Properties

Label 832.2.bu.f
Level $832$
Weight $2$
Character orbit 832.bu
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(63,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.bu (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 208)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{2} + 2) q^{3} + (\zeta_{12}^{3} - 1) q^{5} + (\zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 1) q^{7} + (2 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + \cdots + 1) q^{11} + ( - 4 \zeta_{12}^{2} + 3) q^{13}+ \cdots + (9 \zeta_{12}^{3} + 4 \zeta_{12}^{2} + \cdots + 5) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} - 4 q^{5} + 4 q^{13} - 6 q^{15} + 6 q^{17} + 6 q^{21} + 6 q^{23} - 2 q^{29} - 6 q^{33} - 6 q^{35} + 4 q^{37} - 6 q^{39} + 12 q^{41} - 18 q^{43} + 24 q^{47} - 18 q^{49} + 12 q^{51} + 8 q^{53}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
63.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 1.50000 0.866025i 0 −1.00000 1.00000i 0 −0.866025 + 0.232051i 0 0 0
319.1 0 1.50000 + 0.866025i 0 −1.00000 1.00000i 0 0.866025 3.23205i 0 0 0
383.1 0 1.50000 + 0.866025i 0 −1.00000 + 1.00000i 0 −0.866025 0.232051i 0 0 0
639.1 0 1.50000 0.866025i 0 −1.00000 + 1.00000i 0 0.866025 + 3.23205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.l even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.bu.f 4
4.b odd 2 1 832.2.bu.a 4
8.b even 2 1 208.2.bm.b 4
8.d odd 2 1 208.2.bm.e yes 4
13.f odd 12 1 832.2.bu.a 4
52.l even 12 1 inner 832.2.bu.f 4
104.u even 12 1 208.2.bm.b 4
104.x odd 12 1 208.2.bm.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
208.2.bm.b 4 8.b even 2 1
208.2.bm.b 4 104.u even 12 1
208.2.bm.e yes 4 8.d odd 2 1
208.2.bm.e yes 4 104.x odd 12 1
832.2.bu.a 4 4.b odd 2 1
832.2.bu.a 4 13.f odd 12 1
832.2.bu.f 4 1.a even 1 1 trivial
832.2.bu.f 4 52.l even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(832, [\chi])\):

\( T_{3}^{2} - 3T_{3} + 3 \) Copy content Toggle raw display
\( T_{5}^{2} + 2T_{5} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{4} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$19$ \( T^{4} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 2 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$31$ \( T^{4} + 2916 \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$41$ \( T^{4} - 12 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$43$ \( (T^{2} + 9 T + 81)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 24 T^{3} + \cdots + 4356 \) Copy content Toggle raw display
$53$ \( (T^{2} - 4 T - 44)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 24 T^{3} + \cdots + 13689 \) Copy content Toggle raw display
$61$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 24 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$71$ \( T^{4} + 225 T^{2} + \cdots + 5625 \) Copy content Toggle raw display
$73$ \( T^{4} + 4 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$79$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 24 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$89$ \( T^{4} - 20 T^{3} + \cdots + 9409 \) Copy content Toggle raw display
$97$ \( T^{4} - 28 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
show more
show less