gp: [N,k,chi] = [832,2,Mod(225,832)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(832, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("832.225");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,6,0,0,0,0,0,2,0,0,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 832 Z ) × \left(\mathbb{Z}/832\mathbb{Z}\right)^\times ( Z / 8 3 2 Z ) × .
n n n
261 261 2 6 1
703 703 7 0 3
769 769 7 6 9
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 − ζ 12 2 1 - \zeta_{12}^{2} 1 − ζ 1 2 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 832 , [ χ ] ) S_{2}^{\mathrm{new}}(832, [\chi]) S 2 n e w ( 8 3 2 , [ χ ] ) :
T 3 4 − 6 T 3 3 + 14 T 3 2 − 12 T 3 + 4 T_{3}^{4} - 6T_{3}^{3} + 14T_{3}^{2} - 12T_{3} + 4 T 3 4 − 6 T 3 3 + 1 4 T 3 2 − 1 2 T 3 + 4
T3^4 - 6*T3^3 + 14*T3^2 - 12*T3 + 4
T 5 2 − 3 T_{5}^{2} - 3 T 5 2 − 3
T5^2 - 3
T 23 4 − 6 T 23 3 + 30 T 23 2 − 36 T 23 + 36 T_{23}^{4} - 6T_{23}^{3} + 30T_{23}^{2} - 36T_{23} + 36 T 2 3 4 − 6 T 2 3 3 + 3 0 T 2 3 2 − 3 6 T 2 3 + 3 6
T23^4 - 6*T23^3 + 30*T23^2 - 36*T23 + 36
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 − 6 T 3 + ⋯ + 4 T^{4} - 6 T^{3} + \cdots + 4 T 4 − 6 T 3 + ⋯ + 4
T^4 - 6*T^3 + 14*T^2 - 12*T + 4
5 5 5
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
7 7 7
T 4 − 4 T 2 + 16 T^{4} - 4T^{2} + 16 T 4 − 4 T 2 + 1 6
T^4 - 4*T^2 + 16
11 11 1 1
T 4 + 12 T 2 + 144 T^{4} + 12T^{2} + 144 T 4 + 1 2 T 2 + 1 4 4
T^4 + 12*T^2 + 144
13 13 1 3
T 4 + 4 T 3 + ⋯ + 169 T^{4} + 4 T^{3} + \cdots + 169 T 4 + 4 T 3 + ⋯ + 1 6 9
T^4 + 4*T^3 + 3*T^2 + 52*T + 169
17 17 1 7
T 4 + 6 T 3 + ⋯ + 9 T^{4} + 6 T^{3} + \cdots + 9 T 4 + 6 T 3 + ⋯ + 9
T^4 + 6*T^3 + 39*T^2 - 18*T + 9
19 19 1 9
T 4 − 6 T 3 + ⋯ + 36 T^{4} - 6 T^{3} + \cdots + 36 T 4 − 6 T 3 + ⋯ + 3 6
T^4 - 6*T^3 + 30*T^2 - 36*T + 36
23 23 2 3
T 4 − 6 T 3 + ⋯ + 36 T^{4} - 6 T^{3} + \cdots + 36 T 4 − 6 T 3 + ⋯ + 3 6
T^4 - 6*T^3 + 30*T^2 - 36*T + 36
29 29 2 9
T 4 + 12 T 3 + ⋯ + 9 T^{4} + 12 T^{3} + \cdots + 9 T 4 + 1 2 T 3 + ⋯ + 9
T^4 + 12*T^3 + 51*T^2 + 36*T + 9
31 31 3 1
T 4 + 104 T 2 + 4 T^{4} + 104T^{2} + 4 T 4 + 1 0 4 T 2 + 4
T^4 + 104*T^2 + 4
37 37 3 7
T 4 − 8 T 3 + ⋯ + 121 T^{4} - 8 T^{3} + \cdots + 121 T 4 − 8 T 3 + ⋯ + 1 2 1
T^4 - 8*T^3 + 75*T^2 + 88*T + 121
41 41 4 1
( T 2 + 9 T + 27 ) 2 (T^{2} + 9 T + 27)^{2} ( T 2 + 9 T + 2 7 ) 2
(T^2 + 9*T + 27)^2
43 43 4 3
T 4 − 36 T 3 + ⋯ + 10816 T^{4} - 36 T^{3} + \cdots + 10816 T 4 − 3 6 T 3 + ⋯ + 1 0 8 1 6
T^4 - 36*T^3 + 536*T^2 - 3744*T + 10816
47 47 4 7
T 4 + 168 T 2 + 4356 T^{4} + 168T^{2} + 4356 T 4 + 1 6 8 T 2 + 4 3 5 6
T^4 + 168*T^2 + 4356
53 53 5 3
T 4 + 186 T 2 + 4761 T^{4} + 186T^{2} + 4761 T 4 + 1 8 6 T 2 + 4 7 6 1
T^4 + 186*T^2 + 4761
59 59 5 9
T 4 − 12 T 3 + ⋯ + 144 T^{4} - 12 T^{3} + \cdots + 144 T 4 − 1 2 T 3 + ⋯ + 1 4 4
T^4 - 12*T^3 + 156*T^2 + 144*T + 144
61 61 6 1
T 4 + 36 T 3 + ⋯ + 9801 T^{4} + 36 T^{3} + \cdots + 9801 T 4 + 3 6 T 3 + ⋯ + 9 8 0 1
T^4 + 36*T^3 + 531*T^2 + 3564*T + 9801
67 67 6 7
T 4 − 6 T 3 + ⋯ + 324 T^{4} - 6 T^{3} + \cdots + 324 T 4 − 6 T 3 + ⋯ + 3 2 4
T^4 - 6*T^3 + 54*T^2 + 108*T + 324
71 71 7 1
T 4 + 30 T 3 + ⋯ + 4356 T^{4} + 30 T^{3} + \cdots + 4356 T 4 + 3 0 T 3 + ⋯ + 4 3 5 6
T^4 + 30*T^3 + 366*T^2 + 1980*T + 4356
73 73 7 3
( T 2 + 27 ) 2 (T^{2} + 27)^{2} ( T 2 + 2 7 ) 2
(T^2 + 27)^2
79 79 7 9
( T − 6 ) 4 (T - 6)^{4} ( T − 6 ) 4
(T - 6)^4
83 83 8 3
( T 2 − 12 T + 24 ) 2 (T^{2} - 12 T + 24)^{2} ( T 2 − 1 2 T + 2 4 ) 2
(T^2 - 12*T + 24)^2
89 89 8 9
T 4 + 12 T 3 + ⋯ + 17424 T^{4} + 12 T^{3} + \cdots + 17424 T 4 + 1 2 T 3 + ⋯ + 1 7 4 2 4
T^4 + 12*T^3 - 84*T^2 - 1584*T + 17424
97 97 9 7
T 4 − 36 T 2 + 1296 T^{4} - 36T^{2} + 1296 T 4 − 3 6 T 2 + 1 2 9 6
T^4 - 36*T^2 + 1296
show more
show less