Properties

Label 832.2.ba.e
Level 832832
Weight 22
Character orbit 832.ba
Analytic conductor 6.6446.644
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 832.ba (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.643553448176.64355344817
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123ζ122++2)q3+(ζ1232ζ12)q52ζ12q7+(4ζ123ζ122++1)q9+(2ζ123+2ζ12)q11++(2ζ123+4ζ1212)q99+O(q100) q + (\zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{3} + (\zeta_{12}^{3} - 2 \zeta_{12}) q^{5} - 2 \zeta_{12} q^{7} + (4 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 1) q^{9} + (2 \zeta_{12}^{3} + 2 \zeta_{12}) q^{11} + \cdots + ( - 2 \zeta_{12}^{3} + 4 \zeta_{12} - 12) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q3+2q94q13+6q156q17+6q19+8q21+6q238q2512q2912q33+12q35+8q3718q3918q41+36q43+12q456q49+48q99+O(q100) 4 q + 6 q^{3} + 2 q^{9} - 4 q^{13} + 6 q^{15} - 6 q^{17} + 6 q^{19} + 8 q^{21} + 6 q^{23} - 8 q^{25} - 12 q^{29} - 12 q^{33} + 12 q^{35} + 8 q^{37} - 18 q^{39} - 18 q^{41} + 36 q^{43} + 12 q^{45} - 6 q^{49}+ \cdots - 48 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/832Z)×\left(\mathbb{Z}/832\mathbb{Z}\right)^\times.

nn 261261 703703 769769
χ(n)\chi(n) 1-1 11 1ζ1221 - \zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
225.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 0.633975 + 0.366025i 0 −1.73205 0 −1.73205 + 1.00000i 0 −1.23205 2.13397i 0
225.2 0 2.36603 + 1.36603i 0 1.73205 0 1.73205 1.00000i 0 2.23205 + 3.86603i 0
673.1 0 0.633975 0.366025i 0 −1.73205 0 −1.73205 1.00000i 0 −1.23205 + 2.13397i 0
673.2 0 2.36603 1.36603i 0 1.73205 0 1.73205 + 1.00000i 0 2.23205 3.86603i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.ba.e yes 4
4.b odd 2 1 832.2.ba.a 4
8.b even 2 1 832.2.ba.b yes 4
8.d odd 2 1 832.2.ba.f yes 4
13.e even 6 1 832.2.ba.b yes 4
52.i odd 6 1 832.2.ba.f yes 4
104.p odd 6 1 832.2.ba.a 4
104.s even 6 1 inner 832.2.ba.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
832.2.ba.a 4 4.b odd 2 1
832.2.ba.a 4 104.p odd 6 1
832.2.ba.b yes 4 8.b even 2 1
832.2.ba.b yes 4 13.e even 6 1
832.2.ba.e yes 4 1.a even 1 1 trivial
832.2.ba.e yes 4 104.s even 6 1 inner
832.2.ba.f yes 4 8.d odd 2 1
832.2.ba.f yes 4 52.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(832,[χ])S_{2}^{\mathrm{new}}(832, [\chi]):

T346T33+14T3212T3+4 T_{3}^{4} - 6T_{3}^{3} + 14T_{3}^{2} - 12T_{3} + 4 Copy content Toggle raw display
T523 T_{5}^{2} - 3 Copy content Toggle raw display
T2346T233+30T23236T23+36 T_{23}^{4} - 6T_{23}^{3} + 30T_{23}^{2} - 36T_{23} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T46T3++4 T^{4} - 6 T^{3} + \cdots + 4 Copy content Toggle raw display
55 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
77 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
1111 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
1313 T4+4T3++169 T^{4} + 4 T^{3} + \cdots + 169 Copy content Toggle raw display
1717 T4+6T3++9 T^{4} + 6 T^{3} + \cdots + 9 Copy content Toggle raw display
1919 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2323 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2929 T4+12T3++9 T^{4} + 12 T^{3} + \cdots + 9 Copy content Toggle raw display
3131 T4+104T2+4 T^{4} + 104T^{2} + 4 Copy content Toggle raw display
3737 T48T3++121 T^{4} - 8 T^{3} + \cdots + 121 Copy content Toggle raw display
4141 (T2+9T+27)2 (T^{2} + 9 T + 27)^{2} Copy content Toggle raw display
4343 T436T3++10816 T^{4} - 36 T^{3} + \cdots + 10816 Copy content Toggle raw display
4747 T4+168T2+4356 T^{4} + 168T^{2} + 4356 Copy content Toggle raw display
5353 T4+186T2+4761 T^{4} + 186T^{2} + 4761 Copy content Toggle raw display
5959 T412T3++144 T^{4} - 12 T^{3} + \cdots + 144 Copy content Toggle raw display
6161 T4+36T3++9801 T^{4} + 36 T^{3} + \cdots + 9801 Copy content Toggle raw display
6767 T46T3++324 T^{4} - 6 T^{3} + \cdots + 324 Copy content Toggle raw display
7171 T4+30T3++4356 T^{4} + 30 T^{3} + \cdots + 4356 Copy content Toggle raw display
7373 (T2+27)2 (T^{2} + 27)^{2} Copy content Toggle raw display
7979 (T6)4 (T - 6)^{4} Copy content Toggle raw display
8383 (T212T+24)2 (T^{2} - 12 T + 24)^{2} Copy content Toggle raw display
8989 T4+12T3++17424 T^{4} + 12 T^{3} + \cdots + 17424 Copy content Toggle raw display
9797 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
show more
show less