Properties

Label 832.2.ba.e
Level $832$
Weight $2$
Character orbit 832.ba
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{3} + (\zeta_{12}^{3} - 2 \zeta_{12}) q^{5} - 2 \zeta_{12} q^{7} + (4 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 1) q^{9} + (2 \zeta_{12}^{3} + 2 \zeta_{12}) q^{11} + \cdots + ( - 2 \zeta_{12}^{3} + 4 \zeta_{12} - 12) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 2 q^{9} - 4 q^{13} + 6 q^{15} - 6 q^{17} + 6 q^{19} + 8 q^{21} + 6 q^{23} - 8 q^{25} - 12 q^{29} - 12 q^{33} + 12 q^{35} + 8 q^{37} - 18 q^{39} - 18 q^{41} + 36 q^{43} + 12 q^{45} - 6 q^{49}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(1 - \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
225.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 0.633975 + 0.366025i 0 −1.73205 0 −1.73205 + 1.00000i 0 −1.23205 2.13397i 0
225.2 0 2.36603 + 1.36603i 0 1.73205 0 1.73205 1.00000i 0 2.23205 + 3.86603i 0
673.1 0 0.633975 0.366025i 0 −1.73205 0 −1.73205 1.00000i 0 −1.23205 + 2.13397i 0
673.2 0 2.36603 1.36603i 0 1.73205 0 1.73205 + 1.00000i 0 2.23205 3.86603i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.ba.e yes 4
4.b odd 2 1 832.2.ba.a 4
8.b even 2 1 832.2.ba.b yes 4
8.d odd 2 1 832.2.ba.f yes 4
13.e even 6 1 832.2.ba.b yes 4
52.i odd 6 1 832.2.ba.f yes 4
104.p odd 6 1 832.2.ba.a 4
104.s even 6 1 inner 832.2.ba.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
832.2.ba.a 4 4.b odd 2 1
832.2.ba.a 4 104.p odd 6 1
832.2.ba.b yes 4 8.b even 2 1
832.2.ba.b yes 4 13.e even 6 1
832.2.ba.e yes 4 1.a even 1 1 trivial
832.2.ba.e yes 4 104.s even 6 1 inner
832.2.ba.f yes 4 8.d odd 2 1
832.2.ba.f yes 4 52.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(832, [\chi])\):

\( T_{3}^{4} - 6T_{3}^{3} + 14T_{3}^{2} - 12T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 3 \) Copy content Toggle raw display
\( T_{23}^{4} - 6T_{23}^{3} + 30T_{23}^{2} - 36T_{23} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$13$ \( T^{4} + 4 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( T^{4} + 12 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$31$ \( T^{4} + 104T^{2} + 4 \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$41$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 36 T^{3} + \cdots + 10816 \) Copy content Toggle raw display
$47$ \( T^{4} + 168T^{2} + 4356 \) Copy content Toggle raw display
$53$ \( T^{4} + 186T^{2} + 4761 \) Copy content Toggle raw display
$59$ \( T^{4} - 12 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$61$ \( T^{4} + 36 T^{3} + \cdots + 9801 \) Copy content Toggle raw display
$67$ \( T^{4} - 6 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$71$ \( T^{4} + 30 T^{3} + \cdots + 4356 \) Copy content Toggle raw display
$73$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$79$ \( (T - 6)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 12 T + 24)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 12 T^{3} + \cdots + 17424 \) Copy content Toggle raw display
$97$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
show more
show less