Properties

Label 832.2.i.g
Level $832$
Weight $2$
Character orbit 832.i
Analytic conductor $6.644$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(321,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.321");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{3} - 2 q^{5} + \zeta_{6} q^{7} + 2 \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{11} + (4 \zeta_{6} - 1) q^{13} + (2 \zeta_{6} - 2) q^{15} - 3 \zeta_{6} q^{17} + 7 \zeta_{6} q^{19} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 4 q^{5} + q^{7} + 2 q^{9} + q^{11} + 2 q^{13} - 2 q^{15} - 3 q^{17} + 7 q^{19} + 2 q^{21} - q^{23} - 2 q^{25} + 10 q^{27} + 3 q^{29} + 16 q^{31} - q^{33} - 2 q^{35} - q^{37} + 7 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
321.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 −2.00000 0 0.500000 + 0.866025i 0 1.00000 + 1.73205i 0
705.1 0 0.500000 + 0.866025i 0 −2.00000 0 0.500000 0.866025i 0 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.i.g 2
4.b odd 2 1 832.2.i.d 2
8.b even 2 1 104.2.i.a 2
8.d odd 2 1 208.2.i.c 2
13.c even 3 1 inner 832.2.i.g 2
24.f even 2 1 1872.2.t.d 2
24.h odd 2 1 936.2.t.c 2
52.j odd 6 1 832.2.i.d 2
104.e even 2 1 1352.2.i.a 2
104.j odd 4 2 1352.2.o.b 4
104.n odd 6 1 208.2.i.c 2
104.n odd 6 1 2704.2.a.e 1
104.p odd 6 1 2704.2.a.c 1
104.r even 6 1 104.2.i.a 2
104.r even 6 1 1352.2.a.c 1
104.s even 6 1 1352.2.a.a 1
104.s even 6 1 1352.2.i.a 2
104.u even 12 2 2704.2.f.c 2
104.x odd 12 2 1352.2.f.a 2
104.x odd 12 2 1352.2.o.b 4
312.bh odd 6 1 936.2.t.c 2
312.bn even 6 1 1872.2.t.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.i.a 2 8.b even 2 1
104.2.i.a 2 104.r even 6 1
208.2.i.c 2 8.d odd 2 1
208.2.i.c 2 104.n odd 6 1
832.2.i.d 2 4.b odd 2 1
832.2.i.d 2 52.j odd 6 1
832.2.i.g 2 1.a even 1 1 trivial
832.2.i.g 2 13.c even 3 1 inner
936.2.t.c 2 24.h odd 2 1
936.2.t.c 2 312.bh odd 6 1
1352.2.a.a 1 104.s even 6 1
1352.2.a.c 1 104.r even 6 1
1352.2.f.a 2 104.x odd 12 2
1352.2.i.a 2 104.e even 2 1
1352.2.i.a 2 104.s even 6 1
1352.2.o.b 4 104.j odd 4 2
1352.2.o.b 4 104.x odd 12 2
1872.2.t.d 2 24.f even 2 1
1872.2.t.d 2 312.bn even 6 1
2704.2.a.c 1 104.p odd 6 1
2704.2.a.e 1 104.n odd 6 1
2704.2.f.c 2 104.u even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(832, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( (T + 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( T^{2} - 2T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$23$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$43$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$47$ \( (T - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$61$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$67$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$71$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( (T + 12)^{2} \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$97$ \( T^{2} - T + 1 \) Copy content Toggle raw display
show more
show less