0.999856i \(-0.505397\pi\)
−0.0169552 + 0.999856i \(0.505397\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −14.6710 −1.12521
\(171\) −17.1580 −1.31211
\(172\) −11.9634 −0.912200
\(173\) −5.47503 −0.416258 −0.208129 0.978101i \(-0.566737\pi\)
−0.208129 + 0.978101i \(0.566737\pi\)
\(174\) 11.9911 0.909044
\(175\) 0 0
\(176\) 8.86253 0.668038
\(177\) −6.29935 −0.473488
\(178\) 14.2648 1.06919
\(179\) 0.541906 0.0405040 0.0202520 0.999795i \(-0.493553\pi\)
0.0202520 + 0.999795i \(0.493553\pi\)
\(180\) 24.0537 1.79286
\(181\) 10.9671 0.815178 0.407589 0.913165i \(-0.366370\pi\)
0.407589 + 0.913165i \(0.366370\pi\)
\(182\) 0 0
\(183\) −5.49358 −0.406097
\(184\) −7.45898 −0.549884
\(185\) 15.6225 1.14859
\(186\) 12.5048 0.916894
\(187\) −10.5085 −0.768456
\(188\) 29.5329 2.15390
\(189\) 0 0
\(190\) 42.5528 3.08711
\(191\) 4.90268 0.354745 0.177373 0.984144i \(-0.443240\pi\)
0.177373 + 0.984144i \(0.443240\pi\)
\(192\) 7.87870 0.568596
\(193\) −17.8596 −1.28556 −0.642782 0.766049i \(-0.722220\pi\)
−0.642782 + 0.766049i \(0.722220\pi\)
\(194\) −29.9956 −2.15356
\(195\) 0 0
\(196\) 0 0
\(197\) 2.43488 0.173478 0.0867390 0.996231i \(-0.472355\pi\)
0.0867390 + 0.996231i \(0.472355\pi\)
\(198\) 26.6887 1.89668
\(199\) −5.14098 −0.364435 −0.182217 0.983258i \(-0.558327\pi\)
−0.182217 + 0.983258i \(0.558327\pi\)
\(200\) −7.39109 −0.522629
\(201\) 4.87794 0.344064
\(202\) 32.1082 2.25913
\(203\) 0 0
\(204\) 5.96777 0.417827
\(205\) −0.713308 −0.0498196
\(206\) 32.0083 2.23012
\(207\) −4.80733 −0.334132
\(208\) 0 0
\(209\) 30.4796 2.10832
\(210\) 0 0
\(211\) −18.5097 −1.27426 −0.637129 0.770758i \(-0.719878\pi\)
−0.637129 + 0.770758i \(0.719878\pi\)
\(212\) 26.1964 1.79918
\(213\) −4.76543 −0.326522
\(214\) 5.37270 0.367270
\(215\) 8.62329 0.588103
\(216\) −14.9882 −1.01982
\(217\) 0 0
\(218\) −34.5394 −2.33931
\(219\) 0.242388 0.0163791
\(220\) −42.7292 −2.88080
\(221\) 0 0
\(222\) −9.84391 −0.660680
\(223\) −8.79953 −0.589260 −0.294630 0.955611i \(-0.595196\pi\)
−0.294630 + 0.955611i \(0.595196\pi\)
\(224\) 0 0
\(225\) −4.76357 −0.317571
\(226\) 5.95411 0.396062
\(227\) 8.49873 0.564081 0.282040 0.959403i \(-0.408989\pi\)
0.282040 + 0.959403i \(0.408989\pi\)
\(228\) −17.3094 −1.14634
\(229\) −23.0879 −1.52569 −0.762846 0.646580i \(-0.776199\pi\)
−0.762846 + 0.646580i \(0.776199\pi\)
\(230\) 11.9224 0.786143
\(231\) 0 0
\(232\) −28.2813 −1.85676
\(233\) 14.6156 0.957498 0.478749 0.877952i \(-0.341090\pi\)
0.478749 + 0.877952i \(0.341090\pi\)
\(234\) 0 0
\(235\) −21.2875 −1.38864
\(236\) 32.9460 2.14460
\(237\) 8.72341 0.566646
\(238\) 0 0
\(239\) −11.9223 −0.771192 −0.385596 0.922668i \(-0.626004\pi\)
−0.385596 + 0.922668i \(0.626004\pi\)
\(240\) 3.62784 0.234176
\(241\) 22.2083 1.43057 0.715283 0.698835i \(-0.246298\pi\)
0.715283 + 0.698835i \(0.246298\pi\)
\(242\) −21.2803 −1.36795
\(243\) −14.9147 −0.956780
\(244\) 28.7318 1.83936
\(245\) 0 0
\(246\) 0.449463 0.0286567
\(247\) 0 0
\(248\) −29.4928 −1.87279
\(249\) −9.37030 −0.593818
\(250\) −19.3716 −1.22517
\(251\) 11.4119 0.720314 0.360157 0.932892i \(-0.382723\pi\)
0.360157 + 0.932892i \(0.382723\pi\)
\(252\) 0 0
\(253\) 8.53977 0.536891
\(254\) −3.27655 −0.205589
\(255\) −4.30160 −0.269377
\(256\) −26.5172 −1.65732
\(257\) 11.2453 0.701464 0.350732 0.936476i \(-0.385933\pi\)
0.350732 + 0.936476i \(0.385933\pi\)
\(258\) −5.43363 −0.338283
\(259\) 0 0
\(260\) 0 0
\(261\) −18.2273 −1.12824
\(262\) −31.4951 −1.94578
\(263\) −5.24132 −0.323194 −0.161597 0.986857i \(-0.551664\pi\)
−0.161597 + 0.986857i \(0.551664\pi\)
\(264\) 12.1416 0.747263
\(265\) −18.8826 −1.15995
\(266\) 0 0
\(267\) 4.18250 0.255965
\(268\) −25.5120 −1.55839
\(269\) −6.80855 −0.415125 −0.207562 0.978222i \(-0.566553\pi\)
−0.207562 + 0.978222i \(0.566553\pi\)
\(270\) 23.9572 1.45799
\(271\) 4.04340 0.245619 0.122809 0.992430i \(-0.460810\pi\)
0.122809 + 0.992430i \(0.460810\pi\)
\(272\) −4.66627 −0.282934
\(273\) 0 0
\(274\) 45.7368 2.76306
\(275\) 8.46204 0.510280
\(276\) −4.84974 −0.291920
\(277\) −3.18579 −0.191416 −0.0957079 0.995409i \(-0.530511\pi\)
−0.0957079 + 0.995409i \(0.530511\pi\)
\(278\) −23.3190 −1.39858
\(279\) −19.0081 −1.13799
\(280\) 0 0
\(281\) −13.8238 −0.824660 −0.412330 0.911035i \(-0.635285\pi\)
−0.412330 + 0.911035i \(0.635285\pi\)
\(282\) 13.4135 0.798761
\(283\) −4.71357 −0.280193 −0.140096 0.990138i \(-0.544741\pi\)
−0.140096 + 0.990138i \(0.544741\pi\)
\(284\) 24.9235 1.47894
\(285\) 12.4767 0.739056
\(286\) 0 0
\(287\) 0 0
\(288\) −7.77566 −0.458185
\(289\) −11.4671 −0.674536
\(290\) 45.2049 2.65452
\(291\) −8.79486 −0.515564
\(292\) −1.26770 −0.0741868
\(293\) 13.5197 0.789831 0.394916 0.918717i \(-0.370774\pi\)
0.394916 + 0.918717i \(0.370774\pi\)
\(294\) 0 0
\(295\) −23.7477 −1.38264
\(296\) 23.2171 1.34946
\(297\) 17.1599 0.995721
\(298\) −15.0761 −0.873334
\(299\) 0 0
\(300\) −4.80560 −0.277451
\(301\) 0 0
\(302\) 7.54049 0.433906
\(303\) 9.41430 0.540838
\(304\) 13.5344 0.776252
\(305\) −20.7100 −1.18585
\(306\) −14.0521 −0.803303
\(307\) 0.157347 0.00898024 0.00449012 0.999990i \(-0.498571\pi\)
0.00449012 + 0.999990i \(0.498571\pi\)
\(308\) 0 0
\(309\) 9.38500 0.533894
\(310\) 47.1413 2.67744
\(311\) 2.01577 0.114304 0.0571519 0.998365i \(-0.481798\pi\)
0.0571519 + 0.998365i \(0.481798\pi\)
\(312\) 0 0
\(313\) 15.9070 0.899117 0.449559 0.893251i \(-0.351581\pi\)
0.449559 + 0.893251i \(0.351581\pi\)
\(314\) 0.956066 0.0539539
\(315\) 0 0
\(316\) −45.6240 −2.56655
\(317\) 22.2854 1.25167 0.625835 0.779955i \(-0.284758\pi\)
0.625835 + 0.779955i \(0.284758\pi\)
\(318\) 11.8981 0.667213
\(319\) 32.3792 1.81289
\(320\) 29.7016 1.66037
\(321\) 1.57530 0.0879249
\(322\) 0 0
\(323\) −16.0480 −0.892936
\(324\) 17.7378 0.985436
\(325\) 0 0
\(326\) 28.2353 1.56381
\(327\) −10.1271 −0.560032
\(328\) −1.06007 −0.0585325
\(329\) 0 0
\(330\) −19.4071 −1.06833
\(331\) −5.42392 −0.298126 −0.149063 0.988828i \(-0.547626\pi\)
−0.149063 + 0.988828i \(0.547626\pi\)
\(332\) 49.0073 2.68962
\(333\) 14.9634 0.819991
\(334\) 1.04096 0.0569589
\(335\) 18.3892 1.00471
\(336\) 0 0
\(337\) 15.1236 0.823833 0.411917 0.911222i \(-0.364860\pi\)
0.411917 + 0.911222i \(0.364860\pi\)
\(338\) 0 0
\(339\) 1.74578 0.0948176
\(340\) 22.4977 1.22011
\(341\) 33.7662 1.82854
\(342\) 40.7577 2.20392
\(343\) 0 0
\(344\) 12.8153 0.690956
\(345\) 3.49572 0.188203
\(346\) 13.0056 0.699183
\(347\) 19.5336 1.04862 0.524309 0.851528i \(-0.324324\pi\)
0.524309 + 0.851528i \(0.324324\pi\)
\(348\) −18.3882 −0.985709
\(349\) −19.2006 −1.02779 −0.513893 0.857854i \(-0.671797\pi\)
−0.513893 + 0.857854i \(0.671797\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 13.8127 0.736221
\(353\) −0.870180 −0.0463150 −0.0231575 0.999732i \(-0.507372\pi\)
−0.0231575 + 0.999732i \(0.507372\pi\)
\(354\) 14.9637 0.795311
\(355\) −17.9650 −0.953483
\(356\) −21.8747 −1.15936
\(357\) 0 0
\(358\) −1.28726 −0.0680339
\(359\) −2.85875 −0.150879 −0.0754397 0.997150i \(-0.524036\pi\)
−0.0754397 + 0.997150i \(0.524036\pi\)
\(360\) −25.7667 −1.35802
\(361\) 27.5469 1.44984
\(362\) −26.0516 −1.36924
\(363\) −6.23948 −0.327488
\(364\) 0 0
\(365\) 0.913769 0.0478289
\(366\) 13.0496 0.682115
\(367\) −16.1982 −0.845537 −0.422769 0.906238i \(-0.638942\pi\)
−0.422769 + 0.906238i \(0.638942\pi\)
\(368\) 3.79207 0.197675
\(369\) −0.683216 −0.0355668
\(370\) −37.1102 −1.92927
\(371\) 0 0
\(372\) −19.1758 −0.994221
\(373\) −13.3611 −0.691813 −0.345907 0.938269i \(-0.612429\pi\)
−0.345907 + 0.938269i \(0.612429\pi\)
\(374\) 24.9622 1.29076
\(375\) −5.67985 −0.293306
\(376\) −31.6359 −1.63150
\(377\) 0 0
\(378\) 0 0
\(379\) 1.03567 0.0531987 0.0265994 0.999646i \(-0.491532\pi\)
0.0265994 + 0.999646i \(0.491532\pi\)
\(380\) −65.2540 −3.34746
\(381\) −0.960702 −0.0492183
\(382\) −11.6460 −0.595860
\(383\) −34.8972 −1.78316 −0.891581 0.452861i \(-0.850403\pi\)
−0.891581 + 0.452861i \(0.850403\pi\)
\(384\) −14.4085 −0.735279
\(385\) 0 0
\(386\) 42.4243 2.15934
\(387\) 8.25950 0.419854
\(388\) 45.9977 2.33518
\(389\) 15.8129 0.801746 0.400873 0.916134i \(-0.368707\pi\)
0.400873 + 0.916134i \(0.368707\pi\)
\(390\) 0 0
\(391\) −4.49633 −0.227389
\(392\) 0 0
\(393\) −9.23454 −0.465821
\(394\) −5.78389 −0.291388
\(395\) 32.8861 1.65468
\(396\) −40.9267 −2.05664
\(397\) 35.1469 1.76397 0.881986 0.471276i \(-0.156206\pi\)
0.881986 + 0.471276i \(0.156206\pi\)
\(398\) 12.2121 0.612135
\(399\) 0 0
\(400\) 3.75756 0.187878
\(401\) −2.60906 −0.130290 −0.0651452 0.997876i \(-0.520751\pi\)
−0.0651452 + 0.997876i \(0.520751\pi\)
\(402\) −11.5872 −0.577919
\(403\) 0 0
\(404\) −49.2374 −2.44965
\(405\) −12.7855 −0.635319
\(406\) 0 0
\(407\) −26.5812 −1.31758
\(408\) −6.39275 −0.316488
\(409\) −24.8983 −1.23114 −0.615571 0.788082i \(-0.711074\pi\)
−0.615571 + 0.788082i \(0.711074\pi\)
\(410\) 1.69442 0.0836812
\(411\) 13.4103 0.661480
\(412\) −49.0842 −2.41820
\(413\) 0 0
\(414\) 11.4195 0.561237
\(415\) −35.3247 −1.73402
\(416\) 0 0
\(417\) −6.83725 −0.334822
\(418\) −72.4022 −3.54131
\(419\) 4.08971 0.199796 0.0998978 0.994998i \(-0.468148\pi\)
0.0998978 + 0.994998i \(0.468148\pi\)
\(420\) 0 0
\(421\) 27.7416 1.35204 0.676021 0.736882i \(-0.263703\pi\)
0.676021 + 0.736882i \(0.263703\pi\)
\(422\) 43.9685 2.14035
\(423\) −20.3894 −0.991368
\(424\) −28.0619 −1.36281
\(425\) −4.45541 −0.216119
\(426\) 11.3200 0.548453
\(427\) 0 0
\(428\) −8.23894 −0.398244
\(429\) 0 0
\(430\) −20.4840 −0.987828
\(431\) −23.7707 −1.14499 −0.572496 0.819907i \(-0.694025\pi\)
−0.572496 + 0.819907i \(0.694025\pi\)
\(432\) 7.61985 0.366610
\(433\) −28.1511 −1.35285 −0.676427 0.736510i \(-0.736473\pi\)
−0.676427 + 0.736510i \(0.736473\pi\)
\(434\) 0 0
\(435\) 13.2543 0.635495
\(436\) 52.9656 2.53659
\(437\) 13.0415 0.623860
\(438\) −0.575776 −0.0275117
\(439\) 22.4172 1.06991 0.534956 0.844880i \(-0.320328\pi\)
0.534956 + 0.844880i \(0.320328\pi\)
\(440\) 45.7721 2.18210
\(441\) 0 0
\(442\) 0 0
\(443\) 32.6314 1.55037 0.775183 0.631737i \(-0.217658\pi\)
0.775183 + 0.631737i \(0.217658\pi\)
\(444\) 15.0955 0.716399
\(445\) 15.7675 0.747449
\(446\) 20.9027 0.989772
\(447\) −4.42039 −0.209077
\(448\) 0 0
\(449\) 6.70185 0.316280 0.158140 0.987417i \(-0.449450\pi\)
0.158140 + 0.987417i \(0.449450\pi\)
\(450\) 11.3155 0.533420
\(451\) 1.21367 0.0571495
\(452\) −9.13052 −0.429464
\(453\) 2.21091 0.103878
\(454\) −20.1882 −0.947478
\(455\) 0 0
\(456\) 18.5420 0.868310
\(457\) 33.1389 1.55017 0.775085 0.631857i \(-0.217707\pi\)
0.775085 + 0.631857i \(0.217707\pi\)
\(458\) 54.8438 2.56268
\(459\) −9.03500 −0.421718
\(460\) −18.2829 −0.852443
\(461\) −21.1892 −0.986877 −0.493439 0.869781i \(-0.664260\pi\)
−0.493439 + 0.869781i \(0.664260\pi\)
\(462\) 0 0
\(463\) −8.78862 −0.408442 −0.204221 0.978925i \(-0.565466\pi\)
−0.204221 + 0.978925i \(0.565466\pi\)
\(464\) 14.3779 0.667478
\(465\) 13.8221 0.640983
\(466\) −34.7183 −1.60829
\(467\) −31.7094 −1.46733 −0.733667 0.679509i \(-0.762193\pi\)
−0.733667 + 0.679509i \(0.762193\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 50.5669 2.33248
\(471\) 0.280323 0.0129166
\(472\) −35.2922 −1.62445
\(473\) −14.6722 −0.674630
\(474\) −20.7219 −0.951788
\(475\) 12.9228 0.592939
\(476\) 0 0
\(477\) −18.0860 −0.828100
\(478\) 28.3207 1.29536
\(479\) −37.3844 −1.70814 −0.854068 0.520162i \(-0.825872\pi\)
−0.854068 + 0.520162i \(0.825872\pi\)
\(480\) 5.65419 0.258077
\(481\) 0 0
\(482\) −52.7544 −2.40290
\(483\) 0 0
\(484\) 32.6329 1.48331
\(485\) −33.1554 −1.50551
\(486\) 35.4289 1.60709
\(487\) −16.6299 −0.753573 −0.376787 0.926300i \(-0.622971\pi\)
−0.376787 + 0.926300i \(0.622971\pi\)
\(488\) −30.7778 −1.39325
\(489\) 8.27872 0.374377
\(490\) 0 0
\(491\) −13.4173 −0.605515 −0.302758 0.953068i \(-0.597907\pi\)
−0.302758 + 0.953068i \(0.597907\pi\)
\(492\) −0.689244 −0.0310735
\(493\) −17.0482 −0.767812
\(494\) 0 0
\(495\) 29.5002 1.32593
\(496\) 14.9938 0.673242
\(497\) 0 0
\(498\) 22.2585 0.997428
\(499\) 6.01428 0.269236 0.134618 0.990898i \(-0.457019\pi\)
0.134618 + 0.990898i \(0.457019\pi\)
\(500\) 29.7060 1.32849
\(501\) 0.305216 0.0136360
\(502\) −27.1083 −1.20990
\(503\) 12.0169 0.535807 0.267904 0.963446i \(-0.413669\pi\)
0.267904 + 0.963446i \(0.413669\pi\)
\(504\) 0 0
\(505\) 35.4906 1.57931
\(506\) −20.2857 −0.901807
\(507\) 0 0
\(508\) 5.02453 0.222928
\(509\) 35.8748 1.59012 0.795062 0.606528i \(-0.207438\pi\)
0.795062 + 0.606528i \(0.207438\pi\)
\(510\) 10.2182 0.452468
\(511\) 0 0
\(512\) 21.6153 0.955271
\(513\) 26.2058 1.15702
\(514\) −26.7125 −1.17824
\(515\) 35.3802 1.55904
\(516\) 8.33238 0.366812
\(517\) 36.2199 1.59295
\(518\) 0 0
\(519\) 3.81330 0.167385
\(520\) 0 0
\(521\) 9.89671 0.433583 0.216791 0.976218i \(-0.430441\pi\)
0.216791 + 0.976218i \(0.430441\pi\)
\(522\) 43.2978 1.89509
\(523\) 2.36683 0.103494 0.0517472 0.998660i \(-0.483521\pi\)
0.0517472 + 0.998660i \(0.483521\pi\)
\(524\) 48.2972 2.10987
\(525\) 0 0
\(526\) 12.4504 0.542864
\(527\) −17.7785 −0.774442
\(528\) −6.17266 −0.268630
\(529\) −19.3460 −0.841132
\(530\) 44.8542 1.94834
\(531\) −22.7459 −0.987086
\(532\) 0 0
\(533\) 0 0
\(534\) −9.93525 −0.429940
\(535\) 5.93868 0.256751
\(536\) 27.3287 1.18042
\(537\) −0.377432 −0.0162874
\(538\) 16.1733 0.697279
\(539\) 0 0
\(540\) −36.7379 −1.58095
\(541\) 12.5733 0.540569 0.270284 0.962781i \(-0.412882\pi\)
0.270284 + 0.962781i \(0.412882\pi\)
\(542\) −9.60482 −0.412562
\(543\) −7.63847 −0.327798
\(544\) −7.27264 −0.311812
\(545\) −38.1779 −1.63536
\(546\) 0 0
\(547\) −1.03013 −0.0440453 −0.0220226 0.999757i \(-0.507011\pi\)
−0.0220226 + 0.999757i \(0.507011\pi\)
\(548\) −70.1366 −2.99609
\(549\) −19.8364 −0.846595
\(550\) −20.1010 −0.857110
\(551\) 49.4479 2.10655
\(552\) 5.19510 0.221118
\(553\) 0 0
\(554\) 7.56764 0.321518
\(555\) −10.8809 −0.461868
\(556\) 35.7593 1.51653
\(557\) −18.6475 −0.790122 −0.395061 0.918655i \(-0.629276\pi\)
−0.395061 + 0.918655i \(0.629276\pi\)
\(558\) 45.1526 1.91146
\(559\) 0 0
\(560\) 0 0
\(561\) 7.31904 0.309010
\(562\) 32.8376 1.38517
\(563\) −27.7721 −1.17045 −0.585226 0.810870i \(-0.698994\pi\)
−0.585226 + 0.810870i \(0.698994\pi\)
\(564\) −20.5693 −0.866125
\(565\) 6.58134 0.276879
\(566\) 11.1968 0.470636
\(567\) 0 0
\(568\) −26.6983 −1.12024
\(569\) −7.56843 −0.317285 −0.158642 0.987336i \(-0.550712\pi\)
−0.158642 + 0.987336i \(0.550712\pi\)
\(570\) −29.6376 −1.24138
\(571\) 2.60591 0.109054 0.0545270 0.998512i \(-0.482635\pi\)
0.0545270 + 0.998512i \(0.482635\pi\)
\(572\) 0 0
\(573\) −3.41466 −0.142650
\(574\) 0 0
\(575\) 3.62071 0.150994
\(576\) 28.4486 1.18536
\(577\) −29.4257 −1.22501 −0.612505 0.790467i \(-0.709838\pi\)
−0.612505 + 0.790467i \(0.709838\pi\)
\(578\) 27.2394 1.13301
\(579\) 12.4390 0.516949
\(580\) −69.3208 −2.87839
\(581\) 0 0
\(582\) 20.8916 0.865985
\(583\) 32.1280 1.33061
\(584\) 1.35798 0.0561936
\(585\) 0 0
\(586\) −32.1152 −1.32667
\(587\) −15.1833 −0.626682 −0.313341 0.949641i \(-0.601448\pi\)
−0.313341 + 0.949641i \(0.601448\pi\)
\(588\) 0 0
\(589\) 51.5660 2.12474
\(590\) 56.4110 2.32241
\(591\) −1.69587 −0.0697586
\(592\) −11.8033 −0.485113
\(593\) 6.15116 0.252598 0.126299 0.991992i \(-0.459690\pi\)
0.126299 + 0.991992i \(0.459690\pi\)
\(594\) −40.7623 −1.67250
\(595\) 0 0
\(596\) 23.1189 0.946987
\(597\) 3.58064 0.146546
\(598\) 0 0
\(599\) 5.99925 0.245123 0.122561 0.992461i \(-0.460889\pi\)
0.122561 + 0.992461i \(0.460889\pi\)
\(600\) 5.14782 0.210159
\(601\) −9.62476 −0.392602 −0.196301 0.980544i \(-0.562893\pi\)
−0.196301 + 0.980544i \(0.562893\pi\)
\(602\) 0 0
\(603\) 17.6134 0.717273
\(604\) −11.5632 −0.470500
\(605\) −23.5220 −0.956304
\(606\) −22.3631 −0.908437
\(607\) 8.92852 0.362397 0.181199 0.983447i \(-0.442002\pi\)
0.181199 + 0.983447i \(0.442002\pi\)
\(608\) 21.0941 0.855480
\(609\) 0 0
\(610\) 49.1953 1.99186
\(611\) 0 0
\(612\) 21.5486 0.871050
\(613\) −7.73833 −0.312548 −0.156274 0.987714i \(-0.549948\pi\)
−0.156274 + 0.987714i \(0.549948\pi\)
\(614\) −0.373766 −0.0150840
\(615\) 0.496811 0.0200334
\(616\) 0 0
\(617\) −5.97203 −0.240425 −0.120212 0.992748i \(-0.538358\pi\)
−0.120212 + 0.992748i \(0.538358\pi\)
\(618\) −22.2935 −0.896774
\(619\) −21.4983 −0.864091 −0.432046 0.901852i \(-0.642208\pi\)
−0.432046 + 0.901852i \(0.642208\pi\)
\(620\) −72.2903 −2.90325
\(621\) 7.34235 0.294638
\(622\) −4.78833 −0.191994
\(623\) 0 0
\(624\) 0 0
\(625\) −30.8829 −1.23532
\(626\) −37.7860 −1.51023
\(627\) −21.2287 −0.847793
\(628\) −1.46611 −0.0585042
\(629\) 13.9954 0.558034
\(630\) 0 0
\(631\) −9.61734 −0.382860 −0.191430 0.981506i \(-0.561313\pi\)
−0.191430 + 0.981506i \(0.561313\pi\)
\(632\) 48.8730 1.94406
\(633\) 12.8918 0.512402
\(634\) −52.9374 −2.10241
\(635\) −3.62171 −0.143723
\(636\) −18.2455 −0.723483
\(637\) 0 0
\(638\) −76.9146 −3.04508
\(639\) −17.2071 −0.680703
\(640\) −54.3179 −2.14710
\(641\) 47.7161 1.88467 0.942335 0.334670i \(-0.108625\pi\)
0.942335 + 0.334670i \(0.108625\pi\)
\(642\) −3.74203 −0.147686
\(643\) 8.58409 0.338524 0.169262 0.985571i \(-0.445862\pi\)
0.169262 + 0.985571i \(0.445862\pi\)
\(644\) 0 0
\(645\) −6.00603 −0.236487
\(646\) 38.1210 1.49985
\(647\) 3.29974 0.129726 0.0648631 0.997894i \(-0.479339\pi\)
0.0648631 + 0.997894i \(0.479339\pi\)
\(648\) −19.0010 −0.746429
\(649\) 40.4059 1.58607
\(650\) 0 0
\(651\) 0 0
\(652\) −43.2983 −1.69569
\(653\) −17.2337 −0.674406 −0.337203 0.941432i \(-0.609481\pi\)
−0.337203 + 0.941432i \(0.609481\pi\)
\(654\) 24.0564 0.940678
\(655\) −34.8129 −1.36025
\(656\) 0.538928 0.0210416
\(657\) 0.875221 0.0341456
\(658\) 0 0
\(659\) −2.82156 −0.109912 −0.0549561 0.998489i \(-0.517502\pi\)
−0.0549561 + 0.998489i \(0.517502\pi\)
\(660\) 29.7605 1.15842
\(661\) 32.2767 1.25542 0.627709 0.778448i \(-0.283993\pi\)
0.627709 + 0.778448i \(0.283993\pi\)
\(662\) 12.8842 0.500757
\(663\) 0 0
\(664\) −52.4972 −2.03729
\(665\) 0 0
\(666\) −35.5447 −1.37733
\(667\) 13.8543 0.536441
\(668\) −1.59630 −0.0617626
\(669\) 6.12878 0.236952
\(670\) −43.6823 −1.68759
\(671\) 35.2374 1.36033
\(672\) 0 0
\(673\) −39.9538 −1.54011 −0.770053 0.637980i \(-0.779770\pi\)
−0.770053 + 0.637980i \(0.779770\pi\)
\(674\) −35.9250 −1.38378
\(675\) 7.27552 0.280035
\(676\) 0 0
\(677\) −34.2338 −1.31571 −0.657855 0.753144i \(-0.728536\pi\)
−0.657855 + 0.753144i \(0.728536\pi\)
\(678\) −4.14698 −0.159264
\(679\) 0 0
\(680\) −24.0998 −0.924184
\(681\) −5.91928 −0.226827
\(682\) −80.2093 −3.07137
\(683\) 47.7479 1.82702 0.913512 0.406812i \(-0.133359\pi\)
0.913512 + 0.406812i \(0.133359\pi\)
\(684\) −62.5012 −2.38979
\(685\) 50.5549 1.93160
\(686\) 0 0
\(687\) 16.0805 0.613509
\(688\) −6.51519 −0.248389
\(689\) 0 0
\(690\) −8.30386 −0.316122
\(691\) 37.8096 1.43835 0.719173 0.694831i \(-0.244521\pi\)
0.719173 + 0.694831i \(0.244521\pi\)
\(692\) −19.9438 −0.758149
\(693\) 0 0
\(694\) −46.4008 −1.76135
\(695\) −25.7755 −0.977720
\(696\) 19.6976 0.746636
\(697\) −0.639018 −0.0242045
\(698\) 45.6098 1.72636
\(699\) −10.1796 −0.385027
\(700\) 0 0
\(701\) 8.43524 0.318595 0.159297 0.987231i \(-0.449077\pi\)
0.159297 + 0.987231i \(0.449077\pi\)
\(702\) 0 0
\(703\) −40.5934 −1.53101
\(704\) −50.5363 −1.90466
\(705\) 14.8265 0.558398
\(706\) 2.06706 0.0777947
\(707\) 0 0
\(708\) −22.9465 −0.862384
\(709\) 19.1245 0.718237 0.359119 0.933292i \(-0.383077\pi\)
0.359119 + 0.933292i \(0.383077\pi\)
\(710\) 42.6747 1.60155
\(711\) 31.4987 1.18129
\(712\) 23.4325 0.878170
\(713\) 14.4478 0.541073
\(714\) 0 0
\(715\) 0 0
\(716\) 1.97399 0.0737716
\(717\) 8.30378 0.310110
\(718\) 6.79078 0.253430
\(719\) −4.57280 −0.170537 −0.0852684 0.996358i \(-0.527175\pi\)
−0.0852684 + 0.996358i \(0.527175\pi\)
\(720\) 13.0995 0.488190
\(721\) 0 0
\(722\) −65.4359 −2.43527
\(723\) −15.4679 −0.575257
\(724\) 39.9497 1.48472
\(725\) 13.7282 0.509853
\(726\) 14.8215 0.550076
\(727\) 30.5472 1.13293 0.566466 0.824085i \(-0.308310\pi\)
0.566466 + 0.824085i \(0.308310\pi\)
\(728\) 0 0
\(729\) −4.22038 −0.156310
\(730\) −2.17060 −0.0803374
\(731\) 7.72518 0.285726
\(732\) −20.0114 −0.739641
\(733\) 41.2339 1.52301 0.761504 0.648160i \(-0.224461\pi\)
0.761504 + 0.648160i \(0.224461\pi\)
\(734\) 38.4777 1.42024
\(735\) 0 0
\(736\) 5.91015 0.217851
\(737\) −31.2886 −1.15253
\(738\) 1.62293 0.0597411
\(739\) −42.4268 −1.56070 −0.780348 0.625346i \(-0.784958\pi\)
−0.780348 + 0.625346i \(0.784958\pi\)
\(740\) 56.9078 2.09197
\(741\) 0 0
\(742\) 0 0
\(743\) 49.0471 1.79936 0.899681 0.436548i \(-0.143799\pi\)
0.899681 + 0.436548i \(0.143799\pi\)
\(744\) 20.5414 0.753084
\(745\) −16.6642 −0.610531
\(746\) 31.7385 1.16203
\(747\) −33.8345 −1.23794
\(748\) −38.2791 −1.39962
\(749\) 0 0
\(750\) 13.4921 0.492662
\(751\) −42.3269 −1.54453 −0.772266 0.635300i \(-0.780877\pi\)
−0.772266 + 0.635300i \(0.780877\pi\)
\(752\) 16.0834 0.586501
\(753\) −7.94829 −0.289652
\(754\) 0 0
\(755\) 8.33482 0.303335
\(756\) 0 0
\(757\) 47.5394 1.72785 0.863925 0.503620i \(-0.167999\pi\)
0.863925 + 0.503620i \(0.167999\pi\)
\(758\) −2.46016 −0.0893571
\(759\) −5.94786 −0.215894
\(760\) 69.9009 2.53557
\(761\) 37.2674 1.35094 0.675472 0.737386i \(-0.263940\pi\)
0.675472 + 0.737386i \(0.263940\pi\)
\(762\) 2.28208 0.0826712
\(763\) 0 0
\(764\) 17.8589 0.646113
\(765\) −15.5323 −0.561573
\(766\) 82.8959 2.99515
\(767\) 0 0
\(768\) 18.4689 0.666441
\(769\) 28.9830 1.04516 0.522578 0.852592i \(-0.324970\pi\)
0.522578 + 0.852592i \(0.324970\pi\)
\(770\) 0 0
\(771\) −7.83225 −0.282071
\(772\) −65.0569 −2.34145
\(773\) 39.0260 1.40367 0.701833 0.712341i \(-0.252365\pi\)
0.701833 + 0.712341i \(0.252365\pi\)
\(774\) −19.6199 −0.705223
\(775\) 14.3163 0.514256
\(776\) −49.2733 −1.76881
\(777\) 0 0
\(778\) −37.5625 −1.34668
\(779\) 1.85346 0.0664070
\(780\) 0 0
\(781\) 30.5669 1.09377
\(782\) 10.6807 0.381943
\(783\) 27.8391 0.994887
\(784\) 0 0
\(785\) 1.05678 0.0377181
\(786\) 21.9360 0.782432
\(787\) 47.3720 1.68863 0.844315 0.535848i \(-0.180008\pi\)
0.844315 + 0.535848i \(0.180008\pi\)
\(788\) 8.86949 0.315963
\(789\) 3.65053 0.129962
\(790\) −78.1186 −2.77934
\(791\) 0 0
\(792\) 43.8411 1.55783
\(793\) 0 0
\(794\) −83.4891 −2.96292
\(795\) 13.1515 0.466436
\(796\) −18.7270 −0.663760
\(797\) −45.2740 −1.60369 −0.801844 0.597533i \(-0.796148\pi\)
−0.801844 + 0.597533i \(0.796148\pi\)
\(798\) 0 0
\(799\) −19.0704 −0.674662
\(800\) 5.85636 0.207054
\(801\) 15.1023 0.533613
\(802\) 6.19766 0.218847
\(803\) −1.55475 −0.0548659
\(804\) 17.7688 0.626658
\(805\) 0 0
\(806\) 0 0
\(807\) 4.74209 0.166929
\(808\) 52.7437 1.85552
\(809\) −1.71154 −0.0601746 −0.0300873 0.999547i \(-0.509579\pi\)
−0.0300873 + 0.999547i \(0.509579\pi\)
\(810\) 30.3712 1.06714
\(811\) 33.5397 1.17774 0.588868 0.808229i \(-0.299574\pi\)
0.588868 + 0.808229i \(0.299574\pi\)
\(812\) 0 0
\(813\) −2.81618 −0.0987678
\(814\) 63.1418 2.21312
\(815\) 31.2096 1.09323
\(816\) 3.25001 0.113773
\(817\) −22.4067 −0.783912
\(818\) 59.1443 2.06793
\(819\) 0 0
\(820\) −2.59836 −0.0907385
\(821\) −10.6944 −0.373237 −0.186619 0.982432i \(-0.559753\pi\)
−0.186619 + 0.982432i \(0.559753\pi\)
\(822\) −31.8552 −1.11108
\(823\) 24.3322 0.848166 0.424083 0.905623i \(-0.360597\pi\)
0.424083 + 0.905623i \(0.360597\pi\)
\(824\) 52.5796 1.83170
\(825\) −5.89372 −0.205193
\(826\) 0 0
\(827\) 38.9990 1.35613 0.678065 0.735002i \(-0.262819\pi\)
0.678065 + 0.735002i \(0.262819\pi\)
\(828\) −17.5116 −0.608569
\(829\) 42.2385 1.46700 0.733502 0.679688i \(-0.237885\pi\)
0.733502 + 0.679688i \(0.237885\pi\)
\(830\) 83.9115 2.91261
\(831\) 2.21887 0.0769718
\(832\) 0 0
\(833\) 0 0
\(834\) 16.2414 0.562395
\(835\) 1.15062 0.0398189
\(836\) 111.028 3.83997
\(837\) 29.0316 1.00348
\(838\) −9.71484 −0.335594
\(839\) 38.5208 1.32989 0.664943 0.746894i \(-0.268456\pi\)
0.664943 + 0.746894i \(0.268456\pi\)
\(840\) 0 0
\(841\) 23.5296 0.811367
\(842\) −65.8983 −2.27100
\(843\) 9.62815 0.331611
\(844\) −67.4248 −2.32086
\(845\) 0 0
\(846\) 48.4337 1.66519
\(847\) 0 0
\(848\) 14.2664 0.489910
\(849\) 3.28295 0.112671
\(850\) 10.5835 0.363012
\(851\) −11.3735 −0.389877
\(852\) −17.3589 −0.594708
\(853\) −16.6794 −0.571090 −0.285545 0.958365i \(-0.592175\pi\)
−0.285545 + 0.958365i \(0.592175\pi\)
\(854\) 0 0
\(855\) 45.0512 1.54072
\(856\) 8.82565 0.301655
\(857\) 13.7073 0.468232 0.234116 0.972209i \(-0.424780\pi\)
0.234116 + 0.972209i \(0.424780\pi\)
\(858\) 0 0
\(859\) 52.5804 1.79402 0.897011 0.442009i \(-0.145734\pi\)
0.897011 + 0.442009i \(0.145734\pi\)
\(860\) 31.4119 1.07114
\(861\) 0 0
\(862\) 56.4656 1.92323
\(863\) −35.2625 −1.20035 −0.600175 0.799868i \(-0.704903\pi\)
−0.600175 + 0.799868i \(0.704903\pi\)
\(864\) 11.8760 0.404028
\(865\) 14.3756 0.488785
\(866\) 66.8710 2.27237
\(867\) 7.98672 0.271243
\(868\) 0 0
\(869\) −55.9546 −1.89813
\(870\) −31.4847 −1.06743
\(871\) 0 0
\(872\) −56.7374 −1.92137
\(873\) −31.7567 −1.07480
\(874\) −30.9793 −1.04789
\(875\) 0 0
\(876\) 0.882943 0.0298319
\(877\) −16.1911 −0.546735 −0.273368 0.961910i \(-0.588138\pi\)
−0.273368 + 0.961910i \(0.588138\pi\)
\(878\) −53.2505 −1.79712
\(879\) −9.41635 −0.317606
\(880\) −23.2701 −0.784434
\(881\) −14.9633 −0.504126 −0.252063 0.967711i \(-0.581109\pi\)
−0.252063 + 0.967711i \(0.581109\pi\)
\(882\) 0 0
\(883\) 17.2375 0.580087 0.290044 0.957013i \(-0.406330\pi\)
0.290044 + 0.957013i \(0.406330\pi\)
\(884\) 0 0
\(885\) 16.5400 0.555986
\(886\) −77.5138 −2.60413
\(887\) 3.54129 0.118905 0.0594524 0.998231i \(-0.481065\pi\)
0.0594524 + 0.998231i \(0.481065\pi\)
\(888\) −16.1704 −0.542644
\(889\) 0 0
\(890\) −37.4545 −1.25548
\(891\) 21.7542 0.728793
\(892\) −32.0539 −1.07324
\(893\) 55.3133 1.85099
\(894\) 10.5003 0.351184
\(895\) −1.42287 −0.0475612
\(896\) 0 0
\(897\) 0 0
\(898\) −15.9198 −0.531251
\(899\) 54.7798 1.82701
\(900\) −17.3522 −0.578406
\(901\) −16.9160 −0.563552
\(902\) −2.88299 −0.0959932
\(903\) 0 0
\(904\) 9.78073 0.325302
\(905\) −28.7960 −0.957211
\(906\) −5.25187 −0.174482
\(907\) −5.56457 −0.184769 −0.0923843 0.995723i \(-0.529449\pi\)
−0.0923843 + 0.995723i \(0.529449\pi\)
\(908\) 30.9582 1.02738
\(909\) 33.9934 1.12749
\(910\) 0 0
\(911\) −19.4554 −0.644587 −0.322293 0.946640i \(-0.604454\pi\)
−0.322293 + 0.946640i \(0.604454\pi\)
\(912\) −9.42658 −0.312145
\(913\) 60.1039 1.98915
\(914\) −78.7191 −2.60380
\(915\) 14.4243 0.476853
\(916\) −84.1020 −2.77881
\(917\) 0 0
\(918\) 21.4621 0.708353
\(919\) 30.1088 0.993198 0.496599 0.867980i \(-0.334582\pi\)
0.496599 + 0.867980i \(0.334582\pi\)
\(920\) 19.5848 0.645692
\(921\) −0.109590 −0.00361112
\(922\) 50.3334 1.65764
\(923\) 0 0
\(924\) 0 0
\(925\) −11.2699 −0.370554
\(926\) 20.8768 0.686054
\(927\) 33.8876 1.11302
\(928\) 22.4088 0.735605
\(929\) 58.2420 1.91086 0.955428 0.295224i \(-0.0953941\pi\)
0.955428 + 0.295224i \(0.0953941\pi\)
\(930\) −32.8334 −1.07665
\(931\) 0 0
\(932\) 53.2399 1.74393
\(933\) −1.40396 −0.0459636
\(934\) 75.3235 2.46466
\(935\) 27.5918 0.902348
\(936\) 0 0
\(937\) −3.88483 −0.126912 −0.0634560 0.997985i \(-0.520212\pi\)
−0.0634560 + 0.997985i \(0.520212\pi\)
\(938\) 0 0
\(939\) −11.0791 −0.361551
\(940\) −77.5435 −2.52919
\(941\) 34.2935 1.11794 0.558968 0.829189i \(-0.311197\pi\)
0.558968 + 0.829189i \(0.311197\pi\)
\(942\) −0.665890 −0.0216959
\(943\) 0.519301 0.0169108
\(944\) 17.9422 0.583968
\(945\) 0 0
\(946\) 34.8529 1.13317
\(947\) 27.1474 0.882171 0.441086 0.897465i \(-0.354594\pi\)
0.441086 + 0.897465i \(0.354594\pi\)
\(948\) 31.7766 1.03206
\(949\) 0 0
\(950\) −30.6973 −0.995952
\(951\) −15.5215 −0.503320
\(952\) 0 0
\(953\) −2.32970 −0.0754663 −0.0377332 0.999288i \(-0.512014\pi\)
−0.0377332 + 0.999288i \(0.512014\pi\)
\(954\) 42.9620 1.39095
\(955\) −12.8728 −0.416554
\(956\) −43.4293 −1.40460
\(957\) −22.5518 −0.728995
\(958\) 88.8041 2.86913
\(959\) 0 0
\(960\) −20.6868 −0.667665
\(961\) 26.1264 0.842786
\(962\) 0 0
\(963\) 5.68815 0.183298
\(964\) 80.8980 2.60555
\(965\) 46.8934 1.50955
\(966\) 0 0
\(967\) 38.2143 1.22889 0.614445 0.788960i \(-0.289380\pi\)
0.614445 + 0.788960i \(0.289380\pi\)
\(968\) −34.9567 −1.12355
\(969\) 11.1773 0.359066
\(970\) 78.7584 2.52878
\(971\) 50.5565 1.62243 0.811217 0.584745i \(-0.198806\pi\)
0.811217 + 0.584745i \(0.198806\pi\)
\(972\) −54.3297 −1.74262
\(973\) 0 0
\(974\) 39.5033 1.26577
\(975\) 0 0
\(976\) 15.6471 0.500852
\(977\) −26.2341 −0.839304 −0.419652 0.907685i \(-0.637848\pi\)
−0.419652 + 0.907685i \(0.637848\pi\)
\(978\) −19.6656 −0.628835
\(979\) −26.8278 −0.857420
\(980\) 0 0
\(981\) −36.5674 −1.16751
\(982\) 31.8720 1.01708
\(983\) −36.9281 −1.17782 −0.588912 0.808197i \(-0.700444\pi\)
−0.588912 + 0.808197i \(0.700444\pi\)
\(984\) 0.738327 0.0235370
\(985\) −6.39318 −0.203704
\(986\) 40.4968 1.28968
\(987\) 0 0
\(988\) 0 0
\(989\) −6.27791 −0.199626
\(990\) −70.0757 −2.22715
\(991\) −24.5679 −0.780425 −0.390213 0.920725i \(-0.627598\pi\)
−0.390213 + 0.920725i \(0.627598\pi\)
\(992\) 23.3687 0.741957
\(993\) 3.77770 0.119882
\(994\) 0 0
\(995\) 13.4985 0.427932
\(996\) −34.1330 −1.08155
\(997\) 24.2418 0.767747 0.383873 0.923386i \(-0.374590\pi\)
0.383873 + 0.923386i \(0.374590\pi\)
\(998\) −14.2865 −0.452232
\(999\) −22.8540 −0.723069
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cu.1.3 24
7.2 even 3 1183.2.e.l.508.22 yes 48
7.4 even 3 1183.2.e.l.170.22 yes 48
7.6 odd 2 8281.2.a.ct.1.3 24
13.12 even 2 8281.2.a.cv.1.22 24
91.25 even 6 1183.2.e.k.170.3 48
91.51 even 6 1183.2.e.k.508.3 yes 48
91.90 odd 2 8281.2.a.cw.1.22 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1183.2.e.k.170.3 48 91.25 even 6
1183.2.e.k.508.3 yes 48 91.51 even 6
1183.2.e.l.170.22 yes 48 7.4 even 3
1183.2.e.l.508.22 yes 48 7.2 even 3
8281.2.a.ct.1.3 24 7.6 odd 2
8281.2.a.cu.1.3 24 1.1 even 1 trivial
8281.2.a.cv.1.22 24 13.12 even 2
8281.2.a.cw.1.22 24 91.90 odd 2