Properties

Label 832.2.bu.f
Level 832832
Weight 22
Character orbit 832.bu
Analytic conductor 6.6446.644
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(63,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 832.bu (of order 1212, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.643553448176.64355344817
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 208)
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ122+2)q3+(ζ1231)q5+(ζ123+2ζ122+1)q7+(2ζ1232ζ122++1)q11+(4ζ122+3)q13++(9ζ123+4ζ122++5)q97+O(q100) q + ( - \zeta_{12}^{2} + 2) q^{3} + (\zeta_{12}^{3} - 1) q^{5} + (\zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 1) q^{7} + (2 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + \cdots + 1) q^{11} + ( - 4 \zeta_{12}^{2} + 3) q^{13}+ \cdots + (9 \zeta_{12}^{3} + 4 \zeta_{12}^{2} + \cdots + 5) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q34q5+4q136q15+6q17+6q21+6q232q296q336q35+4q376q39+12q4118q43+24q4718q49+12q51+8q53++28q97+O(q100) 4 q + 6 q^{3} - 4 q^{5} + 4 q^{13} - 6 q^{15} + 6 q^{17} + 6 q^{21} + 6 q^{23} - 2 q^{29} - 6 q^{33} - 6 q^{35} + 4 q^{37} - 6 q^{39} + 12 q^{41} - 18 q^{43} + 24 q^{47} - 18 q^{49} + 12 q^{51} + 8 q^{53}+ \cdots + 28 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/832Z)×\left(\mathbb{Z}/832\mathbb{Z}\right)^\times.

nn 261261 703703 769769
χ(n)\chi(n) 11 1-1 ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
63.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 1.50000 0.866025i 0 −1.00000 1.00000i 0 −0.866025 + 0.232051i 0 0 0
319.1 0 1.50000 + 0.866025i 0 −1.00000 1.00000i 0 0.866025 3.23205i 0 0 0
383.1 0 1.50000 + 0.866025i 0 −1.00000 + 1.00000i 0 −0.866025 0.232051i 0 0 0
639.1 0 1.50000 0.866025i 0 −1.00000 + 1.00000i 0 0.866025 + 3.23205i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.l even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.bu.f 4
4.b odd 2 1 832.2.bu.a 4
8.b even 2 1 208.2.bm.b 4
8.d odd 2 1 208.2.bm.e yes 4
13.f odd 12 1 832.2.bu.a 4
52.l even 12 1 inner 832.2.bu.f 4
104.u even 12 1 208.2.bm.b 4
104.x odd 12 1 208.2.bm.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
208.2.bm.b 4 8.b even 2 1
208.2.bm.b 4 104.u even 12 1
208.2.bm.e yes 4 8.d odd 2 1
208.2.bm.e yes 4 104.x odd 12 1
832.2.bu.a 4 4.b odd 2 1
832.2.bu.a 4 13.f odd 12 1
832.2.bu.f 4 1.a even 1 1 trivial
832.2.bu.f 4 52.l even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(832,[χ])S_{2}^{\mathrm{new}}(832, [\chi]):

T323T3+3 T_{3}^{2} - 3T_{3} + 3 Copy content Toggle raw display
T52+2T5+2 T_{5}^{2} + 2T_{5} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T23T+3)2 (T^{2} - 3 T + 3)^{2} Copy content Toggle raw display
55 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
77 T4+9T2++9 T^{4} + 9 T^{2} + \cdots + 9 Copy content Toggle raw display
1111 T4+9T2++9 T^{4} + 9 T^{2} + \cdots + 9 Copy content Toggle raw display
1313 (T22T+13)2 (T^{2} - 2 T + 13)^{2} Copy content Toggle raw display
1717 T46T3++169 T^{4} - 6 T^{3} + \cdots + 169 Copy content Toggle raw display
1919 T4+9T2++9 T^{4} + 9 T^{2} + \cdots + 9 Copy content Toggle raw display
2323 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
2929 T4+2T3++2209 T^{4} + 2 T^{3} + \cdots + 2209 Copy content Toggle raw display
3131 T4+2916 T^{4} + 2916 Copy content Toggle raw display
3737 T44T3++529 T^{4} - 4 T^{3} + \cdots + 529 Copy content Toggle raw display
4141 T412T3++1089 T^{4} - 12 T^{3} + \cdots + 1089 Copy content Toggle raw display
4343 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
4747 T424T3++4356 T^{4} - 24 T^{3} + \cdots + 4356 Copy content Toggle raw display
5353 (T24T44)2 (T^{2} - 4 T - 44)^{2} Copy content Toggle raw display
5959 T4+24T3++13689 T^{4} + 24 T^{3} + \cdots + 13689 Copy content Toggle raw display
6161 (T27T+49)2 (T^{2} - 7 T + 49)^{2} Copy content Toggle raw display
6767 T424T3++9 T^{4} - 24 T^{3} + \cdots + 9 Copy content Toggle raw display
7171 T4+225T2++5625 T^{4} + 225 T^{2} + \cdots + 5625 Copy content Toggle raw display
7373 T4+4T3++484 T^{4} + 4 T^{3} + \cdots + 484 Copy content Toggle raw display
7979 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
8383 T4+24T3++324 T^{4} + 24 T^{3} + \cdots + 324 Copy content Toggle raw display
8989 T420T3++9409 T^{4} - 20 T^{3} + \cdots + 9409 Copy content Toggle raw display
9797 T428T3++14641 T^{4} - 28 T^{3} + \cdots + 14641 Copy content Toggle raw display
show more
show less