Properties

Label 832.2.ba.d.673.2
Level $832$
Weight $2$
Character 832.673
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.673
Dual form 832.2.ba.d.225.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{3} +3.00000 q^{5} +(1.73205 + 1.00000i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-1.73205 - 3.00000i) q^{11} +(2.50000 - 2.59808i) q^{13} +(5.19615 - 3.00000i) q^{15} +(-1.50000 + 2.59808i) q^{17} +(-1.73205 + 3.00000i) q^{19} +4.00000 q^{21} +(-3.46410 - 6.00000i) q^{23} +4.00000 q^{25} +4.00000i q^{27} +(1.50000 - 0.866025i) q^{29} +4.00000i q^{31} +(-6.00000 - 3.46410i) q^{33} +(5.19615 + 3.00000i) q^{35} +(5.50000 + 9.52628i) q^{37} +(1.73205 - 7.00000i) q^{39} +(-4.50000 + 2.59808i) q^{41} +(-6.92820 - 4.00000i) q^{43} +(1.50000 - 2.59808i) q^{45} -6.00000i q^{47} +(-1.50000 - 2.59808i) q^{49} +6.00000i q^{51} +12.1244i q^{53} +(-5.19615 - 9.00000i) q^{55} +6.92820i q^{57} +(1.73205 - 3.00000i) q^{59} +(1.50000 + 0.866025i) q^{61} +(1.73205 - 1.00000i) q^{63} +(7.50000 - 7.79423i) q^{65} +(-3.46410 - 6.00000i) q^{67} +(-12.0000 - 6.92820i) q^{69} +(-5.19615 - 3.00000i) q^{71} -12.1244i q^{73} +(6.92820 - 4.00000i) q^{75} -6.92820i q^{77} +3.46410 q^{79} +(5.50000 + 9.52628i) q^{81} +6.92820 q^{83} +(-4.50000 + 7.79423i) q^{85} +(1.73205 - 3.00000i) q^{87} +(-6.00000 + 3.46410i) q^{89} +(6.92820 - 2.00000i) q^{91} +(4.00000 + 6.92820i) q^{93} +(-5.19615 + 9.00000i) q^{95} +(12.0000 + 6.92820i) q^{97} -3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{5} + 2 q^{9} + 10 q^{13} - 6 q^{17} + 16 q^{21} + 16 q^{25} + 6 q^{29} - 24 q^{33} + 22 q^{37} - 18 q^{41} + 6 q^{45} - 6 q^{49} + 6 q^{61} + 30 q^{65} - 48 q^{69} + 22 q^{81} - 18 q^{85} - 24 q^{89}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 1.00000i 1.00000 0.577350i 0.0917517 0.995782i \(-0.470753\pi\)
0.908248 + 0.418432i \(0.137420\pi\)
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 1.73205 + 1.00000i 0.654654 + 0.377964i 0.790237 0.612801i \(-0.209957\pi\)
−0.135583 + 0.990766i \(0.543291\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −1.73205 3.00000i −0.522233 0.904534i −0.999665 0.0258656i \(-0.991766\pi\)
0.477432 0.878668i \(-0.341568\pi\)
\(12\) 0 0
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) 0 0
\(15\) 5.19615 3.00000i 1.34164 0.774597i
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) −1.73205 + 3.00000i −0.397360 + 0.688247i −0.993399 0.114708i \(-0.963407\pi\)
0.596040 + 0.802955i \(0.296740\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) −3.46410 6.00000i −0.722315 1.25109i −0.960070 0.279761i \(-0.909745\pi\)
0.237754 0.971325i \(-0.423589\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 1.50000 0.866025i 0.278543 0.160817i −0.354221 0.935162i \(-0.615254\pi\)
0.632764 + 0.774345i \(0.281920\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) −6.00000 3.46410i −1.04447 0.603023i
\(34\) 0 0
\(35\) 5.19615 + 3.00000i 0.878310 + 0.507093i
\(36\) 0 0
\(37\) 5.50000 + 9.52628i 0.904194 + 1.56611i 0.821995 + 0.569495i \(0.192861\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 0 0
\(39\) 1.73205 7.00000i 0.277350 1.12090i
\(40\) 0 0
\(41\) −4.50000 + 2.59808i −0.702782 + 0.405751i −0.808383 0.588657i \(-0.799657\pi\)
0.105601 + 0.994409i \(0.466323\pi\)
\(42\) 0 0
\(43\) −6.92820 4.00000i −1.05654 0.609994i −0.132068 0.991241i \(-0.542162\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) 0 0
\(45\) 1.50000 2.59808i 0.223607 0.387298i
\(46\) 0 0
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) 0 0
\(49\) −1.50000 2.59808i −0.214286 0.371154i
\(50\) 0 0
\(51\) 6.00000i 0.840168i
\(52\) 0 0
\(53\) 12.1244i 1.66541i 0.553718 + 0.832704i \(0.313209\pi\)
−0.553718 + 0.832704i \(0.686791\pi\)
\(54\) 0 0
\(55\) −5.19615 9.00000i −0.700649 1.21356i
\(56\) 0 0
\(57\) 6.92820i 0.917663i
\(58\) 0 0
\(59\) 1.73205 3.00000i 0.225494 0.390567i −0.730974 0.682406i \(-0.760934\pi\)
0.956467 + 0.291839i \(0.0942671\pi\)
\(60\) 0 0
\(61\) 1.50000 + 0.866025i 0.192055 + 0.110883i 0.592944 0.805243i \(-0.297965\pi\)
−0.400889 + 0.916127i \(0.631299\pi\)
\(62\) 0 0
\(63\) 1.73205 1.00000i 0.218218 0.125988i
\(64\) 0 0
\(65\) 7.50000 7.79423i 0.930261 0.966755i
\(66\) 0 0
\(67\) −3.46410 6.00000i −0.423207 0.733017i 0.573044 0.819525i \(-0.305762\pi\)
−0.996251 + 0.0865081i \(0.972429\pi\)
\(68\) 0 0
\(69\) −12.0000 6.92820i −1.44463 0.834058i
\(70\) 0 0
\(71\) −5.19615 3.00000i −0.616670 0.356034i 0.158901 0.987294i \(-0.449205\pi\)
−0.775571 + 0.631260i \(0.782538\pi\)
\(72\) 0 0
\(73\) 12.1244i 1.41905i −0.704681 0.709524i \(-0.748910\pi\)
0.704681 0.709524i \(-0.251090\pi\)
\(74\) 0 0
\(75\) 6.92820 4.00000i 0.800000 0.461880i
\(76\) 0 0
\(77\) 6.92820i 0.789542i
\(78\) 0 0
\(79\) 3.46410 0.389742 0.194871 0.980829i \(-0.437571\pi\)
0.194871 + 0.980829i \(0.437571\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) 6.92820 0.760469 0.380235 0.924890i \(-0.375843\pi\)
0.380235 + 0.924890i \(0.375843\pi\)
\(84\) 0 0
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 0 0
\(87\) 1.73205 3.00000i 0.185695 0.321634i
\(88\) 0 0
\(89\) −6.00000 + 3.46410i −0.635999 + 0.367194i −0.783072 0.621932i \(-0.786348\pi\)
0.147073 + 0.989126i \(0.453015\pi\)
\(90\) 0 0
\(91\) 6.92820 2.00000i 0.726273 0.209657i
\(92\) 0 0
\(93\) 4.00000 + 6.92820i 0.414781 + 0.718421i
\(94\) 0 0
\(95\) −5.19615 + 9.00000i −0.533114 + 0.923381i
\(96\) 0 0
\(97\) 12.0000 + 6.92820i 1.21842 + 0.703452i 0.964579 0.263795i \(-0.0849741\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) −3.46410 −0.348155
\(100\) 0 0
\(101\) 16.5000 9.52628i 1.64181 0.947900i 0.661622 0.749838i \(-0.269868\pi\)
0.980189 0.198063i \(-0.0634650\pi\)
\(102\) 0 0
\(103\) −10.3923 −1.02398 −0.511992 0.858990i \(-0.671092\pi\)
−0.511992 + 0.858990i \(0.671092\pi\)
\(104\) 0 0
\(105\) 12.0000 1.17108
\(106\) 0 0
\(107\) −10.3923 + 6.00000i −1.00466 + 0.580042i −0.909624 0.415432i \(-0.863630\pi\)
−0.0950377 + 0.995474i \(0.530297\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 19.0526 + 11.0000i 1.80839 + 1.04407i
\(112\) 0 0
\(113\) −4.50000 + 7.79423i −0.423324 + 0.733219i −0.996262 0.0863794i \(-0.972470\pi\)
0.572938 + 0.819599i \(0.305804\pi\)
\(114\) 0 0
\(115\) −10.3923 18.0000i −0.969087 1.67851i
\(116\) 0 0
\(117\) −1.00000 3.46410i −0.0924500 0.320256i
\(118\) 0 0
\(119\) −5.19615 + 3.00000i −0.476331 + 0.275010i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −5.19615 + 9.00000i −0.468521 + 0.811503i
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 8.66025 + 15.0000i 0.768473 + 1.33103i 0.938391 + 0.345576i \(0.112317\pi\)
−0.169917 + 0.985458i \(0.554350\pi\)
\(128\) 0 0
\(129\) −16.0000 −1.40872
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −6.00000 + 3.46410i −0.520266 + 0.300376i
\(134\) 0 0
\(135\) 12.0000i 1.03280i
\(136\) 0 0
\(137\) −19.5000 11.2583i −1.66600 0.961864i −0.969763 0.244050i \(-0.921524\pi\)
−0.696235 0.717814i \(-0.745143\pi\)
\(138\) 0 0
\(139\) 17.3205 + 10.0000i 1.46911 + 0.848189i 0.999400 0.0346338i \(-0.0110265\pi\)
0.469706 + 0.882823i \(0.344360\pi\)
\(140\) 0 0
\(141\) −6.00000 10.3923i −0.505291 0.875190i
\(142\) 0 0
\(143\) −12.1244 3.00000i −1.01389 0.250873i
\(144\) 0 0
\(145\) 4.50000 2.59808i 0.373705 0.215758i
\(146\) 0 0
\(147\) −5.19615 3.00000i −0.428571 0.247436i
\(148\) 0 0
\(149\) 7.50000 12.9904i 0.614424 1.06421i −0.376061 0.926595i \(-0.622722\pi\)
0.990485 0.137619i \(-0.0439449\pi\)
\(150\) 0 0
\(151\) 4.00000i 0.325515i −0.986666 0.162758i \(-0.947961\pi\)
0.986666 0.162758i \(-0.0520389\pi\)
\(152\) 0 0
\(153\) 1.50000 + 2.59808i 0.121268 + 0.210042i
\(154\) 0 0
\(155\) 12.0000i 0.963863i
\(156\) 0 0
\(157\) 1.73205i 0.138233i −0.997609 0.0691164i \(-0.977982\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) 0 0
\(159\) 12.1244 + 21.0000i 0.961524 + 1.66541i
\(160\) 0 0
\(161\) 13.8564i 1.09204i
\(162\) 0 0
\(163\) −10.3923 + 18.0000i −0.813988 + 1.40987i 0.0960641 + 0.995375i \(0.469375\pi\)
−0.910052 + 0.414494i \(0.863959\pi\)
\(164\) 0 0
\(165\) −18.0000 10.3923i −1.40130 0.809040i
\(166\) 0 0
\(167\) 5.19615 3.00000i 0.402090 0.232147i −0.285295 0.958440i \(-0.592092\pi\)
0.687386 + 0.726293i \(0.258758\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) 1.73205 + 3.00000i 0.132453 + 0.229416i
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 6.92820 + 4.00000i 0.523723 + 0.302372i
\(176\) 0 0
\(177\) 6.92820i 0.520756i
\(178\) 0 0
\(179\) 10.3923 6.00000i 0.776757 0.448461i −0.0585225 0.998286i \(-0.518639\pi\)
0.835280 + 0.549825i \(0.185306\pi\)
\(180\) 0 0
\(181\) 1.73205i 0.128742i −0.997926 0.0643712i \(-0.979496\pi\)
0.997926 0.0643712i \(-0.0205042\pi\)
\(182\) 0 0
\(183\) 3.46410 0.256074
\(184\) 0 0
\(185\) 16.5000 + 28.5788i 1.21310 + 2.10116i
\(186\) 0 0
\(187\) 10.3923 0.759961
\(188\) 0 0
\(189\) −4.00000 + 6.92820i −0.290957 + 0.503953i
\(190\) 0 0
\(191\) −6.92820 + 12.0000i −0.501307 + 0.868290i 0.498692 + 0.866779i \(0.333814\pi\)
−0.999999 + 0.00151007i \(0.999519\pi\)
\(192\) 0 0
\(193\) −13.5000 + 7.79423i −0.971751 + 0.561041i −0.899770 0.436365i \(-0.856266\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 5.19615 21.0000i 0.372104 1.50384i
\(196\) 0 0
\(197\) −3.00000 5.19615i −0.213741 0.370211i 0.739141 0.673550i \(-0.235232\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(198\) 0 0
\(199\) −13.8564 + 24.0000i −0.982255 + 1.70131i −0.328702 + 0.944434i \(0.606611\pi\)
−0.653552 + 0.756881i \(0.726722\pi\)
\(200\) 0 0
\(201\) −12.0000 6.92820i −0.846415 0.488678i
\(202\) 0 0
\(203\) 3.46410 0.243132
\(204\) 0 0
\(205\) −13.5000 + 7.79423i −0.942881 + 0.544373i
\(206\) 0 0
\(207\) −6.92820 −0.481543
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −6.92820 + 4.00000i −0.476957 + 0.275371i −0.719148 0.694857i \(-0.755467\pi\)
0.242190 + 0.970229i \(0.422134\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) −20.7846 12.0000i −1.41750 0.818393i
\(216\) 0 0
\(217\) −4.00000 + 6.92820i −0.271538 + 0.470317i
\(218\) 0 0
\(219\) −12.1244 21.0000i −0.819288 1.41905i
\(220\) 0 0
\(221\) 3.00000 + 10.3923i 0.201802 + 0.699062i
\(222\) 0 0
\(223\) 6.92820 4.00000i 0.463947 0.267860i −0.249756 0.968309i \(-0.580350\pi\)
0.713702 + 0.700449i \(0.247017\pi\)
\(224\) 0 0
\(225\) 2.00000 3.46410i 0.133333 0.230940i
\(226\) 0 0
\(227\) −5.19615 + 9.00000i −0.344881 + 0.597351i −0.985332 0.170648i \(-0.945414\pi\)
0.640451 + 0.767999i \(0.278747\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) −6.92820 12.0000i −0.455842 0.789542i
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 18.0000i 1.17419i
\(236\) 0 0
\(237\) 6.00000 3.46410i 0.389742 0.225018i
\(238\) 0 0
\(239\) 6.00000i 0.388108i −0.980991 0.194054i \(-0.937836\pi\)
0.980991 0.194054i \(-0.0621637\pi\)
\(240\) 0 0
\(241\) −10.5000 6.06218i −0.676364 0.390499i 0.122119 0.992515i \(-0.461031\pi\)
−0.798484 + 0.602016i \(0.794364\pi\)
\(242\) 0 0
\(243\) 8.66025 + 5.00000i 0.555556 + 0.320750i
\(244\) 0 0
\(245\) −4.50000 7.79423i −0.287494 0.497955i
\(246\) 0 0
\(247\) 3.46410 + 12.0000i 0.220416 + 0.763542i
\(248\) 0 0
\(249\) 12.0000 6.92820i 0.760469 0.439057i
\(250\) 0 0
\(251\) −10.3923 6.00000i −0.655956 0.378717i 0.134778 0.990876i \(-0.456968\pi\)
−0.790735 + 0.612159i \(0.790301\pi\)
\(252\) 0 0
\(253\) −12.0000 + 20.7846i −0.754434 + 1.30672i
\(254\) 0 0
\(255\) 18.0000i 1.12720i
\(256\) 0 0
\(257\) 4.50000 + 7.79423i 0.280702 + 0.486191i 0.971558 0.236802i \(-0.0760993\pi\)
−0.690856 + 0.722993i \(0.742766\pi\)
\(258\) 0 0
\(259\) 22.0000i 1.36701i
\(260\) 0 0
\(261\) 1.73205i 0.107211i
\(262\) 0 0
\(263\) −13.8564 24.0000i −0.854423 1.47990i −0.877180 0.480162i \(-0.840578\pi\)
0.0227570 0.999741i \(-0.492756\pi\)
\(264\) 0 0
\(265\) 36.3731i 2.23438i
\(266\) 0 0
\(267\) −6.92820 + 12.0000i −0.423999 + 0.734388i
\(268\) 0 0
\(269\) 6.00000 + 3.46410i 0.365826 + 0.211210i 0.671634 0.740883i \(-0.265593\pi\)
−0.305807 + 0.952093i \(0.598926\pi\)
\(270\) 0 0
\(271\) −1.73205 + 1.00000i −0.105215 + 0.0607457i −0.551684 0.834053i \(-0.686015\pi\)
0.446469 + 0.894799i \(0.352681\pi\)
\(272\) 0 0
\(273\) 10.0000 10.3923i 0.605228 0.628971i
\(274\) 0 0
\(275\) −6.92820 12.0000i −0.417786 0.723627i
\(276\) 0 0
\(277\) −4.50000 2.59808i −0.270379 0.156103i 0.358681 0.933460i \(-0.383227\pi\)
−0.629060 + 0.777357i \(0.716560\pi\)
\(278\) 0 0
\(279\) 3.46410 + 2.00000i 0.207390 + 0.119737i
\(280\) 0 0
\(281\) 22.5167i 1.34323i −0.740900 0.671616i \(-0.765601\pi\)
0.740900 0.671616i \(-0.234399\pi\)
\(282\) 0 0
\(283\) 12.1244 7.00000i 0.720718 0.416107i −0.0942988 0.995544i \(-0.530061\pi\)
0.815017 + 0.579437i \(0.196728\pi\)
\(284\) 0 0
\(285\) 20.7846i 1.23117i
\(286\) 0 0
\(287\) −10.3923 −0.613438
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 27.7128 1.62455
\(292\) 0 0
\(293\) 1.50000 2.59808i 0.0876309 0.151781i −0.818878 0.573967i \(-0.805404\pi\)
0.906509 + 0.422186i \(0.138737\pi\)
\(294\) 0 0
\(295\) 5.19615 9.00000i 0.302532 0.524000i
\(296\) 0 0
\(297\) 12.0000 6.92820i 0.696311 0.402015i
\(298\) 0 0
\(299\) −24.2487 6.00000i −1.40234 0.346989i
\(300\) 0 0
\(301\) −8.00000 13.8564i −0.461112 0.798670i
\(302\) 0 0
\(303\) 19.0526 33.0000i 1.09454 1.89580i
\(304\) 0 0
\(305\) 4.50000 + 2.59808i 0.257669 + 0.148765i
\(306\) 0 0
\(307\) 13.8564 0.790827 0.395413 0.918503i \(-0.370601\pi\)
0.395413 + 0.918503i \(0.370601\pi\)
\(308\) 0 0
\(309\) −18.0000 + 10.3923i −1.02398 + 0.591198i
\(310\) 0 0
\(311\) 24.2487 1.37502 0.687509 0.726176i \(-0.258704\pi\)
0.687509 + 0.726176i \(0.258704\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 5.19615 3.00000i 0.292770 0.169031i
\(316\) 0 0
\(317\) 15.0000 0.842484 0.421242 0.906948i \(-0.361594\pi\)
0.421242 + 0.906948i \(0.361594\pi\)
\(318\) 0 0
\(319\) −5.19615 3.00000i −0.290929 0.167968i
\(320\) 0 0
\(321\) −12.0000 + 20.7846i −0.669775 + 1.16008i
\(322\) 0 0
\(323\) −5.19615 9.00000i −0.289122 0.500773i
\(324\) 0 0
\(325\) 10.0000 10.3923i 0.554700 0.576461i
\(326\) 0 0
\(327\) −17.3205 + 10.0000i −0.957826 + 0.553001i
\(328\) 0 0
\(329\) 6.00000 10.3923i 0.330791 0.572946i
\(330\) 0 0
\(331\) −3.46410 + 6.00000i −0.190404 + 0.329790i −0.945384 0.325958i \(-0.894313\pi\)
0.754980 + 0.655748i \(0.227647\pi\)
\(332\) 0 0
\(333\) 11.0000 0.602796
\(334\) 0 0
\(335\) −10.3923 18.0000i −0.567792 0.983445i
\(336\) 0 0
\(337\) −31.0000 −1.68868 −0.844339 0.535810i \(-0.820006\pi\)
−0.844339 + 0.535810i \(0.820006\pi\)
\(338\) 0 0
\(339\) 18.0000i 0.977626i
\(340\) 0 0
\(341\) 12.0000 6.92820i 0.649836 0.375183i
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) −36.0000 20.7846i −1.93817 1.11901i
\(346\) 0 0
\(347\) 10.3923 + 6.00000i 0.557888 + 0.322097i 0.752297 0.658824i \(-0.228946\pi\)
−0.194409 + 0.980921i \(0.562279\pi\)
\(348\) 0 0
\(349\) 11.0000 + 19.0526i 0.588817 + 1.01986i 0.994388 + 0.105797i \(0.0337393\pi\)
−0.405571 + 0.914063i \(0.632927\pi\)
\(350\) 0 0
\(351\) 10.3923 + 10.0000i 0.554700 + 0.533761i
\(352\) 0 0
\(353\) −1.50000 + 0.866025i −0.0798369 + 0.0460939i −0.539387 0.842058i \(-0.681344\pi\)
0.459550 + 0.888152i \(0.348011\pi\)
\(354\) 0 0
\(355\) −15.5885 9.00000i −0.827349 0.477670i
\(356\) 0 0
\(357\) −6.00000 + 10.3923i −0.317554 + 0.550019i
\(358\) 0 0
\(359\) 12.0000i 0.633336i 0.948536 + 0.316668i \(0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(360\) 0 0
\(361\) 3.50000 + 6.06218i 0.184211 + 0.319062i
\(362\) 0 0
\(363\) 2.00000i 0.104973i
\(364\) 0 0
\(365\) 36.3731i 1.90385i
\(366\) 0 0
\(367\) 13.8564 + 24.0000i 0.723299 + 1.25279i 0.959671 + 0.281127i \(0.0907083\pi\)
−0.236372 + 0.971663i \(0.575958\pi\)
\(368\) 0 0
\(369\) 5.19615i 0.270501i
\(370\) 0 0
\(371\) −12.1244 + 21.0000i −0.629465 + 1.09027i
\(372\) 0 0
\(373\) 31.5000 + 18.1865i 1.63101 + 0.941663i 0.983783 + 0.179364i \(0.0574041\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) 0 0
\(375\) −5.19615 + 3.00000i −0.268328 + 0.154919i
\(376\) 0 0
\(377\) 1.50000 6.06218i 0.0772539 0.312218i
\(378\) 0 0
\(379\) 8.66025 + 15.0000i 0.444847 + 0.770498i 0.998042 0.0625541i \(-0.0199246\pi\)
−0.553194 + 0.833052i \(0.686591\pi\)
\(380\) 0 0
\(381\) 30.0000 + 17.3205i 1.53695 + 0.887357i
\(382\) 0 0
\(383\) −20.7846 12.0000i −1.06204 0.613171i −0.136047 0.990702i \(-0.543440\pi\)
−0.925997 + 0.377531i \(0.876773\pi\)
\(384\) 0 0
\(385\) 20.7846i 1.05928i
\(386\) 0 0
\(387\) −6.92820 + 4.00000i −0.352180 + 0.203331i
\(388\) 0 0
\(389\) 25.9808i 1.31728i −0.752460 0.658638i \(-0.771133\pi\)
0.752460 0.658638i \(-0.228867\pi\)
\(390\) 0 0
\(391\) 20.7846 1.05112
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.3923 0.522894
\(396\) 0 0
\(397\) 19.0000 32.9090i 0.953583 1.65165i 0.216004 0.976392i \(-0.430698\pi\)
0.737579 0.675261i \(-0.235969\pi\)
\(398\) 0 0
\(399\) −6.92820 + 12.0000i −0.346844 + 0.600751i
\(400\) 0 0
\(401\) 7.50000 4.33013i 0.374532 0.216236i −0.300904 0.953654i \(-0.597289\pi\)
0.675437 + 0.737418i \(0.263955\pi\)
\(402\) 0 0
\(403\) 10.3923 + 10.0000i 0.517678 + 0.498135i
\(404\) 0 0
\(405\) 16.5000 + 28.5788i 0.819892 + 1.42009i
\(406\) 0 0
\(407\) 19.0526 33.0000i 0.944400 1.63575i
\(408\) 0 0
\(409\) −4.50000 2.59808i −0.222511 0.128467i 0.384602 0.923083i \(-0.374339\pi\)
−0.607112 + 0.794616i \(0.707672\pi\)
\(410\) 0 0
\(411\) −45.0333 −2.22133
\(412\) 0 0
\(413\) 6.00000 3.46410i 0.295241 0.170457i
\(414\) 0 0
\(415\) 20.7846 1.02028
\(416\) 0 0
\(417\) 40.0000 1.95881
\(418\) 0 0
\(419\) 31.1769 18.0000i 1.52309 0.879358i 0.523465 0.852047i \(-0.324639\pi\)
0.999627 0.0273103i \(-0.00869423\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 0 0
\(423\) −5.19615 3.00000i −0.252646 0.145865i
\(424\) 0 0
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) 1.73205 + 3.00000i 0.0838198 + 0.145180i
\(428\) 0 0
\(429\) −24.0000 + 6.92820i −1.15873 + 0.334497i
\(430\) 0 0
\(431\) 20.7846 12.0000i 1.00116 0.578020i 0.0925683 0.995706i \(-0.470492\pi\)
0.908591 + 0.417687i \(0.137159\pi\)
\(432\) 0 0
\(433\) 3.50000 6.06218i 0.168199 0.291330i −0.769588 0.638541i \(-0.779538\pi\)
0.937787 + 0.347212i \(0.112871\pi\)
\(434\) 0 0
\(435\) 5.19615 9.00000i 0.249136 0.431517i
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 13.8564 + 24.0000i 0.661330 + 1.14546i 0.980266 + 0.197681i \(0.0633411\pi\)
−0.318936 + 0.947776i \(0.603326\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 24.0000i 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 0 0
\(445\) −18.0000 + 10.3923i −0.853282 + 0.492642i
\(446\) 0 0
\(447\) 30.0000i 1.41895i
\(448\) 0 0
\(449\) −18.0000 10.3923i −0.849473 0.490443i 0.0110003 0.999939i \(-0.496498\pi\)
−0.860473 + 0.509496i \(0.829832\pi\)
\(450\) 0 0
\(451\) 15.5885 + 9.00000i 0.734032 + 0.423793i
\(452\) 0 0
\(453\) −4.00000 6.92820i −0.187936 0.325515i
\(454\) 0 0
\(455\) 20.7846 6.00000i 0.974398 0.281284i
\(456\) 0 0
\(457\) −16.5000 + 9.52628i −0.771837 + 0.445621i −0.833530 0.552475i \(-0.813684\pi\)
0.0616922 + 0.998095i \(0.480350\pi\)
\(458\) 0 0
\(459\) −10.3923 6.00000i −0.485071 0.280056i
\(460\) 0 0
\(461\) 7.50000 12.9904i 0.349310 0.605022i −0.636817 0.771015i \(-0.719749\pi\)
0.986127 + 0.165992i \(0.0530827\pi\)
\(462\) 0 0
\(463\) 32.0000i 1.48717i −0.668644 0.743583i \(-0.733125\pi\)
0.668644 0.743583i \(-0.266875\pi\)
\(464\) 0 0
\(465\) 12.0000 + 20.7846i 0.556487 + 0.963863i
\(466\) 0 0
\(467\) 6.00000i 0.277647i 0.990317 + 0.138823i \(0.0443321\pi\)
−0.990317 + 0.138823i \(0.955668\pi\)
\(468\) 0 0
\(469\) 13.8564i 0.639829i
\(470\) 0 0
\(471\) −1.73205 3.00000i −0.0798087 0.138233i
\(472\) 0 0
\(473\) 27.7128i 1.27424i
\(474\) 0 0
\(475\) −6.92820 + 12.0000i −0.317888 + 0.550598i
\(476\) 0 0
\(477\) 10.5000 + 6.06218i 0.480762 + 0.277568i
\(478\) 0 0
\(479\) −25.9808 + 15.0000i −1.18709 + 0.685367i −0.957644 0.287954i \(-0.907025\pi\)
−0.229447 + 0.973321i \(0.573692\pi\)
\(480\) 0 0
\(481\) 38.5000 + 9.52628i 1.75545 + 0.434361i
\(482\) 0 0
\(483\) −13.8564 24.0000i −0.630488 1.09204i
\(484\) 0 0
\(485\) 36.0000 + 20.7846i 1.63468 + 0.943781i
\(486\) 0 0
\(487\) 13.8564 + 8.00000i 0.627894 + 0.362515i 0.779936 0.625859i \(-0.215252\pi\)
−0.152042 + 0.988374i \(0.548585\pi\)
\(488\) 0 0
\(489\) 41.5692i 1.87983i
\(490\) 0 0
\(491\) 20.7846 12.0000i 0.937996 0.541552i 0.0486647 0.998815i \(-0.484503\pi\)
0.889332 + 0.457263i \(0.151170\pi\)
\(492\) 0 0
\(493\) 5.19615i 0.234023i
\(494\) 0 0
\(495\) −10.3923 −0.467099
\(496\) 0 0
\(497\) −6.00000 10.3923i −0.269137 0.466159i
\(498\) 0 0
\(499\) −10.3923 −0.465223 −0.232612 0.972570i \(-0.574727\pi\)
−0.232612 + 0.972570i \(0.574727\pi\)
\(500\) 0 0
\(501\) 6.00000 10.3923i 0.268060 0.464294i
\(502\) 0 0
\(503\) 6.92820 12.0000i 0.308913 0.535054i −0.669212 0.743072i \(-0.733368\pi\)
0.978125 + 0.208018i \(0.0667014\pi\)
\(504\) 0 0
\(505\) 49.5000 28.5788i 2.20272 1.27174i
\(506\) 0 0
\(507\) −13.8564 22.0000i −0.615385 0.977054i
\(508\) 0 0
\(509\) −7.50000 12.9904i −0.332432 0.575789i 0.650556 0.759458i \(-0.274536\pi\)
−0.982988 + 0.183669i \(0.941202\pi\)
\(510\) 0 0
\(511\) 12.1244 21.0000i 0.536350 0.928985i
\(512\) 0 0
\(513\) −12.0000 6.92820i −0.529813 0.305888i
\(514\) 0 0
\(515\) −31.1769 −1.37382
\(516\) 0 0
\(517\) −18.0000 + 10.3923i −0.791639 + 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) 22.5167 13.0000i 0.984585 0.568450i 0.0809336 0.996719i \(-0.474210\pi\)
0.903651 + 0.428269i \(0.140876\pi\)
\(524\) 0 0
\(525\) 16.0000 0.698297
\(526\) 0 0
\(527\) −10.3923 6.00000i −0.452696 0.261364i
\(528\) 0 0
\(529\) −12.5000 + 21.6506i −0.543478 + 0.941332i
\(530\) 0 0
\(531\) −1.73205 3.00000i −0.0751646 0.130189i
\(532\) 0 0
\(533\) −4.50000 + 18.1865i −0.194917 + 0.787746i
\(534\) 0 0
\(535\) −31.1769 + 18.0000i −1.34790 + 0.778208i
\(536\) 0 0
\(537\) 12.0000 20.7846i 0.517838 0.896922i
\(538\) 0 0
\(539\) −5.19615 + 9.00000i −0.223814 + 0.387657i
\(540\) 0 0
\(541\) −11.0000 −0.472927 −0.236463 0.971640i \(-0.575988\pi\)
−0.236463 + 0.971640i \(0.575988\pi\)
\(542\) 0 0
\(543\) −1.73205 3.00000i −0.0743294 0.128742i
\(544\) 0 0
\(545\) −30.0000 −1.28506
\(546\) 0 0
\(547\) 26.0000i 1.11168i −0.831289 0.555840i \(-0.812397\pi\)
0.831289 0.555840i \(-0.187603\pi\)
\(548\) 0 0
\(549\) 1.50000 0.866025i 0.0640184 0.0369611i
\(550\) 0 0
\(551\) 6.00000i 0.255609i
\(552\) 0 0
\(553\) 6.00000 + 3.46410i 0.255146 + 0.147309i
\(554\) 0 0
\(555\) 57.1577 + 33.0000i 2.42621 + 1.40077i
\(556\) 0 0
\(557\) −16.5000 28.5788i −0.699127 1.21092i −0.968769 0.247964i \(-0.920239\pi\)
0.269642 0.962961i \(-0.413095\pi\)
\(558\) 0 0
\(559\) −27.7128 + 8.00000i −1.17213 + 0.338364i
\(560\) 0 0
\(561\) 18.0000 10.3923i 0.759961 0.438763i
\(562\) 0 0
\(563\) 25.9808 + 15.0000i 1.09496 + 0.632175i 0.934892 0.354932i \(-0.115496\pi\)
0.160066 + 0.987106i \(0.448829\pi\)
\(564\) 0 0
\(565\) −13.5000 + 23.3827i −0.567949 + 0.983717i
\(566\) 0 0
\(567\) 22.0000i 0.923913i
\(568\) 0 0
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) 2.00000i 0.0836974i 0.999124 + 0.0418487i \(0.0133247\pi\)
−0.999124 + 0.0418487i \(0.986675\pi\)
\(572\) 0 0
\(573\) 27.7128i 1.15772i
\(574\) 0 0
\(575\) −13.8564 24.0000i −0.577852 1.00087i
\(576\) 0 0
\(577\) 8.66025i 0.360531i −0.983618 0.180266i \(-0.942304\pi\)
0.983618 0.180266i \(-0.0576957\pi\)
\(578\) 0 0
\(579\) −15.5885 + 27.0000i −0.647834 + 1.12208i
\(580\) 0 0
\(581\) 12.0000 + 6.92820i 0.497844 + 0.287430i
\(582\) 0 0
\(583\) 36.3731 21.0000i 1.50642 0.869731i
\(584\) 0 0
\(585\) −3.00000 10.3923i −0.124035 0.429669i
\(586\) 0 0
\(587\) −3.46410 6.00000i −0.142979 0.247647i 0.785638 0.618686i \(-0.212335\pi\)
−0.928617 + 0.371040i \(0.879001\pi\)
\(588\) 0 0
\(589\) −12.0000 6.92820i −0.494451 0.285472i
\(590\) 0 0
\(591\) −10.3923 6.00000i −0.427482 0.246807i
\(592\) 0 0
\(593\) 22.5167i 0.924648i −0.886711 0.462324i \(-0.847016\pi\)
0.886711 0.462324i \(-0.152984\pi\)
\(594\) 0 0
\(595\) −15.5885 + 9.00000i −0.639064 + 0.368964i
\(596\) 0 0
\(597\) 55.4256i 2.26842i
\(598\) 0 0
\(599\) −20.7846 −0.849236 −0.424618 0.905373i \(-0.639592\pi\)
−0.424618 + 0.905373i \(0.639592\pi\)
\(600\) 0 0
\(601\) −3.50000 6.06218i −0.142768 0.247281i 0.785770 0.618519i \(-0.212267\pi\)
−0.928538 + 0.371237i \(0.878934\pi\)
\(602\) 0 0
\(603\) −6.92820 −0.282138
\(604\) 0 0
\(605\) −1.50000 + 2.59808i −0.0609837 + 0.105627i
\(606\) 0 0
\(607\) 19.0526 33.0000i 0.773320 1.33943i −0.162415 0.986723i \(-0.551928\pi\)
0.935734 0.352706i \(-0.114738\pi\)
\(608\) 0 0
\(609\) 6.00000 3.46410i 0.243132 0.140372i
\(610\) 0 0
\(611\) −15.5885 15.0000i −0.630641 0.606835i
\(612\) 0 0
\(613\) −12.5000 21.6506i −0.504870 0.874461i −0.999984 0.00563283i \(-0.998207\pi\)
0.495114 0.868828i \(-0.335126\pi\)
\(614\) 0 0
\(615\) −15.5885 + 27.0000i −0.628587 + 1.08875i
\(616\) 0 0
\(617\) −4.50000 2.59808i −0.181163 0.104595i 0.406676 0.913573i \(-0.366688\pi\)
−0.587839 + 0.808978i \(0.700021\pi\)
\(618\) 0 0
\(619\) −10.3923 −0.417702 −0.208851 0.977947i \(-0.566972\pi\)
−0.208851 + 0.977947i \(0.566972\pi\)
\(620\) 0 0
\(621\) 24.0000 13.8564i 0.963087 0.556038i
\(622\) 0 0
\(623\) −13.8564 −0.555145
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 20.7846 12.0000i 0.830057 0.479234i
\(628\) 0 0
\(629\) −33.0000 −1.31580
\(630\) 0 0
\(631\) −17.3205 10.0000i −0.689519 0.398094i 0.113913 0.993491i \(-0.463661\pi\)
−0.803432 + 0.595397i \(0.796995\pi\)
\(632\) 0 0
\(633\) −8.00000 + 13.8564i −0.317971 + 0.550743i
\(634\) 0 0
\(635\) 25.9808 + 45.0000i 1.03102 + 1.78577i
\(636\) 0 0
\(637\) −10.5000 2.59808i −0.416025 0.102940i
\(638\) 0 0
\(639\) −5.19615 + 3.00000i −0.205557 + 0.118678i
\(640\) 0 0
\(641\) −13.5000 + 23.3827i −0.533218 + 0.923561i 0.466029 + 0.884769i \(0.345684\pi\)
−0.999247 + 0.0387913i \(0.987649\pi\)
\(642\) 0 0
\(643\) 1.73205 3.00000i 0.0683054 0.118308i −0.829850 0.557986i \(-0.811574\pi\)
0.898155 + 0.439678i \(0.144907\pi\)
\(644\) 0 0
\(645\) −48.0000 −1.89000
\(646\) 0 0
\(647\) 3.46410 + 6.00000i 0.136188 + 0.235884i 0.926051 0.377399i \(-0.123182\pi\)
−0.789863 + 0.613284i \(0.789848\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) 16.0000i 0.627089i
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −10.5000 6.06218i −0.409644 0.236508i
\(658\) 0 0
\(659\) −31.1769 18.0000i −1.21448 0.701180i −0.250748 0.968052i \(-0.580677\pi\)
−0.963732 + 0.266872i \(0.914010\pi\)
\(660\) 0 0
\(661\) 0.500000 + 0.866025i 0.0194477 + 0.0336845i 0.875585 0.483063i \(-0.160476\pi\)
−0.856138 + 0.516748i \(0.827143\pi\)
\(662\) 0 0
\(663\) 15.5885 + 15.0000i 0.605406 + 0.582552i
\(664\) 0 0
\(665\) −18.0000 + 10.3923i −0.698010 + 0.402996i
\(666\) 0 0
\(667\) −10.3923 6.00000i −0.402392 0.232321i
\(668\) 0 0
\(669\) 8.00000 13.8564i 0.309298 0.535720i
\(670\) 0 0
\(671\) 6.00000i 0.231627i
\(672\) 0 0
\(673\) 20.5000 + 35.5070i 0.790217 + 1.36870i 0.925832 + 0.377934i \(0.123365\pi\)
−0.135615 + 0.990762i \(0.543301\pi\)
\(674\) 0 0
\(675\) 16.0000i 0.615840i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 13.8564 + 24.0000i 0.531760 + 0.921035i
\(680\) 0 0
\(681\) 20.7846i 0.796468i
\(682\) 0 0
\(683\) −24.2487 + 42.0000i −0.927851 + 1.60709i −0.140941 + 0.990018i \(0.545013\pi\)
−0.786910 + 0.617067i \(0.788321\pi\)
\(684\) 0 0
\(685\) −58.5000 33.7750i −2.23517 1.29048i
\(686\) 0 0
\(687\) −17.3205 + 10.0000i −0.660819 + 0.381524i
\(688\) 0 0
\(689\) 31.5000 + 30.3109i 1.20005 + 1.15475i
\(690\) 0 0
\(691\) −12.1244 21.0000i −0.461232 0.798878i 0.537790 0.843079i \(-0.319259\pi\)
−0.999023 + 0.0442009i \(0.985926\pi\)
\(692\) 0 0
\(693\) −6.00000 3.46410i −0.227921 0.131590i
\(694\) 0 0
\(695\) 51.9615 + 30.0000i 1.97101 + 1.13796i
\(696\) 0 0
\(697\) 15.5885i 0.590455i
\(698\) 0 0
\(699\) 31.1769 18.0000i 1.17922 0.680823i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −38.1051 −1.43716
\(704\) 0 0
\(705\) −18.0000 31.1769i −0.677919 1.17419i
\(706\) 0 0
\(707\) 38.1051 1.43309
\(708\) 0 0
\(709\) −9.50000 + 16.4545i −0.356780 + 0.617961i −0.987421 0.158114i \(-0.949459\pi\)
0.630641 + 0.776075i \(0.282792\pi\)
\(710\) 0 0
\(711\) 1.73205 3.00000i 0.0649570 0.112509i
\(712\) 0 0
\(713\) 24.0000 13.8564i 0.898807 0.518927i
\(714\) 0 0
\(715\) −36.3731 9.00000i −1.36028 0.336581i
\(716\) 0 0
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) 0 0
\(719\) −8.66025 + 15.0000i −0.322973 + 0.559406i −0.981100 0.193501i \(-0.938016\pi\)
0.658127 + 0.752907i \(0.271349\pi\)
\(720\) 0 0
\(721\) −18.0000 10.3923i −0.670355 0.387030i
\(722\) 0 0
\(723\) −24.2487 −0.901819
\(724\) 0 0
\(725\) 6.00000 3.46410i 0.222834 0.128654i
\(726\) 0 0
\(727\) −17.3205 −0.642382 −0.321191 0.947014i \(-0.604083\pi\)
−0.321191 + 0.947014i \(0.604083\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 20.7846 12.0000i 0.768747 0.443836i
\(732\) 0 0
\(733\) 31.0000 1.14501 0.572506 0.819901i \(-0.305971\pi\)
0.572506 + 0.819901i \(0.305971\pi\)
\(734\) 0 0
\(735\) −15.5885 9.00000i −0.574989 0.331970i
\(736\) 0 0
\(737\) −12.0000 + 20.7846i −0.442026 + 0.765611i
\(738\) 0 0
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 0 0
\(741\) 18.0000 + 17.3205i 0.661247 + 0.636285i
\(742\) 0 0
\(743\) 20.7846 12.0000i 0.762513 0.440237i −0.0676840 0.997707i \(-0.521561\pi\)
0.830197 + 0.557470i \(0.188228\pi\)
\(744\) 0 0
\(745\) 22.5000 38.9711i 0.824336 1.42779i
\(746\) 0 0
\(747\) 3.46410 6.00000i 0.126745 0.219529i
\(748\) 0 0
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) 24.2487 + 42.0000i 0.884848 + 1.53260i 0.845888 + 0.533361i \(0.179071\pi\)
0.0389603 + 0.999241i \(0.487595\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) 0 0
\(755\) 12.0000i 0.436725i
\(756\) 0 0
\(757\) 12.0000 6.92820i 0.436147 0.251810i −0.265815 0.964024i \(-0.585641\pi\)
0.701962 + 0.712214i \(0.252308\pi\)
\(758\) 0 0
\(759\) 48.0000i 1.74229i
\(760\) 0 0
\(761\) 6.00000 + 3.46410i 0.217500 + 0.125574i 0.604792 0.796383i \(-0.293256\pi\)
−0.387292 + 0.921957i \(0.626590\pi\)
\(762\) 0 0
\(763\) −17.3205 10.0000i −0.627044 0.362024i
\(764\) 0 0
\(765\) 4.50000 + 7.79423i 0.162698 + 0.281801i
\(766\) 0 0
\(767\) −3.46410 12.0000i −0.125081 0.433295i
\(768\) 0 0
\(769\) 42.0000 24.2487i 1.51456 0.874431i 0.514704 0.857368i \(-0.327902\pi\)
0.999854 0.0170631i \(-0.00543163\pi\)
\(770\) 0 0
\(771\) 15.5885 + 9.00000i 0.561405 + 0.324127i
\(772\) 0 0
\(773\) 15.0000 25.9808i 0.539513 0.934463i −0.459418 0.888220i \(-0.651942\pi\)
0.998930 0.0462427i \(-0.0147248\pi\)
\(774\) 0 0
\(775\) 16.0000i 0.574737i
\(776\) 0 0
\(777\) 22.0000 + 38.1051i 0.789246 + 1.36701i
\(778\) 0 0
\(779\) 18.0000i 0.644917i
\(780\) 0 0
\(781\) 20.7846i 0.743732i
\(782\) 0 0
\(783\) 3.46410 + 6.00000i 0.123797 + 0.214423i
\(784\) 0 0
\(785\) 5.19615i 0.185459i
\(786\) 0 0
\(787\) −6.92820 + 12.0000i −0.246964 + 0.427754i −0.962682 0.270635i \(-0.912766\pi\)
0.715718 + 0.698389i \(0.246100\pi\)
\(788\) 0 0
\(789\) −48.0000 27.7128i −1.70885 0.986602i
\(790\) 0 0
\(791\) −15.5885 + 9.00000i −0.554262 + 0.320003i
\(792\) 0 0
\(793\) 6.00000 1.73205i 0.213066 0.0615069i
\(794\) 0 0
\(795\) 36.3731 + 63.0000i 1.29002 + 2.23438i
\(796\) 0 0
\(797\) −6.00000 3.46410i −0.212531 0.122705i 0.389956 0.920833i \(-0.372490\pi\)
−0.602487 + 0.798129i \(0.705823\pi\)
\(798\) 0 0
\(799\) 15.5885 + 9.00000i 0.551480 + 0.318397i
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 0 0
\(803\) −36.3731 + 21.0000i −1.28358 + 0.741074i
\(804\) 0 0
\(805\) 41.5692i 1.46512i
\(806\) 0 0
\(807\) 13.8564 0.487769
\(808\) 0 0
\(809\) 19.5000 + 33.7750i 0.685583 + 1.18747i 0.973253 + 0.229736i \(0.0737862\pi\)
−0.287670 + 0.957730i \(0.592880\pi\)
\(810\) 0 0
\(811\) −6.92820 −0.243282 −0.121641 0.992574i \(-0.538816\pi\)
−0.121641 + 0.992574i \(0.538816\pi\)
\(812\) 0 0
\(813\) −2.00000 + 3.46410i −0.0701431 + 0.121491i
\(814\) 0 0
\(815\) −31.1769 + 54.0000i −1.09208 + 1.89154i
\(816\) 0 0
\(817\) 24.0000 13.8564i 0.839654 0.484774i
\(818\) 0 0
\(819\) 1.73205 7.00000i 0.0605228 0.244600i
\(820\) 0 0
\(821\) 3.00000 + 5.19615i 0.104701 + 0.181347i 0.913616 0.406578i \(-0.133278\pi\)
−0.808915 + 0.587925i \(0.799945\pi\)
\(822\) 0 0
\(823\) −8.66025 + 15.0000i −0.301877 + 0.522867i −0.976561 0.215240i \(-0.930947\pi\)
0.674684 + 0.738107i \(0.264280\pi\)
\(824\) 0 0
\(825\) −24.0000 13.8564i −0.835573 0.482418i
\(826\) 0 0
\(827\) 3.46410 0.120459 0.0602293 0.998185i \(-0.480817\pi\)
0.0602293 + 0.998185i \(0.480817\pi\)
\(828\) 0 0
\(829\) −19.5000 + 11.2583i −0.677263 + 0.391018i −0.798823 0.601566i \(-0.794544\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) −10.3923 −0.360505
\(832\) 0 0
\(833\) 9.00000 0.311832
\(834\) 0 0
\(835\) 15.5885 9.00000i 0.539461 0.311458i
\(836\) 0 0
\(837\) −16.0000 −0.553041
\(838\) 0 0
\(839\) 46.7654 + 27.0000i 1.61452 + 0.932144i 0.988304 + 0.152493i \(0.0487303\pi\)
0.626215 + 0.779650i \(0.284603\pi\)
\(840\) 0 0
\(841\) −13.0000 + 22.5167i −0.448276 + 0.776437i
\(842\) 0 0
\(843\) −22.5167 39.0000i −0.775515 1.34323i
\(844\) 0 0
\(845\) −1.50000 38.9711i −0.0516016 1.34065i
\(846\) 0 0
\(847\) −1.73205 + 1.00000i −0.0595140 + 0.0343604i
\(848\) 0 0
\(849\) 14.0000 24.2487i 0.480479 0.832214i
\(850\) 0 0
\(851\) 38.1051 66.0000i 1.30623 2.26245i
\(852\) 0 0
\(853\) 47.0000 1.60925 0.804625 0.593784i \(-0.202367\pi\)
0.804625 + 0.593784i \(0.202367\pi\)
\(854\) 0 0
\(855\) 5.19615 + 9.00000i 0.177705 + 0.307794i
\(856\) 0 0
\(857\) 3.00000 0.102478 0.0512390 0.998686i \(-0.483683\pi\)
0.0512390 + 0.998686i \(0.483683\pi\)
\(858\) 0 0
\(859\) 44.0000i 1.50126i −0.660722 0.750630i \(-0.729750\pi\)
0.660722 0.750630i \(-0.270250\pi\)
\(860\) 0 0
\(861\) −18.0000 + 10.3923i −0.613438 + 0.354169i
\(862\) 0 0
\(863\) 6.00000i 0.204242i 0.994772 + 0.102121i \(0.0325630\pi\)
−0.994772 + 0.102121i \(0.967437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 13.8564 + 8.00000i 0.470588 + 0.271694i
\(868\) 0 0
\(869\) −6.00000 10.3923i −0.203536 0.352535i
\(870\) 0 0
\(871\) −24.2487 6.00000i −0.821636 0.203302i
\(872\) 0 0
\(873\) 12.0000 6.92820i 0.406138 0.234484i
\(874\) 0 0
\(875\) −5.19615 3.00000i −0.175662 0.101419i
\(876\) 0 0
\(877\) 2.50000 4.33013i 0.0844190 0.146218i −0.820724 0.571324i \(-0.806430\pi\)
0.905143 + 0.425106i \(0.139763\pi\)
\(878\) 0 0
\(879\) 6.00000i 0.202375i
\(880\) 0 0
\(881\) −1.50000 2.59808i −0.0505363 0.0875314i 0.839651 0.543127i \(-0.182760\pi\)
−0.890187 + 0.455595i \(0.849426\pi\)
\(882\) 0 0
\(883\) 2.00000i 0.0673054i 0.999434 + 0.0336527i \(0.0107140\pi\)
−0.999434 + 0.0336527i \(0.989286\pi\)
\(884\) 0 0
\(885\) 20.7846i 0.698667i
\(886\) 0 0
\(887\) 8.66025 + 15.0000i 0.290783 + 0.503651i 0.973995 0.226569i \(-0.0727509\pi\)
−0.683212 + 0.730220i \(0.739418\pi\)
\(888\) 0 0
\(889\) 34.6410i 1.16182i
\(890\) 0 0
\(891\) 19.0526 33.0000i 0.638285 1.10554i
\(892\) 0 0
\(893\) 18.0000 + 10.3923i 0.602347 + 0.347765i
\(894\) 0 0
\(895\) 31.1769 18.0000i 1.04213 0.601674i
\(896\) 0 0
\(897\) −48.0000 + 13.8564i −1.60267 + 0.462652i
\(898\) 0 0
\(899\) 3.46410 + 6.00000i 0.115534 + 0.200111i
\(900\) 0 0
\(901\) −31.5000 18.1865i −1.04942 0.605881i
\(902\) 0 0
\(903\) −27.7128 16.0000i −0.922225 0.532447i
\(904\) 0 0
\(905\) 5.19615i 0.172726i
\(906\) 0 0
\(907\) 3.46410 2.00000i 0.115024 0.0664089i −0.441384 0.897318i \(-0.645512\pi\)
0.556408 + 0.830909i \(0.312179\pi\)
\(908\) 0 0
\(909\) 19.0526i 0.631933i
\(910\) 0 0
\(911\) −3.46410 −0.114771 −0.0573854 0.998352i \(-0.518276\pi\)
−0.0573854 + 0.998352i \(0.518276\pi\)
\(912\) 0 0
\(913\) −12.0000 20.7846i −0.397142 0.687870i
\(914\) 0 0
\(915\) 10.3923 0.343559
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −5.19615 + 9.00000i −0.171405 + 0.296883i −0.938911 0.344159i \(-0.888164\pi\)
0.767506 + 0.641042i \(0.221497\pi\)
\(920\) 0 0
\(921\) 24.0000 13.8564i 0.790827 0.456584i
\(922\) 0 0
\(923\) −20.7846 + 6.00000i −0.684134 + 0.197492i
\(924\) 0 0
\(925\) 22.0000 + 38.1051i 0.723356 + 1.25289i
\(926\) 0 0
\(927\) −5.19615 + 9.00000i −0.170664 + 0.295599i
\(928\) 0 0
\(929\) −1.50000 0.866025i −0.0492134 0.0284134i 0.475191 0.879882i \(-0.342379\pi\)
−0.524405 + 0.851469i \(0.675712\pi\)
\(930\) 0 0
\(931\) 10.3923 0.340594
\(932\) 0 0
\(933\) 42.0000 24.2487i 1.37502 0.793867i
\(934\) 0 0
\(935\) 31.1769 1.01959
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) −17.3205 + 10.0000i −0.565233 + 0.326338i
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) 31.1769 + 18.0000i 1.01526 + 0.586161i
\(944\) 0 0
\(945\) −12.0000 + 20.7846i −0.390360 + 0.676123i
\(946\) 0 0
\(947\) 29.4449 + 51.0000i 0.956830 + 1.65728i 0.730125 + 0.683314i \(0.239462\pi\)
0.226705 + 0.973964i \(0.427205\pi\)
\(948\) 0 0
\(949\) −31.5000 30.3109i −1.02253 0.983933i
\(950\) 0 0
\(951\) 25.9808 15.0000i 0.842484 0.486408i
\(952\) 0 0
\(953\) 9.00000 15.5885i 0.291539 0.504960i −0.682635 0.730759i \(-0.739166\pi\)
0.974174 + 0.225800i \(0.0724995\pi\)
\(954\) 0 0
\(955\) −20.7846 + 36.0000i −0.672574 + 1.16493i
\(956\) 0 0
\(957\) −12.0000 −0.387905
\(958\) 0 0
\(959\) −22.5167 39.0000i −0.727101 1.25938i
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) −40.5000 + 23.3827i −1.30374 + 0.752715i
\(966\) 0 0
\(967\) 22.0000i 0.707472i 0.935345 + 0.353736i \(0.115089\pi\)
−0.935345 + 0.353736i \(0.884911\pi\)
\(968\) 0 0
\(969\) −18.0000 10.3923i −0.578243 0.333849i
\(970\) 0 0
\(971\) 5.19615 + 3.00000i 0.166752 + 0.0962746i 0.581054 0.813865i \(-0.302641\pi\)
−0.414301 + 0.910140i \(0.635974\pi\)
\(972\) 0 0
\(973\) 20.0000 + 34.6410i 0.641171 + 1.11054i
\(974\) 0 0
\(975\) 6.92820 28.0000i 0.221880 0.896718i
\(976\) 0 0
\(977\) 10.5000 6.06218i 0.335925 0.193946i −0.322544 0.946555i \(-0.604538\pi\)
0.658468 + 0.752608i \(0.271205\pi\)
\(978\) 0 0
\(979\) 20.7846 + 12.0000i 0.664279 + 0.383522i
\(980\) 0 0
\(981\) −5.00000 + 8.66025i −0.159638 + 0.276501i
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) 24.0000i 0.763928i
\(988\) 0 0
\(989\) 55.4256i 1.76243i
\(990\) 0 0
\(991\) −19.0526 33.0000i −0.605224 1.04828i −0.992016 0.126112i \(-0.959750\pi\)
0.386791 0.922167i \(-0.373583\pi\)
\(992\) 0 0
\(993\) 13.8564i 0.439720i
\(994\) 0 0
\(995\) −41.5692 + 72.0000i −1.31783 + 2.28255i
\(996\) 0 0
\(997\) 37.5000 + 21.6506i 1.18764 + 0.685682i 0.957769 0.287539i \(-0.0928372\pi\)
0.229868 + 0.973222i \(0.426171\pi\)
\(998\) 0 0
\(999\) −38.1051 + 22.0000i −1.20559 + 0.696049i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.ba.d.673.2 yes 4
4.3 odd 2 inner 832.2.ba.d.673.1 yes 4
8.3 odd 2 832.2.ba.c.673.2 yes 4
8.5 even 2 832.2.ba.c.673.1 yes 4
13.4 even 6 832.2.ba.c.225.1 4
52.43 odd 6 832.2.ba.c.225.2 yes 4
104.43 odd 6 inner 832.2.ba.d.225.1 yes 4
104.69 even 6 inner 832.2.ba.d.225.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
832.2.ba.c.225.1 4 13.4 even 6
832.2.ba.c.225.2 yes 4 52.43 odd 6
832.2.ba.c.673.1 yes 4 8.5 even 2
832.2.ba.c.673.2 yes 4 8.3 odd 2
832.2.ba.d.225.1 yes 4 104.43 odd 6 inner
832.2.ba.d.225.2 yes 4 104.69 even 6 inner
832.2.ba.d.673.1 yes 4 4.3 odd 2 inner
832.2.ba.d.673.2 yes 4 1.1 even 1 trivial