Properties

Label 832.2.i.k.705.1
Level $832$
Weight $2$
Character 832.705
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(321,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.321");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 705.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 832.705
Dual form 832.2.i.k.321.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20711 - 2.09077i) q^{3} -2.82843 q^{5} +(-2.20711 + 3.82282i) q^{7} +(-1.41421 + 2.44949i) q^{9} +(1.62132 + 2.80821i) q^{11} +(1.00000 - 3.46410i) q^{13} +(3.41421 + 5.91359i) q^{15} +(2.91421 - 5.04757i) q^{17} +(-0.621320 + 1.07616i) q^{19} +10.6569 q^{21} +(-0.621320 - 1.07616i) q^{23} +3.00000 q^{25} -0.414214 q^{27} +(4.32843 + 7.49706i) q^{29} +5.65685 q^{31} +(3.91421 - 6.77962i) q^{33} +(6.24264 - 10.8126i) q^{35} +(-3.74264 - 6.48244i) q^{37} +(-8.44975 + 2.09077i) q^{39} +(2.91421 + 5.04757i) q^{41} +(2.03553 - 3.52565i) q^{43} +(4.00000 - 6.92820i) q^{45} +6.00000 q^{47} +(-6.24264 - 10.8126i) q^{49} -14.0711 q^{51} +2.82843 q^{53} +(-4.58579 - 7.94282i) q^{55} +3.00000 q^{57} +(-0.621320 + 1.07616i) q^{59} +(3.50000 - 6.06218i) q^{61} +(-6.24264 - 10.8126i) q^{63} +(-2.82843 + 9.79796i) q^{65} +(6.62132 + 11.4685i) q^{67} +(-1.50000 + 2.59808i) q^{69} +(3.62132 - 6.27231i) q^{71} +12.4853 q^{73} +(-3.62132 - 6.27231i) q^{75} -14.3137 q^{77} -6.00000 q^{79} +(4.74264 + 8.21449i) q^{81} -4.00000 q^{83} +(-8.24264 + 14.2767i) q^{85} +(10.4497 - 18.0995i) q^{87} +(1.67157 + 2.89525i) q^{89} +(11.0355 + 11.4685i) q^{91} +(-6.82843 - 11.8272i) q^{93} +(1.75736 - 3.04384i) q^{95} +(4.50000 - 7.79423i) q^{97} -9.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 6 q^{7} - 2 q^{11} + 4 q^{13} + 8 q^{15} + 6 q^{17} + 6 q^{19} + 20 q^{21} + 6 q^{23} + 12 q^{25} + 4 q^{27} + 6 q^{29} + 10 q^{33} + 8 q^{35} + 2 q^{37} - 14 q^{39} + 6 q^{41} - 6 q^{43}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.20711 2.09077i −0.696923 1.20711i −0.969528 0.244981i \(-0.921218\pi\)
0.272605 0.962126i \(-0.412115\pi\)
\(4\) 0 0
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) −2.20711 + 3.82282i −0.834208 + 1.44489i 0.0604657 + 0.998170i \(0.480741\pi\)
−0.894674 + 0.446720i \(0.852592\pi\)
\(8\) 0 0
\(9\) −1.41421 + 2.44949i −0.471405 + 0.816497i
\(10\) 0 0
\(11\) 1.62132 + 2.80821i 0.488846 + 0.846707i 0.999918 0.0128314i \(-0.00408449\pi\)
−0.511071 + 0.859538i \(0.670751\pi\)
\(12\) 0 0
\(13\) 1.00000 3.46410i 0.277350 0.960769i
\(14\) 0 0
\(15\) 3.41421 + 5.91359i 0.881546 + 1.52688i
\(16\) 0 0
\(17\) 2.91421 5.04757i 0.706801 1.22421i −0.259237 0.965814i \(-0.583471\pi\)
0.966038 0.258401i \(-0.0831955\pi\)
\(18\) 0 0
\(19\) −0.621320 + 1.07616i −0.142541 + 0.246888i −0.928453 0.371451i \(-0.878861\pi\)
0.785912 + 0.618338i \(0.212194\pi\)
\(20\) 0 0
\(21\) 10.6569 2.32552
\(22\) 0 0
\(23\) −0.621320 1.07616i −0.129554 0.224395i 0.793950 0.607983i \(-0.208021\pi\)
−0.923504 + 0.383589i \(0.874688\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) −0.414214 −0.0797154
\(28\) 0 0
\(29\) 4.32843 + 7.49706i 0.803769 + 1.39217i 0.917119 + 0.398613i \(0.130508\pi\)
−0.113350 + 0.993555i \(0.536158\pi\)
\(30\) 0 0
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 0 0
\(33\) 3.91421 6.77962i 0.681377 1.18018i
\(34\) 0 0
\(35\) 6.24264 10.8126i 1.05520 1.82766i
\(36\) 0 0
\(37\) −3.74264 6.48244i −0.615286 1.06571i −0.990334 0.138702i \(-0.955707\pi\)
0.375048 0.927005i \(-0.377626\pi\)
\(38\) 0 0
\(39\) −8.44975 + 2.09077i −1.35304 + 0.334791i
\(40\) 0 0
\(41\) 2.91421 + 5.04757i 0.455124 + 0.788297i 0.998695 0.0510654i \(-0.0162617\pi\)
−0.543572 + 0.839363i \(0.682928\pi\)
\(42\) 0 0
\(43\) 2.03553 3.52565i 0.310416 0.537656i −0.668036 0.744129i \(-0.732865\pi\)
0.978452 + 0.206472i \(0.0661983\pi\)
\(44\) 0 0
\(45\) 4.00000 6.92820i 0.596285 1.03280i
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −6.24264 10.8126i −0.891806 1.54465i
\(50\) 0 0
\(51\) −14.0711 −1.97034
\(52\) 0 0
\(53\) 2.82843 0.388514 0.194257 0.980951i \(-0.437770\pi\)
0.194257 + 0.980951i \(0.437770\pi\)
\(54\) 0 0
\(55\) −4.58579 7.94282i −0.618347 1.07101i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −0.621320 + 1.07616i −0.0808890 + 0.140104i −0.903632 0.428310i \(-0.859109\pi\)
0.822743 + 0.568414i \(0.192443\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 0 0
\(63\) −6.24264 10.8126i −0.786499 1.36226i
\(64\) 0 0
\(65\) −2.82843 + 9.79796i −0.350823 + 1.21529i
\(66\) 0 0
\(67\) 6.62132 + 11.4685i 0.808923 + 1.40110i 0.913610 + 0.406591i \(0.133282\pi\)
−0.104687 + 0.994505i \(0.533384\pi\)
\(68\) 0 0
\(69\) −1.50000 + 2.59808i −0.180579 + 0.312772i
\(70\) 0 0
\(71\) 3.62132 6.27231i 0.429772 0.744386i −0.567081 0.823662i \(-0.691927\pi\)
0.996853 + 0.0792756i \(0.0252607\pi\)
\(72\) 0 0
\(73\) 12.4853 1.46129 0.730646 0.682757i \(-0.239219\pi\)
0.730646 + 0.682757i \(0.239219\pi\)
\(74\) 0 0
\(75\) −3.62132 6.27231i −0.418154 0.724264i
\(76\) 0 0
\(77\) −14.3137 −1.63120
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) 4.74264 + 8.21449i 0.526960 + 0.912722i
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −8.24264 + 14.2767i −0.894040 + 1.54852i
\(86\) 0 0
\(87\) 10.4497 18.0995i 1.12033 1.94047i
\(88\) 0 0
\(89\) 1.67157 + 2.89525i 0.177186 + 0.306896i 0.940916 0.338641i \(-0.109967\pi\)
−0.763729 + 0.645537i \(0.776634\pi\)
\(90\) 0 0
\(91\) 11.0355 + 11.4685i 1.15684 + 1.20222i
\(92\) 0 0
\(93\) −6.82843 11.8272i −0.708075 1.22642i
\(94\) 0 0
\(95\) 1.75736 3.04384i 0.180301 0.312291i
\(96\) 0 0
\(97\) 4.50000 7.79423i 0.456906 0.791384i −0.541890 0.840450i \(-0.682291\pi\)
0.998796 + 0.0490655i \(0.0156243\pi\)
\(98\) 0 0
\(99\) −9.17157 −0.921778
\(100\) 0 0
\(101\) 5.91421 + 10.2437i 0.588486 + 1.01929i 0.994431 + 0.105390i \(0.0336092\pi\)
−0.405945 + 0.913898i \(0.633057\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −30.1421 −2.94157
\(106\) 0 0
\(107\) 9.62132 + 16.6646i 0.930128 + 1.61103i 0.783099 + 0.621897i \(0.213638\pi\)
0.147029 + 0.989132i \(0.453029\pi\)
\(108\) 0 0
\(109\) 8.48528 0.812743 0.406371 0.913708i \(-0.366794\pi\)
0.406371 + 0.913708i \(0.366794\pi\)
\(110\) 0 0
\(111\) −9.03553 + 15.6500i −0.857615 + 1.48543i
\(112\) 0 0
\(113\) 0.0857864 0.148586i 0.00807011 0.0139778i −0.861962 0.506973i \(-0.830765\pi\)
0.870032 + 0.492995i \(0.164098\pi\)
\(114\) 0 0
\(115\) 1.75736 + 3.04384i 0.163875 + 0.283839i
\(116\) 0 0
\(117\) 7.07107 + 7.34847i 0.653720 + 0.679366i
\(118\) 0 0
\(119\) 12.8640 + 22.2810i 1.17924 + 2.04250i
\(120\) 0 0
\(121\) 0.242641 0.420266i 0.0220582 0.0382060i
\(122\) 0 0
\(123\) 7.03553 12.1859i 0.634373 1.09877i
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) −0.792893 1.37333i −0.0703579 0.121863i 0.828700 0.559693i \(-0.189081\pi\)
−0.899058 + 0.437829i \(0.855747\pi\)
\(128\) 0 0
\(129\) −9.82843 −0.865345
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) −2.74264 4.75039i −0.237817 0.411911i
\(134\) 0 0
\(135\) 1.17157 0.100833
\(136\) 0 0
\(137\) −4.67157 + 8.09140i −0.399119 + 0.691295i −0.993617 0.112802i \(-0.964017\pi\)
0.594498 + 0.804097i \(0.297351\pi\)
\(138\) 0 0
\(139\) −0.621320 + 1.07616i −0.0526997 + 0.0912786i −0.891172 0.453666i \(-0.850116\pi\)
0.838472 + 0.544944i \(0.183449\pi\)
\(140\) 0 0
\(141\) −7.24264 12.5446i −0.609940 1.05645i
\(142\) 0 0
\(143\) 11.3492 2.80821i 0.949071 0.234834i
\(144\) 0 0
\(145\) −12.2426 21.2049i −1.01670 1.76097i
\(146\) 0 0
\(147\) −15.0711 + 26.1039i −1.24304 + 2.15301i
\(148\) 0 0
\(149\) −1.67157 + 2.89525i −0.136941 + 0.237188i −0.926337 0.376696i \(-0.877060\pi\)
0.789397 + 0.613884i \(0.210394\pi\)
\(150\) 0 0
\(151\) −16.9706 −1.38104 −0.690522 0.723311i \(-0.742619\pi\)
−0.690522 + 0.723311i \(0.742619\pi\)
\(152\) 0 0
\(153\) 8.24264 + 14.2767i 0.666378 + 1.15420i
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) 0.485281 0.0387297 0.0193648 0.999812i \(-0.493836\pi\)
0.0193648 + 0.999812i \(0.493836\pi\)
\(158\) 0 0
\(159\) −3.41421 5.91359i −0.270765 0.468978i
\(160\) 0 0
\(161\) 5.48528 0.432301
\(162\) 0 0
\(163\) 8.37868 14.5123i 0.656269 1.13669i −0.325305 0.945609i \(-0.605467\pi\)
0.981574 0.191082i \(-0.0611996\pi\)
\(164\) 0 0
\(165\) −11.0711 + 19.1757i −0.861881 + 1.49282i
\(166\) 0 0
\(167\) 7.86396 + 13.6208i 0.608532 + 1.05401i 0.991483 + 0.130239i \(0.0415745\pi\)
−0.382951 + 0.923769i \(0.625092\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) −1.75736 3.04384i −0.134389 0.232768i
\(172\) 0 0
\(173\) −4.50000 + 7.79423i −0.342129 + 0.592584i −0.984828 0.173534i \(-0.944481\pi\)
0.642699 + 0.766119i \(0.277815\pi\)
\(174\) 0 0
\(175\) −6.62132 + 11.4685i −0.500525 + 0.866934i
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 0 0
\(179\) −6.37868 11.0482i −0.476765 0.825781i 0.522881 0.852406i \(-0.324857\pi\)
−0.999645 + 0.0266249i \(0.991524\pi\)
\(180\) 0 0
\(181\) 0.485281 0.0360707 0.0180353 0.999837i \(-0.494259\pi\)
0.0180353 + 0.999837i \(0.494259\pi\)
\(182\) 0 0
\(183\) −16.8995 −1.24925
\(184\) 0 0
\(185\) 10.5858 + 18.3351i 0.778282 + 1.34802i
\(186\) 0 0
\(187\) 18.8995 1.38207
\(188\) 0 0
\(189\) 0.914214 1.58346i 0.0664993 0.115180i
\(190\) 0 0
\(191\) −3.37868 + 5.85204i −0.244473 + 0.423439i −0.961983 0.273109i \(-0.911948\pi\)
0.717511 + 0.696548i \(0.245282\pi\)
\(192\) 0 0
\(193\) 9.74264 + 16.8747i 0.701291 + 1.21467i 0.968014 + 0.250898i \(0.0807258\pi\)
−0.266723 + 0.963773i \(0.585941\pi\)
\(194\) 0 0
\(195\) 23.8995 5.91359i 1.71148 0.423481i
\(196\) 0 0
\(197\) 1.50000 + 2.59808i 0.106871 + 0.185105i 0.914501 0.404584i \(-0.132584\pi\)
−0.807630 + 0.589689i \(0.799250\pi\)
\(198\) 0 0
\(199\) 12.1066 20.9692i 0.858214 1.48647i −0.0154165 0.999881i \(-0.504907\pi\)
0.873631 0.486590i \(-0.161759\pi\)
\(200\) 0 0
\(201\) 15.9853 27.6873i 1.12751 1.95291i
\(202\) 0 0
\(203\) −38.2132 −2.68204
\(204\) 0 0
\(205\) −8.24264 14.2767i −0.575691 0.997126i
\(206\) 0 0
\(207\) 3.51472 0.244290
\(208\) 0 0
\(209\) −4.02944 −0.278722
\(210\) 0 0
\(211\) 6.79289 + 11.7656i 0.467642 + 0.809980i 0.999316 0.0369691i \(-0.0117703\pi\)
−0.531674 + 0.846949i \(0.678437\pi\)
\(212\) 0 0
\(213\) −17.4853 −1.19807
\(214\) 0 0
\(215\) −5.75736 + 9.97204i −0.392649 + 0.680087i
\(216\) 0 0
\(217\) −12.4853 + 21.6251i −0.847556 + 1.46801i
\(218\) 0 0
\(219\) −15.0711 26.1039i −1.01841 1.76394i
\(220\) 0 0
\(221\) −14.5711 15.1427i −0.980156 1.01861i
\(222\) 0 0
\(223\) −3.44975 5.97514i −0.231012 0.400125i 0.727094 0.686538i \(-0.240870\pi\)
−0.958106 + 0.286413i \(0.907537\pi\)
\(224\) 0 0
\(225\) −4.24264 + 7.34847i −0.282843 + 0.489898i
\(226\) 0 0
\(227\) 7.86396 13.6208i 0.521949 0.904043i −0.477725 0.878510i \(-0.658538\pi\)
0.999674 0.0255332i \(-0.00812837\pi\)
\(228\) 0 0
\(229\) −8.48528 −0.560723 −0.280362 0.959894i \(-0.590454\pi\)
−0.280362 + 0.959894i \(0.590454\pi\)
\(230\) 0 0
\(231\) 17.2782 + 29.9267i 1.13682 + 1.96903i
\(232\) 0 0
\(233\) −20.4853 −1.34204 −0.671018 0.741441i \(-0.734143\pi\)
−0.671018 + 0.741441i \(0.734143\pi\)
\(234\) 0 0
\(235\) −16.9706 −1.10704
\(236\) 0 0
\(237\) 7.24264 + 12.5446i 0.470460 + 0.814861i
\(238\) 0 0
\(239\) −8.97056 −0.580257 −0.290129 0.956988i \(-0.593698\pi\)
−0.290129 + 0.956988i \(0.593698\pi\)
\(240\) 0 0
\(241\) −15.2279 + 26.3755i −0.980917 + 1.69900i −0.322078 + 0.946713i \(0.604381\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(242\) 0 0
\(243\) 10.8284 18.7554i 0.694644 1.20316i
\(244\) 0 0
\(245\) 17.6569 + 30.5826i 1.12806 + 1.95385i
\(246\) 0 0
\(247\) 3.10660 + 3.22848i 0.197668 + 0.205423i
\(248\) 0 0
\(249\) 4.82843 + 8.36308i 0.305989 + 0.529989i
\(250\) 0 0
\(251\) 8.86396 15.3528i 0.559488 0.969062i −0.438051 0.898950i \(-0.644331\pi\)
0.997539 0.0701119i \(-0.0223356\pi\)
\(252\) 0 0
\(253\) 2.01472 3.48960i 0.126664 0.219389i
\(254\) 0 0
\(255\) 39.7990 2.49231
\(256\) 0 0
\(257\) −8.39949 14.5484i −0.523946 0.907501i −0.999611 0.0278749i \(-0.991126\pi\)
0.475665 0.879626i \(-0.342207\pi\)
\(258\) 0 0
\(259\) 33.0416 2.05311
\(260\) 0 0
\(261\) −24.4853 −1.51560
\(262\) 0 0
\(263\) −4.62132 8.00436i −0.284963 0.493570i 0.687637 0.726054i \(-0.258648\pi\)
−0.972600 + 0.232484i \(0.925315\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) 4.03553 6.98975i 0.246971 0.427766i
\(268\) 0 0
\(269\) 2.74264 4.75039i 0.167222 0.289637i −0.770220 0.637778i \(-0.779854\pi\)
0.937442 + 0.348141i \(0.113187\pi\)
\(270\) 0 0
\(271\) −12.6213 21.8608i −0.766691 1.32795i −0.939348 0.342965i \(-0.888569\pi\)
0.172658 0.984982i \(-0.444765\pi\)
\(272\) 0 0
\(273\) 10.6569 36.9164i 0.644982 2.23428i
\(274\) 0 0
\(275\) 4.86396 + 8.42463i 0.293308 + 0.508024i
\(276\) 0 0
\(277\) 6.74264 11.6786i 0.405126 0.701699i −0.589210 0.807980i \(-0.700561\pi\)
0.994336 + 0.106281i \(0.0338943\pi\)
\(278\) 0 0
\(279\) −8.00000 + 13.8564i −0.478947 + 0.829561i
\(280\) 0 0
\(281\) −2.14214 −0.127789 −0.0638945 0.997957i \(-0.520352\pi\)
−0.0638945 + 0.997957i \(0.520352\pi\)
\(282\) 0 0
\(283\) −5.20711 9.01897i −0.309530 0.536122i 0.668729 0.743506i \(-0.266839\pi\)
−0.978260 + 0.207384i \(0.933505\pi\)
\(284\) 0 0
\(285\) −8.48528 −0.502625
\(286\) 0 0
\(287\) −25.7279 −1.51867
\(288\) 0 0
\(289\) −8.48528 14.6969i −0.499134 0.864526i
\(290\) 0 0
\(291\) −21.7279 −1.27371
\(292\) 0 0
\(293\) 1.15685 2.00373i 0.0675841 0.117059i −0.830253 0.557386i \(-0.811804\pi\)
0.897837 + 0.440327i \(0.145138\pi\)
\(294\) 0 0
\(295\) 1.75736 3.04384i 0.102317 0.177219i
\(296\) 0 0
\(297\) −0.671573 1.16320i −0.0389686 0.0674956i
\(298\) 0 0
\(299\) −4.34924 + 1.07616i −0.251523 + 0.0622358i
\(300\) 0 0
\(301\) 8.98528 + 15.5630i 0.517903 + 0.897034i
\(302\) 0 0
\(303\) 14.2782 24.7305i 0.820260 1.42073i
\(304\) 0 0
\(305\) −9.89949 + 17.1464i −0.566843 + 0.981802i
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 20.4853 1.15790 0.578948 0.815364i \(-0.303463\pi\)
0.578948 + 0.815364i \(0.303463\pi\)
\(314\) 0 0
\(315\) 17.6569 + 30.5826i 0.994851 + 1.72313i
\(316\) 0 0
\(317\) 17.3137 0.972435 0.486217 0.873838i \(-0.338376\pi\)
0.486217 + 0.873838i \(0.338376\pi\)
\(318\) 0 0
\(319\) −14.0355 + 24.3103i −0.785839 + 1.36111i
\(320\) 0 0
\(321\) 23.2279 40.2319i 1.29646 2.24553i
\(322\) 0 0
\(323\) 3.62132 + 6.27231i 0.201496 + 0.349001i
\(324\) 0 0
\(325\) 3.00000 10.3923i 0.166410 0.576461i
\(326\) 0 0
\(327\) −10.2426 17.7408i −0.566419 0.981067i
\(328\) 0 0
\(329\) −13.2426 + 22.9369i −0.730090 + 1.26455i
\(330\) 0 0
\(331\) −3.62132 + 6.27231i −0.199046 + 0.344757i −0.948219 0.317616i \(-0.897118\pi\)
0.749174 + 0.662374i \(0.230451\pi\)
\(332\) 0 0
\(333\) 21.1716 1.16020
\(334\) 0 0
\(335\) −18.7279 32.4377i −1.02322 1.77226i
\(336\) 0 0
\(337\) 4.48528 0.244329 0.122164 0.992510i \(-0.461016\pi\)
0.122164 + 0.992510i \(0.461016\pi\)
\(338\) 0 0
\(339\) −0.414214 −0.0224970
\(340\) 0 0
\(341\) 9.17157 + 15.8856i 0.496669 + 0.860255i
\(342\) 0 0
\(343\) 24.2132 1.30739
\(344\) 0 0
\(345\) 4.24264 7.34847i 0.228416 0.395628i
\(346\) 0 0
\(347\) −15.6213 + 27.0569i −0.838596 + 1.45249i 0.0524719 + 0.998622i \(0.483290\pi\)
−0.891068 + 0.453869i \(0.850043\pi\)
\(348\) 0 0
\(349\) 17.2279 + 29.8396i 0.922190 + 1.59728i 0.796020 + 0.605270i \(0.206935\pi\)
0.126170 + 0.992009i \(0.459732\pi\)
\(350\) 0 0
\(351\) −0.414214 + 1.43488i −0.0221091 + 0.0765881i
\(352\) 0 0
\(353\) 7.32843 + 12.6932i 0.390053 + 0.675591i 0.992456 0.122601i \(-0.0391234\pi\)
−0.602403 + 0.798192i \(0.705790\pi\)
\(354\) 0 0
\(355\) −10.2426 + 17.7408i −0.543623 + 0.941583i
\(356\) 0 0
\(357\) 31.0563 53.7912i 1.64368 2.84693i
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 8.72792 + 15.1172i 0.459364 + 0.795642i
\(362\) 0 0
\(363\) −1.17157 −0.0614916
\(364\) 0 0
\(365\) −35.3137 −1.84840
\(366\) 0 0
\(367\) −4.13604 7.16383i −0.215899 0.373949i 0.737651 0.675182i \(-0.235935\pi\)
−0.953550 + 0.301233i \(0.902602\pi\)
\(368\) 0 0
\(369\) −16.4853 −0.858189
\(370\) 0 0
\(371\) −6.24264 + 10.8126i −0.324102 + 0.561361i
\(372\) 0 0
\(373\) 18.7426 32.4632i 0.970457 1.68088i 0.276280 0.961077i \(-0.410898\pi\)
0.694178 0.719804i \(-0.255768\pi\)
\(374\) 0 0
\(375\) −6.82843 11.8272i −0.352618 0.610753i
\(376\) 0 0
\(377\) 30.2990 7.49706i 1.56048 0.386118i
\(378\) 0 0
\(379\) −13.6924 23.7159i −0.703331 1.21820i −0.967291 0.253671i \(-0.918362\pi\)
0.263960 0.964534i \(-0.414971\pi\)
\(380\) 0 0
\(381\) −1.91421 + 3.31552i −0.0980681 + 0.169859i
\(382\) 0 0
\(383\) −7.86396 + 13.6208i −0.401830 + 0.695989i −0.993947 0.109863i \(-0.964959\pi\)
0.592117 + 0.805852i \(0.298292\pi\)
\(384\) 0 0
\(385\) 40.4853 2.06332
\(386\) 0 0
\(387\) 5.75736 + 9.97204i 0.292663 + 0.506907i
\(388\) 0 0
\(389\) 16.6274 0.843044 0.421522 0.906818i \(-0.361496\pi\)
0.421522 + 0.906818i \(0.361496\pi\)
\(390\) 0 0
\(391\) −7.24264 −0.366276
\(392\) 0 0
\(393\) −4.82843 8.36308i −0.243562 0.421862i
\(394\) 0 0
\(395\) 16.9706 0.853882
\(396\) 0 0
\(397\) −5.74264 + 9.94655i −0.288215 + 0.499203i −0.973384 0.229181i \(-0.926395\pi\)
0.685169 + 0.728384i \(0.259728\pi\)
\(398\) 0 0
\(399\) −6.62132 + 11.4685i −0.331481 + 0.574141i
\(400\) 0 0
\(401\) −5.57107 9.64937i −0.278206 0.481867i 0.692733 0.721194i \(-0.256406\pi\)
−0.970939 + 0.239327i \(0.923073\pi\)
\(402\) 0 0
\(403\) 5.65685 19.5959i 0.281788 0.976142i
\(404\) 0 0
\(405\) −13.4142 23.2341i −0.666558 1.15451i
\(406\) 0 0
\(407\) 12.1360 21.0202i 0.601561 1.04193i
\(408\) 0 0
\(409\) 5.25736 9.10601i 0.259960 0.450263i −0.706271 0.707941i \(-0.749624\pi\)
0.966231 + 0.257678i \(0.0829574\pi\)
\(410\) 0 0
\(411\) 22.5563 1.11262
\(412\) 0 0
\(413\) −2.74264 4.75039i −0.134957 0.233752i
\(414\) 0 0
\(415\) 11.3137 0.555368
\(416\) 0 0
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) −5.86396 10.1567i −0.286473 0.496186i 0.686492 0.727137i \(-0.259150\pi\)
−0.972965 + 0.230951i \(0.925816\pi\)
\(420\) 0 0
\(421\) −0.485281 −0.0236512 −0.0118256 0.999930i \(-0.503764\pi\)
−0.0118256 + 0.999930i \(0.503764\pi\)
\(422\) 0 0
\(423\) −8.48528 + 14.6969i −0.412568 + 0.714590i
\(424\) 0 0
\(425\) 8.74264 15.1427i 0.424080 0.734529i
\(426\) 0 0
\(427\) 15.4497 + 26.7597i 0.747666 + 1.29499i
\(428\) 0 0
\(429\) −19.5711 20.3389i −0.944900 0.981969i
\(430\) 0 0
\(431\) 17.3492 + 30.0498i 0.835684 + 1.44745i 0.893473 + 0.449118i \(0.148262\pi\)
−0.0577890 + 0.998329i \(0.518405\pi\)
\(432\) 0 0
\(433\) 1.25736 2.17781i 0.0604248 0.104659i −0.834231 0.551416i \(-0.814088\pi\)
0.894655 + 0.446757i \(0.147421\pi\)
\(434\) 0 0
\(435\) −29.5563 + 51.1931i −1.41712 + 2.45452i
\(436\) 0 0
\(437\) 1.54416 0.0738670
\(438\) 0 0
\(439\) 14.0355 + 24.3103i 0.669879 + 1.16027i 0.977937 + 0.208898i \(0.0669876\pi\)
−0.308058 + 0.951368i \(0.599679\pi\)
\(440\) 0 0
\(441\) 35.3137 1.68161
\(442\) 0 0
\(443\) 28.9706 1.37643 0.688216 0.725505i \(-0.258394\pi\)
0.688216 + 0.725505i \(0.258394\pi\)
\(444\) 0 0
\(445\) −4.72792 8.18900i −0.224125 0.388196i
\(446\) 0 0
\(447\) 8.07107 0.381748
\(448\) 0 0
\(449\) −6.25736 + 10.8381i −0.295303 + 0.511480i −0.975055 0.221962i \(-0.928754\pi\)
0.679752 + 0.733442i \(0.262087\pi\)
\(450\) 0 0
\(451\) −9.44975 + 16.3674i −0.444971 + 0.770713i
\(452\) 0 0
\(453\) 20.4853 + 35.4815i 0.962482 + 1.66707i
\(454\) 0 0
\(455\) −31.2132 32.4377i −1.46330 1.52070i
\(456\) 0 0
\(457\) −15.5000 26.8468i −0.725059 1.25584i −0.958950 0.283577i \(-0.908479\pi\)
0.233890 0.972263i \(-0.424854\pi\)
\(458\) 0 0
\(459\) −1.20711 + 2.09077i −0.0563429 + 0.0975888i
\(460\) 0 0
\(461\) 0.600505 1.04011i 0.0279683 0.0484425i −0.851702 0.524026i \(-0.824430\pi\)
0.879671 + 0.475583i \(0.157763\pi\)
\(462\) 0 0
\(463\) 18.3431 0.852478 0.426239 0.904611i \(-0.359838\pi\)
0.426239 + 0.904611i \(0.359838\pi\)
\(464\) 0 0
\(465\) 19.3137 + 33.4523i 0.895652 + 1.55131i
\(466\) 0 0
\(467\) −6.97056 −0.322559 −0.161280 0.986909i \(-0.551562\pi\)
−0.161280 + 0.986909i \(0.551562\pi\)
\(468\) 0 0
\(469\) −58.4558 −2.69924
\(470\) 0 0
\(471\) −0.585786 1.01461i −0.0269916 0.0467508i
\(472\) 0 0
\(473\) 13.2010 0.606983
\(474\) 0 0
\(475\) −1.86396 + 3.22848i −0.0855244 + 0.148133i
\(476\) 0 0
\(477\) −4.00000 + 6.92820i −0.183147 + 0.317221i
\(478\) 0 0
\(479\) 4.37868 + 7.58410i 0.200067 + 0.346526i 0.948550 0.316628i \(-0.102551\pi\)
−0.748483 + 0.663154i \(0.769217\pi\)
\(480\) 0 0
\(481\) −26.1985 + 6.48244i −1.19455 + 0.295574i
\(482\) 0 0
\(483\) −6.62132 11.4685i −0.301281 0.521833i
\(484\) 0 0
\(485\) −12.7279 + 22.0454i −0.577945 + 1.00103i
\(486\) 0 0
\(487\) 6.44975 11.1713i 0.292266 0.506219i −0.682079 0.731278i \(-0.738924\pi\)
0.974345 + 0.225059i \(0.0722574\pi\)
\(488\) 0 0
\(489\) −40.4558 −1.82948
\(490\) 0 0
\(491\) 11.1066 + 19.2372i 0.501234 + 0.868163i 0.999999 + 0.00142539i \(0.000453717\pi\)
−0.498765 + 0.866737i \(0.666213\pi\)
\(492\) 0 0
\(493\) 50.4558 2.27242
\(494\) 0 0
\(495\) 25.9411 1.16597
\(496\) 0 0
\(497\) 15.9853 + 27.6873i 0.717038 + 1.24195i
\(498\) 0 0
\(499\) 17.6569 0.790429 0.395215 0.918589i \(-0.370670\pi\)
0.395215 + 0.918589i \(0.370670\pi\)
\(500\) 0 0
\(501\) 18.9853 32.8835i 0.848200 1.46913i
\(502\) 0 0
\(503\) −7.37868 + 12.7802i −0.328999 + 0.569843i −0.982314 0.187244i \(-0.940045\pi\)
0.653314 + 0.757087i \(0.273378\pi\)
\(504\) 0 0
\(505\) −16.7279 28.9736i −0.744383 1.28931i
\(506\) 0 0
\(507\) −1.20711 + 31.3616i −0.0536095 + 1.39282i
\(508\) 0 0
\(509\) −2.57107 4.45322i −0.113961 0.197386i 0.803403 0.595435i \(-0.203020\pi\)
−0.917364 + 0.398050i \(0.869687\pi\)
\(510\) 0 0
\(511\) −27.5563 + 47.7290i −1.21902 + 2.11141i
\(512\) 0 0
\(513\) 0.257359 0.445759i 0.0113627 0.0196808i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.72792 + 16.8493i 0.427834 + 0.741029i
\(518\) 0 0
\(519\) 21.7279 0.953750
\(520\) 0 0
\(521\) −9.17157 −0.401814 −0.200907 0.979610i \(-0.564389\pi\)
−0.200907 + 0.979610i \(0.564389\pi\)
\(522\) 0 0
\(523\) −8.20711 14.2151i −0.358872 0.621584i 0.628901 0.777485i \(-0.283505\pi\)
−0.987773 + 0.155901i \(0.950172\pi\)
\(524\) 0 0
\(525\) 31.9706 1.39531
\(526\) 0 0
\(527\) 16.4853 28.5533i 0.718110 1.24380i
\(528\) 0 0
\(529\) 10.7279 18.5813i 0.466431 0.807883i
\(530\) 0 0
\(531\) −1.75736 3.04384i −0.0762629 0.132091i
\(532\) 0 0
\(533\) 20.3995 5.04757i 0.883600 0.218634i
\(534\) 0 0
\(535\) −27.2132 47.1347i −1.17653 2.03781i
\(536\) 0 0
\(537\) −15.3995 + 26.6727i −0.664537 + 1.15101i
\(538\) 0 0
\(539\) 20.2426 35.0613i 0.871912 1.51020i
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −0.585786 1.01461i −0.0251385 0.0435412i
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 0 0
\(549\) 9.89949 + 17.1464i 0.422500 + 0.731792i
\(550\) 0 0
\(551\) −10.7574 −0.458279
\(552\) 0 0
\(553\) 13.2426 22.9369i 0.563134 0.975377i
\(554\) 0 0
\(555\) 25.5563 44.2649i 1.08481 1.87894i
\(556\) 0 0
\(557\) 4.32843 + 7.49706i 0.183401 + 0.317660i 0.943037 0.332689i \(-0.107956\pi\)
−0.759635 + 0.650349i \(0.774623\pi\)
\(558\) 0 0
\(559\) −10.1777 10.5769i −0.430470 0.447357i
\(560\) 0 0
\(561\) −22.8137 39.5145i −0.963196 1.66830i
\(562\) 0 0
\(563\) 16.3492 28.3177i 0.689038 1.19345i −0.283111 0.959087i \(-0.591366\pi\)
0.972149 0.234362i \(-0.0753002\pi\)
\(564\) 0 0
\(565\) −0.242641 + 0.420266i −0.0102080 + 0.0176807i
\(566\) 0 0
\(567\) −41.8701 −1.75838
\(568\) 0 0
\(569\) 12.9853 + 22.4912i 0.544371 + 0.942879i 0.998646 + 0.0520172i \(0.0165651\pi\)
−0.454275 + 0.890862i \(0.650102\pi\)
\(570\) 0 0
\(571\) −40.2843 −1.68584 −0.842922 0.538036i \(-0.819167\pi\)
−0.842922 + 0.538036i \(0.819167\pi\)
\(572\) 0 0
\(573\) 16.3137 0.681515
\(574\) 0 0
\(575\) −1.86396 3.22848i −0.0777325 0.134637i
\(576\) 0 0
\(577\) 4.48528 0.186725 0.0933624 0.995632i \(-0.470238\pi\)
0.0933624 + 0.995632i \(0.470238\pi\)
\(578\) 0 0
\(579\) 23.5208 40.7392i 0.977492 1.69307i
\(580\) 0 0
\(581\) 8.82843 15.2913i 0.366265 0.634389i
\(582\) 0 0
\(583\) 4.58579 + 7.94282i 0.189924 + 0.328958i
\(584\) 0 0
\(585\) −20.0000 20.7846i −0.826898 0.859338i
\(586\) 0 0
\(587\) −10.3492 17.9254i −0.427159 0.739861i 0.569460 0.822019i \(-0.307152\pi\)
−0.996619 + 0.0821578i \(0.973819\pi\)
\(588\) 0 0
\(589\) −3.51472 + 6.08767i −0.144821 + 0.250838i
\(590\) 0 0
\(591\) 3.62132 6.27231i 0.148961 0.258008i
\(592\) 0 0
\(593\) 14.8284 0.608931 0.304465 0.952523i \(-0.401522\pi\)
0.304465 + 0.952523i \(0.401522\pi\)
\(594\) 0 0
\(595\) −36.3848 63.0203i −1.49163 2.58358i
\(596\) 0 0
\(597\) −58.4558 −2.39244
\(598\) 0 0
\(599\) 47.9411 1.95882 0.979411 0.201878i \(-0.0647045\pi\)
0.979411 + 0.201878i \(0.0647045\pi\)
\(600\) 0 0
\(601\) 5.25736 + 9.10601i 0.214452 + 0.371442i 0.953103 0.302646i \(-0.0978701\pi\)
−0.738651 + 0.674088i \(0.764537\pi\)
\(602\) 0 0
\(603\) −37.4558 −1.52532
\(604\) 0 0
\(605\) −0.686292 + 1.18869i −0.0279017 + 0.0483272i
\(606\) 0 0
\(607\) 0.792893 1.37333i 0.0321825 0.0557418i −0.849486 0.527612i \(-0.823088\pi\)
0.881668 + 0.471870i \(0.156421\pi\)
\(608\) 0 0
\(609\) 46.1274 + 79.8950i 1.86918 + 3.23751i
\(610\) 0 0
\(611\) 6.00000 20.7846i 0.242734 0.840855i
\(612\) 0 0
\(613\) −7.25736 12.5701i −0.293122 0.507702i 0.681424 0.731889i \(-0.261361\pi\)
−0.974546 + 0.224186i \(0.928028\pi\)
\(614\) 0 0
\(615\) −19.8995 + 34.4669i −0.802425 + 1.38984i
\(616\) 0 0
\(617\) 22.1569 38.3768i 0.892001 1.54499i 0.0545289 0.998512i \(-0.482634\pi\)
0.837472 0.546479i \(-0.184032\pi\)
\(618\) 0 0
\(619\) 4.97056 0.199784 0.0998919 0.994998i \(-0.468150\pi\)
0.0998919 + 0.994998i \(0.468150\pi\)
\(620\) 0 0
\(621\) 0.257359 + 0.445759i 0.0103275 + 0.0178877i
\(622\) 0 0
\(623\) −14.7574 −0.591241
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 4.86396 + 8.42463i 0.194248 + 0.336447i
\(628\) 0 0
\(629\) −43.6274 −1.73954
\(630\) 0 0
\(631\) 3.62132 6.27231i 0.144162 0.249697i −0.784898 0.619625i \(-0.787285\pi\)
0.929060 + 0.369929i \(0.120618\pi\)
\(632\) 0 0
\(633\) 16.3995 28.4048i 0.651821 1.12899i
\(634\) 0 0
\(635\) 2.24264 + 3.88437i 0.0889965 + 0.154146i
\(636\) 0 0
\(637\) −43.6985 + 10.8126i −1.73140 + 0.428410i
\(638\) 0 0
\(639\) 10.2426 + 17.7408i 0.405193 + 0.701814i
\(640\) 0 0
\(641\) 11.3995 19.7445i 0.450253 0.779861i −0.548148 0.836381i \(-0.684667\pi\)
0.998401 + 0.0565200i \(0.0180005\pi\)
\(642\) 0 0
\(643\) −0.106602 + 0.184640i −0.00420396 + 0.00728147i −0.868120 0.496355i \(-0.834671\pi\)
0.863916 + 0.503636i \(0.168005\pi\)
\(644\) 0 0
\(645\) 27.7990 1.09458
\(646\) 0 0
\(647\) −11.6213 20.1287i −0.456881 0.791342i 0.541913 0.840435i \(-0.317700\pi\)
−0.998794 + 0.0490931i \(0.984367\pi\)
\(648\) 0 0
\(649\) −4.02944 −0.158169
\(650\) 0 0
\(651\) 60.2843 2.36273
\(652\) 0 0
\(653\) 11.5711 + 20.0417i 0.452811 + 0.784291i 0.998559 0.0536576i \(-0.0170879\pi\)
−0.545749 + 0.837949i \(0.683755\pi\)
\(654\) 0 0
\(655\) −11.3137 −0.442063
\(656\) 0 0
\(657\) −17.6569 + 30.5826i −0.688859 + 1.19314i
\(658\) 0 0
\(659\) −12.1066 + 20.9692i −0.471606 + 0.816846i −0.999472 0.0324816i \(-0.989659\pi\)
0.527866 + 0.849328i \(0.322992\pi\)
\(660\) 0 0
\(661\) −12.2279 21.1794i −0.475611 0.823782i 0.523999 0.851719i \(-0.324440\pi\)
−0.999610 + 0.0279366i \(0.991106\pi\)
\(662\) 0 0
\(663\) −14.0711 + 48.7436i −0.546475 + 1.89304i
\(664\) 0 0
\(665\) 7.75736 + 13.4361i 0.300817 + 0.521031i
\(666\) 0 0
\(667\) 5.37868 9.31615i 0.208263 0.360723i
\(668\) 0 0
\(669\) −8.32843 + 14.4253i −0.321996 + 0.557713i
\(670\) 0 0
\(671\) 22.6985 0.876265
\(672\) 0 0
\(673\) 4.01472 + 6.95370i 0.154756 + 0.268045i 0.932970 0.359954i \(-0.117208\pi\)
−0.778214 + 0.627999i \(0.783874\pi\)
\(674\) 0 0
\(675\) −1.24264 −0.0478293
\(676\) 0 0
\(677\) 25.4558 0.978348 0.489174 0.872186i \(-0.337298\pi\)
0.489174 + 0.872186i \(0.337298\pi\)
\(678\) 0 0
\(679\) 19.8640 + 34.4054i 0.762309 + 1.32036i
\(680\) 0 0
\(681\) −37.9706 −1.45504
\(682\) 0 0
\(683\) −4.62132 + 8.00436i −0.176830 + 0.306278i −0.940793 0.338982i \(-0.889918\pi\)
0.763963 + 0.645260i \(0.223251\pi\)
\(684\) 0 0
\(685\) 13.2132 22.8859i 0.504851 0.874427i
\(686\) 0 0
\(687\) 10.2426 + 17.7408i 0.390781 + 0.676853i
\(688\) 0 0
\(689\) 2.82843 9.79796i 0.107754 0.373273i
\(690\) 0 0
\(691\) −8.03553 13.9180i −0.305686 0.529464i 0.671728 0.740798i \(-0.265552\pi\)
−0.977414 + 0.211334i \(0.932219\pi\)
\(692\) 0 0
\(693\) 20.2426 35.0613i 0.768954 1.33187i
\(694\) 0 0
\(695\) 1.75736 3.04384i 0.0666604 0.115459i
\(696\) 0 0
\(697\) 33.9706 1.28673
\(698\) 0 0
\(699\) 24.7279 + 42.8300i 0.935296 + 1.61998i
\(700\) 0 0
\(701\) 8.48528 0.320485 0.160242 0.987078i \(-0.448772\pi\)
0.160242 + 0.987078i \(0.448772\pi\)
\(702\) 0 0
\(703\) 9.30152 0.350813
\(704\) 0 0
\(705\) 20.4853 + 35.4815i 0.771520 + 1.33631i
\(706\) 0 0
\(707\) −52.2132 −1.96368
\(708\) 0 0
\(709\) −9.74264 + 16.8747i −0.365893 + 0.633744i −0.988919 0.148456i \(-0.952570\pi\)
0.623026 + 0.782201i \(0.285903\pi\)
\(710\) 0 0
\(711\) 8.48528 14.6969i 0.318223 0.551178i
\(712\) 0 0
\(713\) −3.51472 6.08767i −0.131627 0.227985i
\(714\) 0 0
\(715\) −32.1005 + 7.94282i −1.20049 + 0.297044i
\(716\) 0 0
\(717\) 10.8284 + 18.7554i 0.404395 + 0.700433i
\(718\) 0 0
\(719\) −11.3787 + 19.7085i −0.424353 + 0.735001i −0.996360 0.0852478i \(-0.972832\pi\)
0.572007 + 0.820249i \(0.306165\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 73.5269 2.73450
\(724\) 0 0
\(725\) 12.9853 + 22.4912i 0.482261 + 0.835301i
\(726\) 0 0
\(727\) −35.3137 −1.30971 −0.654856 0.755753i \(-0.727271\pi\)
−0.654856 + 0.755753i \(0.727271\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) −11.8640 20.5490i −0.438804 0.760032i
\(732\) 0 0
\(733\) −43.9411 −1.62300 −0.811501 0.584351i \(-0.801349\pi\)
−0.811501 + 0.584351i \(0.801349\pi\)
\(734\) 0 0
\(735\) 42.6274 73.8329i 1.57234 2.72337i
\(736\) 0 0
\(737\) −21.4706 + 37.1881i −0.790878 + 1.36984i
\(738\) 0 0
\(739\) 15.1066 + 26.1654i 0.555705 + 0.962510i 0.997848 + 0.0655653i \(0.0208851\pi\)
−0.442143 + 0.896945i \(0.645782\pi\)
\(740\) 0 0
\(741\) 3.00000 10.3923i 0.110208 0.381771i
\(742\) 0 0
\(743\) −3.62132 6.27231i −0.132853 0.230109i 0.791922 0.610622i \(-0.209081\pi\)
−0.924775 + 0.380513i \(0.875747\pi\)
\(744\) 0 0
\(745\) 4.72792 8.18900i 0.173218 0.300022i
\(746\) 0 0
\(747\) 5.65685 9.79796i 0.206973 0.358489i
\(748\) 0 0
\(749\) −84.9411 −3.10368
\(750\) 0 0
\(751\) 8.55025 + 14.8095i 0.312003 + 0.540405i 0.978796 0.204838i \(-0.0656667\pi\)
−0.666793 + 0.745243i \(0.732333\pi\)
\(752\) 0 0
\(753\) −42.7990 −1.55968
\(754\) 0 0
\(755\) 48.0000 1.74690
\(756\) 0 0
\(757\) −11.7426 20.3389i −0.426794 0.739228i 0.569793 0.821789i \(-0.307024\pi\)
−0.996586 + 0.0825605i \(0.973690\pi\)
\(758\) 0 0
\(759\) −9.72792 −0.353101
\(760\) 0 0
\(761\) −14.7426 + 25.5350i −0.534420 + 0.925643i 0.464771 + 0.885431i \(0.346137\pi\)
−0.999191 + 0.0402121i \(0.987197\pi\)
\(762\) 0 0
\(763\) −18.7279 + 32.4377i −0.677996 + 1.17432i
\(764\) 0 0
\(765\) −23.3137 40.3805i −0.842909 1.45996i
\(766\) 0 0
\(767\) 3.10660 + 3.22848i 0.112173 + 0.116573i
\(768\) 0 0
\(769\) 22.7132 + 39.3404i 0.819059 + 1.41865i 0.906376 + 0.422471i \(0.138837\pi\)
−0.0873172 + 0.996181i \(0.527829\pi\)
\(770\) 0 0
\(771\) −20.2782 + 35.1228i −0.730301 + 1.26492i
\(772\) 0 0
\(773\) −5.74264 + 9.94655i −0.206548 + 0.357752i −0.950625 0.310342i \(-0.899556\pi\)
0.744077 + 0.668094i \(0.232890\pi\)
\(774\) 0 0
\(775\) 16.9706 0.609601
\(776\) 0 0
\(777\) −39.8848 69.0825i −1.43086 2.47832i
\(778\) 0 0
\(779\) −7.24264 −0.259495
\(780\) 0 0
\(781\) 23.4853 0.840369
\(782\) 0 0
\(783\) −1.79289 3.10538i −0.0640728 0.110977i
\(784\) 0 0
\(785\) −1.37258 −0.0489896
\(786\) 0 0
\(787\) 19.0061 32.9195i 0.677494 1.17345i −0.298239 0.954491i \(-0.596399\pi\)
0.975733 0.218963i \(-0.0702674\pi\)
\(788\) 0 0
\(789\) −11.1569 + 19.3242i −0.397195 + 0.687961i
\(790\) 0 0
\(791\) 0.378680 + 0.655892i 0.0134643 + 0.0233208i
\(792\) 0 0
\(793\) −17.5000 18.1865i −0.621443 0.645823i
\(794\) 0 0
\(795\) 9.65685 + 16.7262i 0.342493 + 0.593216i
\(796\) 0 0
\(797\) −16.5000 + 28.5788i −0.584460 + 1.01231i 0.410483 + 0.911868i \(0.365360\pi\)
−0.994943 + 0.100446i \(0.967973\pi\)
\(798\) 0 0
\(799\) 17.4853 30.2854i 0.618585 1.07142i
\(800\) 0 0
\(801\) −9.45584 −0.334106
\(802\) 0 0
\(803\) 20.2426 + 35.0613i 0.714347 + 1.23729i
\(804\) 0 0
\(805\) −15.5147 −0.546822
\(806\) 0 0
\(807\) −13.2426 −0.466163
\(808\) 0 0
\(809\) 2.91421 + 5.04757i 0.102458 + 0.177463i 0.912697 0.408637i \(-0.133996\pi\)
−0.810239 + 0.586100i \(0.800663\pi\)
\(810\) 0 0
\(811\) 12.3431 0.433426 0.216713 0.976235i \(-0.430466\pi\)
0.216713 + 0.976235i \(0.430466\pi\)
\(812\) 0 0
\(813\) −30.4706 + 52.7766i −1.06865 + 1.85095i
\(814\) 0 0
\(815\) −23.6985 + 41.0470i −0.830122 + 1.43781i
\(816\) 0 0
\(817\) 2.52944 + 4.38111i 0.0884938 + 0.153276i
\(818\) 0 0
\(819\) −43.6985 + 10.8126i −1.52695 + 0.377822i
\(820\) 0 0
\(821\) 9.98528 + 17.2950i 0.348489 + 0.603600i 0.985981 0.166856i \(-0.0533616\pi\)
−0.637492 + 0.770457i \(0.720028\pi\)
\(822\) 0 0
\(823\) 0.106602 0.184640i 0.00371590 0.00643613i −0.864161 0.503215i \(-0.832151\pi\)
0.867877 + 0.496778i \(0.165484\pi\)
\(824\) 0 0
\(825\) 11.7426 20.3389i 0.408826 0.708108i
\(826\) 0 0
\(827\) −21.9411 −0.762968 −0.381484 0.924376i \(-0.624587\pi\)
−0.381484 + 0.924376i \(0.624587\pi\)
\(828\) 0 0
\(829\) 17.9853 + 31.1514i 0.624655 + 1.08193i 0.988608 + 0.150516i \(0.0480936\pi\)
−0.363953 + 0.931417i \(0.618573\pi\)
\(830\) 0 0
\(831\) −32.5563 −1.12937
\(832\) 0 0
\(833\) −72.7696 −2.52132
\(834\) 0 0
\(835\) −22.2426 38.5254i −0.769738 1.33323i
\(836\) 0 0
\(837\) −2.34315 −0.0809910
\(838\) 0 0
\(839\) −5.34924 + 9.26516i −0.184676 + 0.319869i −0.943467 0.331465i \(-0.892457\pi\)
0.758791 + 0.651334i \(0.225790\pi\)
\(840\) 0 0
\(841\) −22.9706 + 39.7862i −0.792088 + 1.37194i
\(842\) 0 0
\(843\) 2.58579 + 4.47871i 0.0890592 + 0.154255i
\(844\) 0 0
\(845\) 31.1127 + 19.5959i 1.07031 + 0.674120i
\(846\) 0 0
\(847\) 1.07107 + 1.85514i 0.0368023 + 0.0637435i
\(848\) 0 0
\(849\) −12.5711 + 21.7737i −0.431438 + 0.747272i
\(850\) 0 0
\(851\) −4.65076 + 8.05535i −0.159426 + 0.276134i
\(852\) 0 0
\(853\) 41.4558 1.41942 0.709711 0.704493i \(-0.248826\pi\)
0.709711 + 0.704493i \(0.248826\pi\)
\(854\) 0 0
\(855\) 4.97056 + 8.60927i 0.169990 + 0.294431i
\(856\) 0 0
\(857\) 33.1716 1.13312 0.566560 0.824021i \(-0.308274\pi\)
0.566560 + 0.824021i \(0.308274\pi\)
\(858\) 0 0
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) 0 0
\(861\) 31.0563 + 53.7912i 1.05840 + 1.83320i
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) 12.7279 22.0454i 0.432762 0.749566i
\(866\) 0 0
\(867\) −20.4853 + 35.4815i −0.695717 + 1.20502i
\(868\) 0 0
\(869\) −9.72792 16.8493i −0.329997 0.571572i
\(870\) 0 0
\(871\) 46.3492 11.4685i 1.57048 0.388594i
\(872\) 0 0
\(873\) 12.7279 + 22.0454i 0.430775 + 0.746124i
\(874\) 0 0
\(875\) −12.4853 + 21.6251i −0.422080 + 0.731063i
\(876\) 0 0
\(877\) 11.9853 20.7591i 0.404714 0.700986i −0.589574 0.807714i \(-0.700704\pi\)
0.994288 + 0.106729i \(0.0340377\pi\)
\(878\) 0 0
\(879\) −5.58579 −0.188404
\(880\) 0 0
\(881\) −9.08579 15.7370i −0.306108 0.530194i 0.671399 0.741096i \(-0.265694\pi\)
−0.977507 + 0.210901i \(0.932360\pi\)
\(882\) 0 0
\(883\) 27.5980 0.928746 0.464373 0.885640i \(-0.346280\pi\)
0.464373 + 0.885640i \(0.346280\pi\)
\(884\) 0 0
\(885\) −8.48528 −0.285230
\(886\) 0 0
\(887\) −12.1066 20.9692i −0.406500 0.704078i 0.587995 0.808865i \(-0.299918\pi\)
−0.994495 + 0.104786i \(0.966584\pi\)
\(888\) 0 0
\(889\) 7.00000 0.234772
\(890\) 0 0
\(891\) −15.3787 + 26.6367i −0.515205 + 0.892362i
\(892\) 0 0
\(893\) −3.72792 + 6.45695i −0.124750 + 0.216074i
\(894\) 0 0
\(895\) 18.0416 + 31.2490i 0.603065 + 1.04454i
\(896\) 0 0
\(897\) 7.50000 + 7.79423i 0.250418 + 0.260242i
\(898\) 0 0
\(899\) 24.4853 + 42.4098i 0.816630 + 1.41444i
\(900\) 0 0
\(901\) 8.24264 14.2767i 0.274602 0.475625i
\(902\) 0 0
\(903\) 21.6924 37.5723i 0.721877 1.25033i
\(904\) 0 0
\(905\) −1.37258 −0.0456262
\(906\) 0 0
\(907\) 18.1066 + 31.3616i 0.601220 + 1.04134i 0.992637 + 0.121130i \(0.0386517\pi\)
−0.391417 + 0.920213i \(0.628015\pi\)
\(908\) 0 0
\(909\) −33.4558 −1.10966
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −6.48528 11.2328i −0.214631 0.371753i
\(914\) 0 0
\(915\) 47.7990 1.58019
\(916\) 0 0
\(917\) −8.82843 + 15.2913i −0.291540 + 0.504963i
\(918\) 0 0
\(919\) −19.1777 + 33.2167i −0.632613 + 1.09572i 0.354403 + 0.935093i \(0.384684\pi\)
−0.987016 + 0.160625i \(0.948649\pi\)
\(920\) 0 0
\(921\) 14.4853 + 25.0892i 0.477306 + 0.826719i
\(922\) 0 0
\(923\) −18.1066 18.8169i −0.595986 0.619367i
\(924\) 0 0
\(925\) −11.2279 19.4473i −0.369172 0.639424i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.05635 8.75785i 0.165893 0.287336i −0.771079 0.636740i \(-0.780283\pi\)
0.936972 + 0.349404i \(0.113616\pi\)
\(930\) 0 0
\(931\) 15.5147 0.508474
\(932\) 0 0
\(933\) −28.9706 50.1785i −0.948454 1.64277i
\(934\) 0 0
\(935\) −53.4558 −1.74819
\(936\) 0 0
\(937\) −45.4558 −1.48498 −0.742489 0.669858i \(-0.766355\pi\)
−0.742489 + 0.669858i \(0.766355\pi\)
\(938\) 0 0
\(939\) −24.7279 42.8300i −0.806965 1.39770i
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 3.62132 6.27231i 0.117926 0.204255i
\(944\) 0 0
\(945\) −2.58579 + 4.47871i −0.0841156 + 0.145693i
\(946\) 0 0
\(947\) 1.62132 + 2.80821i 0.0526858 + 0.0912545i 0.891166 0.453678i \(-0.149888\pi\)
−0.838480 + 0.544933i \(0.816555\pi\)
\(948\) 0 0
\(949\) 12.4853 43.2503i 0.405289 1.40396i
\(950\) 0 0
\(951\) −20.8995 36.1990i −0.677713 1.17383i
\(952\) 0 0
\(953\) 1.67157 2.89525i 0.0541476 0.0937863i −0.837681 0.546160i \(-0.816089\pi\)
0.891829 + 0.452373i \(0.149423\pi\)
\(954\) 0 0
\(955\) 9.55635 16.5521i 0.309236 0.535613i
\(956\) 0 0
\(957\) 67.7696 2.19068
\(958\) 0 0
\(959\) −20.6213 35.7172i −0.665897 1.15337i
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −54.4264 −1.75387
\(964\) 0 0
\(965\) −27.5563 47.7290i −0.887070 1.53645i
\(966\) 0 0
\(967\) 7.02944 0.226051 0.113026 0.993592i \(-0.463946\pi\)
0.113026 + 0.993592i \(0.463946\pi\)
\(968\) 0 0
\(969\) 8.74264 15.1427i 0.280854 0.486454i
\(970\) 0 0
\(971\) 16.3787 28.3687i 0.525617 0.910395i −0.473938 0.880558i \(-0.657168\pi\)
0.999555 0.0298368i \(-0.00949877\pi\)
\(972\) 0 0
\(973\) −2.74264 4.75039i −0.0879250 0.152291i
\(974\) 0 0
\(975\) −25.3492 + 6.27231i −0.811825 + 0.200875i
\(976\) 0 0
\(977\) −21.6421 37.4853i −0.692393 1.19926i −0.971052 0.238870i \(-0.923223\pi\)
0.278658 0.960390i \(-0.410110\pi\)
\(978\) 0 0
\(979\) −5.42031 + 9.38825i −0.173234 + 0.300050i
\(980\) 0 0
\(981\) −12.0000 + 20.7846i −0.383131 + 0.663602i
\(982\) 0 0
\(983\) 0.970563 0.0309561 0.0154781 0.999880i \(-0.495073\pi\)
0.0154781 + 0.999880i \(0.495073\pi\)
\(984\) 0 0
\(985\) −4.24264 7.34847i −0.135182 0.234142i
\(986\) 0 0
\(987\) 63.9411 2.03527
\(988\) 0 0
\(989\) −5.05887 −0.160863
\(990\) 0 0
\(991\) −29.0772 50.3631i −0.923667 1.59984i −0.793692 0.608320i \(-0.791844\pi\)
−0.129975 0.991517i \(-0.541490\pi\)
\(992\) 0 0
\(993\) 17.4853 0.554879
\(994\) 0 0
\(995\) −34.2426 + 59.3100i −1.08556 + 1.88025i
\(996\) 0 0
\(997\) −17.4706 + 30.2599i −0.553298 + 0.958341i 0.444735 + 0.895662i \(0.353298\pi\)
−0.998034 + 0.0626788i \(0.980036\pi\)
\(998\) 0 0
\(999\) 1.55025 + 2.68512i 0.0490478 + 0.0849533i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.i.k.705.1 4
4.3 odd 2 832.2.i.p.705.2 4
8.3 odd 2 416.2.i.c.289.1 4
8.5 even 2 416.2.i.f.289.2 yes 4
13.9 even 3 inner 832.2.i.k.321.1 4
52.35 odd 6 832.2.i.p.321.2 4
104.3 odd 6 5408.2.a.be.1.2 2
104.29 even 6 5408.2.a.o.1.1 2
104.35 odd 6 416.2.i.c.321.1 yes 4
104.61 even 6 416.2.i.f.321.2 yes 4
104.75 odd 6 5408.2.a.bf.1.2 2
104.101 even 6 5408.2.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.c.289.1 4 8.3 odd 2
416.2.i.c.321.1 yes 4 104.35 odd 6
416.2.i.f.289.2 yes 4 8.5 even 2
416.2.i.f.321.2 yes 4 104.61 even 6
832.2.i.k.321.1 4 13.9 even 3 inner
832.2.i.k.705.1 4 1.1 even 1 trivial
832.2.i.p.321.2 4 52.35 odd 6
832.2.i.p.705.2 4 4.3 odd 2
5408.2.a.n.1.1 2 104.101 even 6
5408.2.a.o.1.1 2 104.29 even 6
5408.2.a.be.1.2 2 104.3 odd 6
5408.2.a.bf.1.2 2 104.75 odd 6