Properties

Label 832.2.w.e.641.2
Level $832$
Weight $2$
Character 832.641
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(257,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 641.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.641
Dual form 832.2.w.e.257.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{3} +3.46410i q^{5} +(-2.59808 + 1.50000i) q^{7} +(-4.33013 - 2.50000i) q^{11} +(1.00000 - 3.46410i) q^{13} +(5.19615 + 3.00000i) q^{15} +(3.50000 + 6.06218i) q^{17} +(-4.33013 + 2.50000i) q^{19} +5.19615i q^{21} +(-2.59808 + 4.50000i) q^{23} -7.00000 q^{25} +5.19615 q^{27} +(-2.50000 + 4.33013i) q^{29} +2.00000i q^{31} +(-7.50000 + 4.33013i) q^{33} +(-5.19615 - 9.00000i) q^{35} +(-4.50000 - 2.59808i) q^{37} +(-4.33013 - 4.50000i) q^{39} +(-1.50000 - 0.866025i) q^{41} +(2.59808 + 4.50000i) q^{43} +4.00000i q^{47} +(1.00000 - 1.73205i) q^{49} +12.1244 q^{51} -4.00000 q^{53} +(8.66025 - 15.0000i) q^{55} +8.66025i q^{57} +(6.06218 - 3.50000i) q^{59} +(1.50000 + 2.59808i) q^{61} +(12.0000 + 3.46410i) q^{65} +(-2.59808 - 1.50000i) q^{67} +(4.50000 + 7.79423i) q^{69} +(6.06218 - 3.50000i) q^{71} -3.46410i q^{73} +(-6.06218 + 10.5000i) q^{75} +15.0000 q^{77} +3.46410 q^{79} +(4.50000 - 7.79423i) q^{81} +14.0000i q^{83} +(-21.0000 + 12.1244i) q^{85} +(4.33013 + 7.50000i) q^{87} +(1.50000 + 0.866025i) q^{89} +(2.59808 + 10.5000i) q^{91} +(3.00000 + 1.73205i) q^{93} +(-8.66025 - 15.0000i) q^{95} +(7.50000 - 4.33013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{13} + 14 q^{17} - 28 q^{25} - 10 q^{29} - 30 q^{33} - 18 q^{37} - 6 q^{41} + 4 q^{49} - 16 q^{53} + 6 q^{61} + 48 q^{65} + 18 q^{69} + 60 q^{77} + 18 q^{81} - 84 q^{85} + 6 q^{89} + 12 q^{93}+ \cdots + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 1.50000i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(4\) 0 0
\(5\) 3.46410i 1.54919i 0.632456 + 0.774597i \(0.282047\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) −2.59808 + 1.50000i −0.981981 + 0.566947i −0.902867 0.429919i \(-0.858542\pi\)
−0.0791130 + 0.996866i \(0.525209\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.33013 2.50000i −1.30558 0.753778i −0.324227 0.945979i \(-0.605104\pi\)
−0.981356 + 0.192201i \(0.938437\pi\)
\(12\) 0 0
\(13\) 1.00000 3.46410i 0.277350 0.960769i
\(14\) 0 0
\(15\) 5.19615 + 3.00000i 1.34164 + 0.774597i
\(16\) 0 0
\(17\) 3.50000 + 6.06218i 0.848875 + 1.47029i 0.882213 + 0.470850i \(0.156053\pi\)
−0.0333386 + 0.999444i \(0.510614\pi\)
\(18\) 0 0
\(19\) −4.33013 + 2.50000i −0.993399 + 0.573539i −0.906289 0.422659i \(-0.861097\pi\)
−0.0871106 + 0.996199i \(0.527763\pi\)
\(20\) 0 0
\(21\) 5.19615i 1.13389i
\(22\) 0 0
\(23\) −2.59808 + 4.50000i −0.541736 + 0.938315i 0.457068 + 0.889432i \(0.348900\pi\)
−0.998805 + 0.0488832i \(0.984434\pi\)
\(24\) 0 0
\(25\) −7.00000 −1.40000
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 0 0
\(29\) −2.50000 + 4.33013i −0.464238 + 0.804084i −0.999167 0.0408130i \(-0.987005\pi\)
0.534928 + 0.844897i \(0.320339\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) −7.50000 + 4.33013i −1.30558 + 0.753778i
\(34\) 0 0
\(35\) −5.19615 9.00000i −0.878310 1.52128i
\(36\) 0 0
\(37\) −4.50000 2.59808i −0.739795 0.427121i 0.0821995 0.996616i \(-0.473806\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) −4.33013 4.50000i −0.693375 0.720577i
\(40\) 0 0
\(41\) −1.50000 0.866025i −0.234261 0.135250i 0.378275 0.925693i \(-0.376517\pi\)
−0.612536 + 0.790443i \(0.709851\pi\)
\(42\) 0 0
\(43\) 2.59808 + 4.50000i 0.396203 + 0.686244i 0.993254 0.115960i \(-0.0369943\pi\)
−0.597051 + 0.802203i \(0.703661\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) 1.00000 1.73205i 0.142857 0.247436i
\(50\) 0 0
\(51\) 12.1244 1.69775
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 8.66025 15.0000i 1.16775 2.02260i
\(56\) 0 0
\(57\) 8.66025i 1.14708i
\(58\) 0 0
\(59\) 6.06218 3.50000i 0.789228 0.455661i −0.0504625 0.998726i \(-0.516070\pi\)
0.839691 + 0.543065i \(0.182736\pi\)
\(60\) 0 0
\(61\) 1.50000 + 2.59808i 0.192055 + 0.332650i 0.945931 0.324367i \(-0.105151\pi\)
−0.753876 + 0.657017i \(0.771818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.0000 + 3.46410i 1.48842 + 0.429669i
\(66\) 0 0
\(67\) −2.59808 1.50000i −0.317406 0.183254i 0.332830 0.942987i \(-0.391996\pi\)
−0.650236 + 0.759733i \(0.725330\pi\)
\(68\) 0 0
\(69\) 4.50000 + 7.79423i 0.541736 + 0.938315i
\(70\) 0 0
\(71\) 6.06218 3.50000i 0.719448 0.415374i −0.0951014 0.995468i \(-0.530318\pi\)
0.814550 + 0.580094i \(0.196984\pi\)
\(72\) 0 0
\(73\) 3.46410i 0.405442i −0.979236 0.202721i \(-0.935021\pi\)
0.979236 0.202721i \(-0.0649785\pi\)
\(74\) 0 0
\(75\) −6.06218 + 10.5000i −0.700000 + 1.21244i
\(76\) 0 0
\(77\) 15.0000 1.70941
\(78\) 0 0
\(79\) 3.46410 0.389742 0.194871 0.980829i \(-0.437571\pi\)
0.194871 + 0.980829i \(0.437571\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 14.0000i 1.53670i 0.640030 + 0.768350i \(0.278922\pi\)
−0.640030 + 0.768350i \(0.721078\pi\)
\(84\) 0 0
\(85\) −21.0000 + 12.1244i −2.27777 + 1.31507i
\(86\) 0 0
\(87\) 4.33013 + 7.50000i 0.464238 + 0.804084i
\(88\) 0 0
\(89\) 1.50000 + 0.866025i 0.159000 + 0.0917985i 0.577389 0.816469i \(-0.304072\pi\)
−0.418389 + 0.908268i \(0.637405\pi\)
\(90\) 0 0
\(91\) 2.59808 + 10.5000i 0.272352 + 1.10070i
\(92\) 0 0
\(93\) 3.00000 + 1.73205i 0.311086 + 0.179605i
\(94\) 0 0
\(95\) −8.66025 15.0000i −0.888523 1.53897i
\(96\) 0 0
\(97\) 7.50000 4.33013i 0.761510 0.439658i −0.0683279 0.997663i \(-0.521766\pi\)
0.829837 + 0.558005i \(0.188433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.50000 14.7224i 0.845782 1.46494i −0.0391591 0.999233i \(-0.512468\pi\)
0.884941 0.465704i \(-0.154199\pi\)
\(102\) 0 0
\(103\) −6.92820 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(104\) 0 0
\(105\) −18.0000 −1.75662
\(106\) 0 0
\(107\) 4.33013 7.50000i 0.418609 0.725052i −0.577191 0.816609i \(-0.695851\pi\)
0.995800 + 0.0915571i \(0.0291844\pi\)
\(108\) 0 0
\(109\) 10.3923i 0.995402i −0.867349 0.497701i \(-0.834178\pi\)
0.867349 0.497701i \(-0.165822\pi\)
\(110\) 0 0
\(111\) −7.79423 + 4.50000i −0.739795 + 0.427121i
\(112\) 0 0
\(113\) −2.50000 4.33013i −0.235180 0.407344i 0.724145 0.689648i \(-0.242235\pi\)
−0.959325 + 0.282304i \(0.908901\pi\)
\(114\) 0 0
\(115\) −15.5885 9.00000i −1.45363 0.839254i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −18.1865 10.5000i −1.66716 0.962533i
\(120\) 0 0
\(121\) 7.00000 + 12.1244i 0.636364 + 1.10221i
\(122\) 0 0
\(123\) −2.59808 + 1.50000i −0.234261 + 0.135250i
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) 9.52628 16.5000i 0.845321 1.46414i −0.0400219 0.999199i \(-0.512743\pi\)
0.885342 0.464939i \(-0.153924\pi\)
\(128\) 0 0
\(129\) 9.00000 0.792406
\(130\) 0 0
\(131\) 13.8564 1.21064 0.605320 0.795982i \(-0.293045\pi\)
0.605320 + 0.795982i \(0.293045\pi\)
\(132\) 0 0
\(133\) 7.50000 12.9904i 0.650332 1.12641i
\(134\) 0 0
\(135\) 18.0000i 1.54919i
\(136\) 0 0
\(137\) −4.50000 + 2.59808i −0.384461 + 0.221969i −0.679757 0.733437i \(-0.737915\pi\)
0.295296 + 0.955406i \(0.404582\pi\)
\(138\) 0 0
\(139\) 4.33013 + 7.50000i 0.367277 + 0.636142i 0.989139 0.146985i \(-0.0469569\pi\)
−0.621862 + 0.783127i \(0.713624\pi\)
\(140\) 0 0
\(141\) 6.00000 + 3.46410i 0.505291 + 0.291730i
\(142\) 0 0
\(143\) −12.9904 + 12.5000i −1.08631 + 1.04530i
\(144\) 0 0
\(145\) −15.0000 8.66025i −1.24568 0.719195i
\(146\) 0 0
\(147\) −1.73205 3.00000i −0.142857 0.247436i
\(148\) 0 0
\(149\) −7.50000 + 4.33013i −0.614424 + 0.354738i −0.774695 0.632335i \(-0.782097\pi\)
0.160271 + 0.987073i \(0.448763\pi\)
\(150\) 0 0
\(151\) 2.00000i 0.162758i 0.996683 + 0.0813788i \(0.0259324\pi\)
−0.996683 + 0.0813788i \(0.974068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.92820 −0.556487
\(156\) 0 0
\(157\) 8.00000 0.638470 0.319235 0.947676i \(-0.396574\pi\)
0.319235 + 0.947676i \(0.396574\pi\)
\(158\) 0 0
\(159\) −3.46410 + 6.00000i −0.274721 + 0.475831i
\(160\) 0 0
\(161\) 15.5885i 1.22854i
\(162\) 0 0
\(163\) −16.4545 + 9.50000i −1.28881 + 0.744097i −0.978443 0.206518i \(-0.933787\pi\)
−0.310372 + 0.950615i \(0.600454\pi\)
\(164\) 0 0
\(165\) −15.0000 25.9808i −1.16775 2.02260i
\(166\) 0 0
\(167\) 16.4545 + 9.50000i 1.27329 + 0.735132i 0.975605 0.219533i \(-0.0704535\pi\)
0.297681 + 0.954665i \(0.403787\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.50000 + 6.06218i 0.266100 + 0.460899i 0.967851 0.251523i \(-0.0809315\pi\)
−0.701751 + 0.712422i \(0.747598\pi\)
\(174\) 0 0
\(175\) 18.1865 10.5000i 1.37477 0.793725i
\(176\) 0 0
\(177\) 12.1244i 0.911322i
\(178\) 0 0
\(179\) −9.52628 + 16.5000i −0.712028 + 1.23327i 0.252067 + 0.967710i \(0.418890\pi\)
−0.964095 + 0.265558i \(0.914444\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) 5.19615 0.384111
\(184\) 0 0
\(185\) 9.00000 15.5885i 0.661693 1.14609i
\(186\) 0 0
\(187\) 35.0000i 2.55945i
\(188\) 0 0
\(189\) −13.5000 + 7.79423i −0.981981 + 0.566947i
\(190\) 0 0
\(191\) 6.06218 + 10.5000i 0.438644 + 0.759753i 0.997585 0.0694538i \(-0.0221257\pi\)
−0.558941 + 0.829207i \(0.688792\pi\)
\(192\) 0 0
\(193\) 10.5000 + 6.06218i 0.755807 + 0.436365i 0.827788 0.561041i \(-0.189599\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 15.5885 15.0000i 1.11631 1.07417i
\(196\) 0 0
\(197\) −1.50000 0.866025i −0.106871 0.0617018i 0.445612 0.895226i \(-0.352986\pi\)
−0.552483 + 0.833524i \(0.686319\pi\)
\(198\) 0 0
\(199\) 0.866025 + 1.50000i 0.0613909 + 0.106332i 0.895087 0.445891i \(-0.147113\pi\)
−0.833696 + 0.552223i \(0.813780\pi\)
\(200\) 0 0
\(201\) −4.50000 + 2.59808i −0.317406 + 0.183254i
\(202\) 0 0
\(203\) 15.0000i 1.05279i
\(204\) 0 0
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.0000 1.72929
\(210\) 0 0
\(211\) −2.59808 + 4.50000i −0.178859 + 0.309793i −0.941490 0.337041i \(-0.890574\pi\)
0.762631 + 0.646834i \(0.223907\pi\)
\(212\) 0 0
\(213\) 12.1244i 0.830747i
\(214\) 0 0
\(215\) −15.5885 + 9.00000i −1.06312 + 0.613795i
\(216\) 0 0
\(217\) −3.00000 5.19615i −0.203653 0.352738i
\(218\) 0 0
\(219\) −5.19615 3.00000i −0.351123 0.202721i
\(220\) 0 0
\(221\) 24.5000 6.06218i 1.64805 0.407786i
\(222\) 0 0
\(223\) −11.2583 6.50000i −0.753914 0.435272i 0.0731927 0.997318i \(-0.476681\pi\)
−0.827106 + 0.562046i \(0.810015\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.9186 11.5000i 1.32204 0.763282i 0.337989 0.941150i \(-0.390253\pi\)
0.984054 + 0.177868i \(0.0569201\pi\)
\(228\) 0 0
\(229\) 24.2487i 1.60240i 0.598397 + 0.801200i \(0.295805\pi\)
−0.598397 + 0.801200i \(0.704195\pi\)
\(230\) 0 0
\(231\) 12.9904 22.5000i 0.854704 1.48039i
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) −13.8564 −0.903892
\(236\) 0 0
\(237\) 3.00000 5.19615i 0.194871 0.337526i
\(238\) 0 0
\(239\) 2.00000i 0.129369i −0.997906 0.0646846i \(-0.979396\pi\)
0.997906 0.0646846i \(-0.0206041\pi\)
\(240\) 0 0
\(241\) −7.50000 + 4.33013i −0.483117 + 0.278928i −0.721715 0.692191i \(-0.756646\pi\)
0.238597 + 0.971119i \(0.423312\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.00000 + 3.46410i 0.383326 + 0.221313i
\(246\) 0 0
\(247\) 4.33013 + 17.5000i 0.275519 + 1.11350i
\(248\) 0 0
\(249\) 21.0000 + 12.1244i 1.33082 + 0.768350i
\(250\) 0 0
\(251\) −7.79423 13.5000i −0.491967 0.852112i 0.507990 0.861363i \(-0.330389\pi\)
−0.999957 + 0.00925060i \(0.997055\pi\)
\(252\) 0 0
\(253\) 22.5000 12.9904i 1.41456 0.816698i
\(254\) 0 0
\(255\) 42.0000i 2.63014i
\(256\) 0 0
\(257\) 11.5000 19.9186i 0.717350 1.24249i −0.244696 0.969600i \(-0.578688\pi\)
0.962046 0.272887i \(-0.0879786\pi\)
\(258\) 0 0
\(259\) 15.5885 0.968620
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.866025 1.50000i 0.0534014 0.0924940i −0.838089 0.545534i \(-0.816327\pi\)
0.891490 + 0.453040i \(0.149660\pi\)
\(264\) 0 0
\(265\) 13.8564i 0.851192i
\(266\) 0 0
\(267\) 2.59808 1.50000i 0.159000 0.0917985i
\(268\) 0 0
\(269\) 0.500000 + 0.866025i 0.0304855 + 0.0528025i 0.880866 0.473366i \(-0.156961\pi\)
−0.850380 + 0.526169i \(0.823628\pi\)
\(270\) 0 0
\(271\) −7.79423 4.50000i −0.473466 0.273356i 0.244224 0.969719i \(-0.421467\pi\)
−0.717689 + 0.696363i \(0.754800\pi\)
\(272\) 0 0
\(273\) 18.0000 + 5.19615i 1.08941 + 0.314485i
\(274\) 0 0
\(275\) 30.3109 + 17.5000i 1.82782 + 1.05529i
\(276\) 0 0
\(277\) 4.50000 + 7.79423i 0.270379 + 0.468310i 0.968959 0.247222i \(-0.0795177\pi\)
−0.698580 + 0.715532i \(0.746184\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.2487i 1.44656i 0.690557 + 0.723278i \(0.257366\pi\)
−0.690557 + 0.723278i \(0.742634\pi\)
\(282\) 0 0
\(283\) −16.4545 + 28.5000i −0.978117 + 1.69415i −0.308879 + 0.951101i \(0.599954\pi\)
−0.669238 + 0.743048i \(0.733379\pi\)
\(284\) 0 0
\(285\) −30.0000 −1.77705
\(286\) 0 0
\(287\) 5.19615 0.306719
\(288\) 0 0
\(289\) −16.0000 + 27.7128i −0.941176 + 1.63017i
\(290\) 0 0
\(291\) 15.0000i 0.879316i
\(292\) 0 0
\(293\) 22.5000 12.9904i 1.31446 0.758906i 0.331632 0.943409i \(-0.392401\pi\)
0.982832 + 0.184503i \(0.0590674\pi\)
\(294\) 0 0
\(295\) 12.1244 + 21.0000i 0.705907 + 1.22267i
\(296\) 0 0
\(297\) −22.5000 12.9904i −1.30558 0.753778i
\(298\) 0 0
\(299\) 12.9904 + 13.5000i 0.751253 + 0.780725i
\(300\) 0 0
\(301\) −13.5000 7.79423i −0.778127 0.449252i
\(302\) 0 0
\(303\) −14.7224 25.5000i −0.845782 1.46494i
\(304\) 0 0
\(305\) −9.00000 + 5.19615i −0.515339 + 0.297531i
\(306\) 0 0
\(307\) 6.00000i 0.342438i 0.985233 + 0.171219i \(0.0547706\pi\)
−0.985233 + 0.171219i \(0.945229\pi\)
\(308\) 0 0
\(309\) −6.00000 + 10.3923i −0.341328 + 0.591198i
\(310\) 0 0
\(311\) 20.7846 1.17859 0.589294 0.807919i \(-0.299406\pi\)
0.589294 + 0.807919i \(0.299406\pi\)
\(312\) 0 0
\(313\) 12.0000 0.678280 0.339140 0.940736i \(-0.389864\pi\)
0.339140 + 0.940736i \(0.389864\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.92820i 0.389127i −0.980890 0.194563i \(-0.937671\pi\)
0.980890 0.194563i \(-0.0623290\pi\)
\(318\) 0 0
\(319\) 21.6506 12.5000i 1.21220 0.699866i
\(320\) 0 0
\(321\) −7.50000 12.9904i −0.418609 0.725052i
\(322\) 0 0
\(323\) −30.3109 17.5000i −1.68654 0.973726i
\(324\) 0 0
\(325\) −7.00000 + 24.2487i −0.388290 + 1.34508i
\(326\) 0 0
\(327\) −15.5885 9.00000i −0.862044 0.497701i
\(328\) 0 0
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0 0
\(331\) −12.9904 + 7.50000i −0.714016 + 0.412237i −0.812546 0.582897i \(-0.801919\pi\)
0.0985303 + 0.995134i \(0.468586\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.19615 9.00000i 0.283896 0.491723i
\(336\) 0 0
\(337\) −28.0000 −1.52526 −0.762629 0.646837i \(-0.776092\pi\)
−0.762629 + 0.646837i \(0.776092\pi\)
\(338\) 0 0
\(339\) −8.66025 −0.470360
\(340\) 0 0
\(341\) 5.00000 8.66025i 0.270765 0.468979i
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) −27.0000 + 15.5885i −1.45363 + 0.839254i
\(346\) 0 0
\(347\) −7.79423 13.5000i −0.418416 0.724718i 0.577364 0.816487i \(-0.304081\pi\)
−0.995780 + 0.0917687i \(0.970748\pi\)
\(348\) 0 0
\(349\) 13.5000 + 7.79423i 0.722638 + 0.417215i 0.815723 0.578443i \(-0.196339\pi\)
−0.0930846 + 0.995658i \(0.529673\pi\)
\(350\) 0 0
\(351\) 5.19615 18.0000i 0.277350 0.960769i
\(352\) 0 0
\(353\) 13.5000 + 7.79423i 0.718532 + 0.414845i 0.814212 0.580567i \(-0.197169\pi\)
−0.0956798 + 0.995412i \(0.530502\pi\)
\(354\) 0 0
\(355\) 12.1244 + 21.0000i 0.643494 + 1.11456i
\(356\) 0 0
\(357\) −31.5000 + 18.1865i −1.66716 + 0.962533i
\(358\) 0 0
\(359\) 22.0000i 1.16112i −0.814219 0.580558i \(-0.802835\pi\)
0.814219 0.580558i \(-0.197165\pi\)
\(360\) 0 0
\(361\) 3.00000 5.19615i 0.157895 0.273482i
\(362\) 0 0
\(363\) 24.2487 1.27273
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) −6.06218 + 10.5000i −0.316443 + 0.548096i −0.979743 0.200258i \(-0.935822\pi\)
0.663300 + 0.748354i \(0.269155\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.3923 6.00000i 0.539542 0.311504i
\(372\) 0 0
\(373\) −1.50000 2.59808i −0.0776671 0.134523i 0.824576 0.565751i \(-0.191414\pi\)
−0.902243 + 0.431228i \(0.858080\pi\)
\(374\) 0 0
\(375\) −10.3923 6.00000i −0.536656 0.309839i
\(376\) 0 0
\(377\) 12.5000 + 12.9904i 0.643783 + 0.669039i
\(378\) 0 0
\(379\) 6.06218 + 3.50000i 0.311393 + 0.179783i 0.647550 0.762023i \(-0.275794\pi\)
−0.336157 + 0.941806i \(0.609127\pi\)
\(380\) 0 0
\(381\) −16.5000 28.5788i −0.845321 1.46414i
\(382\) 0 0
\(383\) −6.06218 + 3.50000i −0.309763 + 0.178842i −0.646820 0.762642i \(-0.723902\pi\)
0.337058 + 0.941484i \(0.390568\pi\)
\(384\) 0 0
\(385\) 51.9615i 2.64820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.0000 −0.709828 −0.354914 0.934899i \(-0.615490\pi\)
−0.354914 + 0.934899i \(0.615490\pi\)
\(390\) 0 0
\(391\) −36.3731 −1.83947
\(392\) 0 0
\(393\) 12.0000 20.7846i 0.605320 1.04844i
\(394\) 0 0
\(395\) 12.0000i 0.603786i
\(396\) 0 0
\(397\) −28.5000 + 16.4545i −1.43037 + 0.825827i −0.997149 0.0754589i \(-0.975958\pi\)
−0.433225 + 0.901286i \(0.642624\pi\)
\(398\) 0 0
\(399\) −12.9904 22.5000i −0.650332 1.12641i
\(400\) 0 0
\(401\) 28.5000 + 16.4545i 1.42322 + 0.821698i 0.996573 0.0827195i \(-0.0263606\pi\)
0.426649 + 0.904417i \(0.359694\pi\)
\(402\) 0 0
\(403\) 6.92820 + 2.00000i 0.345118 + 0.0996271i
\(404\) 0 0
\(405\) 27.0000 + 15.5885i 1.34164 + 0.774597i
\(406\) 0 0
\(407\) 12.9904 + 22.5000i 0.643909 + 1.11528i
\(408\) 0 0
\(409\) −13.5000 + 7.79423i −0.667532 + 0.385400i −0.795141 0.606425i \(-0.792603\pi\)
0.127609 + 0.991825i \(0.459270\pi\)
\(410\) 0 0
\(411\) 9.00000i 0.443937i
\(412\) 0 0
\(413\) −10.5000 + 18.1865i −0.516671 + 0.894901i
\(414\) 0 0
\(415\) −48.4974 −2.38064
\(416\) 0 0
\(417\) 15.0000 0.734553
\(418\) 0 0
\(419\) −14.7224 + 25.5000i −0.719238 + 1.24576i 0.242064 + 0.970260i \(0.422176\pi\)
−0.961302 + 0.275496i \(0.911158\pi\)
\(420\) 0 0
\(421\) 31.1769i 1.51947i 0.650233 + 0.759735i \(0.274671\pi\)
−0.650233 + 0.759735i \(0.725329\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −24.5000 42.4352i −1.18842 2.05841i
\(426\) 0 0
\(427\) −7.79423 4.50000i −0.377189 0.217770i
\(428\) 0 0
\(429\) 7.50000 + 30.3109i 0.362103 + 1.46342i
\(430\) 0 0
\(431\) 32.0429 + 18.5000i 1.54345 + 0.891114i 0.998617 + 0.0525716i \(0.0167418\pi\)
0.544837 + 0.838542i \(0.316592\pi\)
\(432\) 0 0
\(433\) −16.5000 28.5788i −0.792939 1.37341i −0.924139 0.382055i \(-0.875216\pi\)
0.131200 0.991356i \(-0.458117\pi\)
\(434\) 0 0
\(435\) −25.9808 + 15.0000i −1.24568 + 0.719195i
\(436\) 0 0
\(437\) 25.9808i 1.24283i
\(438\) 0 0
\(439\) 2.59808 4.50000i 0.123999 0.214773i −0.797342 0.603528i \(-0.793761\pi\)
0.921341 + 0.388755i \(0.127095\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.8564 0.658338 0.329169 0.944271i \(-0.393231\pi\)
0.329169 + 0.944271i \(0.393231\pi\)
\(444\) 0 0
\(445\) −3.00000 + 5.19615i −0.142214 + 0.246321i
\(446\) 0 0
\(447\) 15.0000i 0.709476i
\(448\) 0 0
\(449\) −7.50000 + 4.33013i −0.353947 + 0.204351i −0.666422 0.745575i \(-0.732175\pi\)
0.312475 + 0.949926i \(0.398842\pi\)
\(450\) 0 0
\(451\) 4.33013 + 7.50000i 0.203898 + 0.353161i
\(452\) 0 0
\(453\) 3.00000 + 1.73205i 0.140952 + 0.0813788i
\(454\) 0 0
\(455\) −36.3731 + 9.00000i −1.70520 + 0.421927i
\(456\) 0 0
\(457\) 31.5000 + 18.1865i 1.47351 + 0.850730i 0.999555 0.0298202i \(-0.00949348\pi\)
0.473953 + 0.880550i \(0.342827\pi\)
\(458\) 0 0
\(459\) 18.1865 + 31.5000i 0.848875 + 1.47029i
\(460\) 0 0
\(461\) −4.50000 + 2.59808i −0.209586 + 0.121004i −0.601119 0.799160i \(-0.705278\pi\)
0.391533 + 0.920164i \(0.371945\pi\)
\(462\) 0 0
\(463\) 18.0000i 0.836531i −0.908325 0.418265i \(-0.862638\pi\)
0.908325 0.418265i \(-0.137362\pi\)
\(464\) 0 0
\(465\) −6.00000 + 10.3923i −0.278243 + 0.481932i
\(466\) 0 0
\(467\) −38.1051 −1.76329 −0.881647 0.471909i \(-0.843565\pi\)
−0.881647 + 0.471909i \(0.843565\pi\)
\(468\) 0 0
\(469\) 9.00000 0.415581
\(470\) 0 0
\(471\) 6.92820 12.0000i 0.319235 0.552931i
\(472\) 0 0
\(473\) 25.9808i 1.19460i
\(474\) 0 0
\(475\) 30.3109 17.5000i 1.39076 0.802955i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.7224 + 8.50000i 0.672685 + 0.388375i 0.797093 0.603856i \(-0.206370\pi\)
−0.124408 + 0.992231i \(0.539703\pi\)
\(480\) 0 0
\(481\) −13.5000 + 12.9904i −0.615547 + 0.592310i
\(482\) 0 0
\(483\) −23.3827 13.5000i −1.06395 0.614271i
\(484\) 0 0
\(485\) 15.0000 + 25.9808i 0.681115 + 1.17973i
\(486\) 0 0
\(487\) 19.9186 11.5000i 0.902597 0.521115i 0.0245553 0.999698i \(-0.492183\pi\)
0.878042 + 0.478584i \(0.158850\pi\)
\(488\) 0 0
\(489\) 32.9090i 1.48819i
\(490\) 0 0
\(491\) 6.06218 10.5000i 0.273582 0.473858i −0.696194 0.717853i \(-0.745125\pi\)
0.969776 + 0.243995i \(0.0784581\pi\)
\(492\) 0 0
\(493\) −35.0000 −1.57632
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.5000 + 18.1865i −0.470989 + 0.815778i
\(498\) 0 0
\(499\) 6.00000i 0.268597i 0.990941 + 0.134298i \(0.0428781\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) 0 0
\(501\) 28.5000 16.4545i 1.27329 0.735132i
\(502\) 0 0
\(503\) −4.33013 7.50000i −0.193071 0.334408i 0.753196 0.657797i \(-0.228511\pi\)
−0.946266 + 0.323388i \(0.895178\pi\)
\(504\) 0 0
\(505\) 51.0000 + 29.4449i 2.26947 + 1.31028i
\(506\) 0 0
\(507\) −19.9186 + 10.5000i −0.884615 + 0.466321i
\(508\) 0 0
\(509\) 19.5000 + 11.2583i 0.864322 + 0.499017i 0.865457 0.500983i \(-0.167028\pi\)
−0.00113503 + 0.999999i \(0.500361\pi\)
\(510\) 0 0
\(511\) 5.19615 + 9.00000i 0.229864 + 0.398137i
\(512\) 0 0
\(513\) −22.5000 + 12.9904i −0.993399 + 0.573539i
\(514\) 0 0
\(515\) 24.0000i 1.05757i
\(516\) 0 0
\(517\) 10.0000 17.3205i 0.439799 0.761755i
\(518\) 0 0
\(519\) 12.1244 0.532200
\(520\) 0 0
\(521\) 4.00000 0.175243 0.0876216 0.996154i \(-0.472073\pi\)
0.0876216 + 0.996154i \(0.472073\pi\)
\(522\) 0 0
\(523\) 6.06218 10.5000i 0.265081 0.459133i −0.702504 0.711680i \(-0.747935\pi\)
0.967585 + 0.252547i \(0.0812681\pi\)
\(524\) 0 0
\(525\) 36.3731i 1.58745i
\(526\) 0 0
\(527\) −12.1244 + 7.00000i −0.528145 + 0.304925i
\(528\) 0 0
\(529\) −2.00000 3.46410i −0.0869565 0.150613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.50000 + 4.33013i −0.194917 + 0.187559i
\(534\) 0 0
\(535\) 25.9808 + 15.0000i 1.12325 + 0.648507i
\(536\) 0 0
\(537\) 16.5000 + 28.5788i 0.712028 + 1.23327i
\(538\) 0 0
\(539\) −8.66025 + 5.00000i −0.373024 + 0.215365i
\(540\) 0 0
\(541\) 20.7846i 0.893600i 0.894634 + 0.446800i \(0.147436\pi\)
−0.894634 + 0.446800i \(0.852564\pi\)
\(542\) 0 0
\(543\) −10.3923 + 18.0000i −0.445976 + 0.772454i
\(544\) 0 0
\(545\) 36.0000 1.54207
\(546\) 0 0
\(547\) −6.92820 −0.296229 −0.148114 0.988970i \(-0.547320\pi\)
−0.148114 + 0.988970i \(0.547320\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.0000i 1.06504i
\(552\) 0 0
\(553\) −9.00000 + 5.19615i −0.382719 + 0.220963i
\(554\) 0 0
\(555\) −15.5885 27.0000i −0.661693 1.14609i
\(556\) 0 0
\(557\) 34.5000 + 19.9186i 1.46181 + 0.843978i 0.999095 0.0425287i \(-0.0135414\pi\)
0.462717 + 0.886506i \(0.346875\pi\)
\(558\) 0 0
\(559\) 18.1865 4.50000i 0.769208 0.190330i
\(560\) 0 0
\(561\) −52.5000 30.3109i −2.21655 1.27973i
\(562\) 0 0
\(563\) 4.33013 + 7.50000i 0.182493 + 0.316087i 0.942729 0.333560i \(-0.108250\pi\)
−0.760236 + 0.649647i \(0.774917\pi\)
\(564\) 0 0
\(565\) 15.0000 8.66025i 0.631055 0.364340i
\(566\) 0 0
\(567\) 27.0000i 1.13389i
\(568\) 0 0
\(569\) −15.5000 + 26.8468i −0.649794 + 1.12548i 0.333378 + 0.942793i \(0.391811\pi\)
−0.983172 + 0.182683i \(0.941522\pi\)
\(570\) 0 0
\(571\) 27.7128 1.15975 0.579873 0.814707i \(-0.303102\pi\)
0.579873 + 0.814707i \(0.303102\pi\)
\(572\) 0 0
\(573\) 21.0000 0.877288
\(574\) 0 0
\(575\) 18.1865 31.5000i 0.758431 1.31364i
\(576\) 0 0
\(577\) 24.2487i 1.00949i −0.863269 0.504744i \(-0.831587\pi\)
0.863269 0.504744i \(-0.168413\pi\)
\(578\) 0 0
\(579\) 18.1865 10.5000i 0.755807 0.436365i
\(580\) 0 0
\(581\) −21.0000 36.3731i −0.871227 1.50901i
\(582\) 0 0
\(583\) 17.3205 + 10.0000i 0.717342 + 0.414158i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.4545 9.50000i −0.679149 0.392107i 0.120385 0.992727i \(-0.461587\pi\)
−0.799534 + 0.600620i \(0.794920\pi\)
\(588\) 0 0
\(589\) −5.00000 8.66025i −0.206021 0.356840i
\(590\) 0 0
\(591\) −2.59808 + 1.50000i −0.106871 + 0.0617018i
\(592\) 0 0
\(593\) 38.1051i 1.56479i −0.622783 0.782395i \(-0.713998\pi\)
0.622783 0.782395i \(-0.286002\pi\)
\(594\) 0 0
\(595\) 36.3731 63.0000i 1.49115 2.58275i
\(596\) 0 0
\(597\) 3.00000 0.122782
\(598\) 0 0
\(599\) −17.3205 −0.707697 −0.353848 0.935303i \(-0.615127\pi\)
−0.353848 + 0.935303i \(0.615127\pi\)
\(600\) 0 0
\(601\) 19.5000 33.7750i 0.795422 1.37771i −0.127150 0.991884i \(-0.540583\pi\)
0.922571 0.385827i \(-0.126084\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −42.0000 + 24.2487i −1.70754 + 0.985850i
\(606\) 0 0
\(607\) 21.6506 + 37.5000i 0.878772 + 1.52208i 0.852689 + 0.522418i \(0.174970\pi\)
0.0260828 + 0.999660i \(0.491697\pi\)
\(608\) 0 0
\(609\) −22.5000 12.9904i −0.911746 0.526397i
\(610\) 0 0
\(611\) 13.8564 + 4.00000i 0.560570 + 0.161823i
\(612\) 0 0
\(613\) −34.5000 19.9186i −1.39344 0.804504i −0.399747 0.916625i \(-0.630902\pi\)
−0.993695 + 0.112121i \(0.964235\pi\)
\(614\) 0 0
\(615\) −5.19615 9.00000i −0.209529 0.362915i
\(616\) 0 0
\(617\) −4.50000 + 2.59808i −0.181163 + 0.104595i −0.587839 0.808978i \(-0.700021\pi\)
0.406676 + 0.913573i \(0.366688\pi\)
\(618\) 0 0
\(619\) 6.00000i 0.241160i 0.992704 + 0.120580i \(0.0384755\pi\)
−0.992704 + 0.120580i \(0.961525\pi\)
\(620\) 0 0
\(621\) −13.5000 + 23.3827i −0.541736 + 0.938315i
\(622\) 0 0
\(623\) −5.19615 −0.208179
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 21.6506 37.5000i 0.864643 1.49761i
\(628\) 0 0
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) −4.33013 + 2.50000i −0.172380 + 0.0995234i −0.583707 0.811964i \(-0.698398\pi\)
0.411328 + 0.911487i \(0.365065\pi\)
\(632\) 0 0
\(633\) 4.50000 + 7.79423i 0.178859 + 0.309793i
\(634\) 0 0
\(635\) 57.1577 + 33.0000i 2.26823 + 1.30957i
\(636\) 0 0
\(637\) −5.00000 5.19615i −0.198107 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.500000 0.866025i −0.0197488 0.0342059i 0.855982 0.517005i \(-0.172953\pi\)
−0.875731 + 0.482800i \(0.839620\pi\)
\(642\) 0 0
\(643\) 7.79423 4.50000i 0.307374 0.177463i −0.338377 0.941011i \(-0.609878\pi\)
0.645751 + 0.763548i \(0.276544\pi\)
\(644\) 0 0
\(645\) 31.1769i 1.22759i
\(646\) 0 0
\(647\) −7.79423 + 13.5000i −0.306423 + 0.530740i −0.977577 0.210578i \(-0.932465\pi\)
0.671154 + 0.741318i \(0.265799\pi\)
\(648\) 0 0
\(649\) −35.0000 −1.37387
\(650\) 0 0
\(651\) −10.3923 −0.407307
\(652\) 0 0
\(653\) 2.50000 4.33013i 0.0978326 0.169451i −0.812955 0.582327i \(-0.802142\pi\)
0.910787 + 0.412876i \(0.135476\pi\)
\(654\) 0 0
\(655\) 48.0000i 1.87552i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.1865 31.5000i −0.708447 1.22707i −0.965433 0.260651i \(-0.916063\pi\)
0.256986 0.966415i \(-0.417270\pi\)
\(660\) 0 0
\(661\) 1.50000 + 0.866025i 0.0583432 + 0.0336845i 0.528888 0.848692i \(-0.322609\pi\)
−0.470545 + 0.882376i \(0.655943\pi\)
\(662\) 0 0
\(663\) 12.1244 42.0000i 0.470871 1.63114i
\(664\) 0 0
\(665\) 45.0000 + 25.9808i 1.74503 + 1.00749i
\(666\) 0 0
\(667\) −12.9904 22.5000i −0.502990 0.871203i
\(668\) 0 0
\(669\) −19.5000 + 11.2583i −0.753914 + 0.435272i
\(670\) 0 0
\(671\) 15.0000i 0.579069i
\(672\) 0 0
\(673\) 20.5000 35.5070i 0.790217 1.36870i −0.135615 0.990762i \(-0.543301\pi\)
0.925832 0.377934i \(-0.123365\pi\)
\(674\) 0 0
\(675\) −36.3731 −1.40000
\(676\) 0 0
\(677\) 8.00000 0.307465 0.153732 0.988113i \(-0.450871\pi\)
0.153732 + 0.988113i \(0.450871\pi\)
\(678\) 0 0
\(679\) −12.9904 + 22.5000i −0.498525 + 0.863471i
\(680\) 0 0
\(681\) 39.8372i 1.52656i
\(682\) 0 0
\(683\) −35.5070 + 20.5000i −1.35864 + 0.784411i −0.989440 0.144940i \(-0.953701\pi\)
−0.369199 + 0.929350i \(0.620368\pi\)
\(684\) 0 0
\(685\) −9.00000 15.5885i −0.343872 0.595604i
\(686\) 0 0
\(687\) 36.3731 + 21.0000i 1.38772 + 0.801200i
\(688\) 0 0
\(689\) −4.00000 + 13.8564i −0.152388 + 0.527887i
\(690\) 0 0
\(691\) 12.9904 + 7.50000i 0.494177 + 0.285313i 0.726306 0.687372i \(-0.241236\pi\)
−0.232128 + 0.972685i \(0.574569\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.9808 + 15.0000i −0.985506 + 0.568982i
\(696\) 0 0
\(697\) 12.1244i 0.459243i
\(698\) 0 0
\(699\) −6.92820 + 12.0000i −0.262049 + 0.453882i
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 25.9808 0.979883
\(704\) 0 0
\(705\) −12.0000 + 20.7846i −0.451946 + 0.782794i
\(706\) 0 0
\(707\) 51.0000i 1.91805i
\(708\) 0 0
\(709\) 1.50000 0.866025i 0.0563337 0.0325243i −0.471569 0.881829i \(-0.656312\pi\)
0.527902 + 0.849305i \(0.322979\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.00000 5.19615i −0.337053 0.194597i
\(714\) 0 0
\(715\) −43.3013 45.0000i −1.61938 1.68290i
\(716\) 0 0
\(717\) −3.00000 1.73205i −0.112037 0.0646846i
\(718\) 0 0
\(719\) 6.06218 + 10.5000i 0.226081 + 0.391584i 0.956643 0.291262i \(-0.0940752\pi\)
−0.730562 + 0.682846i \(0.760742\pi\)
\(720\) 0 0
\(721\) 18.0000 10.3923i 0.670355 0.387030i
\(722\) 0 0
\(723\) 15.0000i 0.557856i
\(724\) 0 0
\(725\) 17.5000 30.3109i 0.649934 1.12572i
\(726\) 0 0
\(727\) −41.5692 −1.54172 −0.770859 0.637006i \(-0.780172\pi\)
−0.770859 + 0.637006i \(0.780172\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −18.1865 + 31.5000i −0.672653 + 1.16507i
\(732\) 0 0
\(733\) 48.4974i 1.79129i −0.444766 0.895647i \(-0.646713\pi\)
0.444766 0.895647i \(-0.353287\pi\)
\(734\) 0 0
\(735\) 10.3923 6.00000i 0.383326 0.221313i
\(736\) 0 0
\(737\) 7.50000 + 12.9904i 0.276266 + 0.478507i
\(738\) 0 0
\(739\) 18.1865 + 10.5000i 0.669002 + 0.386249i 0.795699 0.605693i \(-0.207104\pi\)
−0.126696 + 0.991942i \(0.540437\pi\)
\(740\) 0 0
\(741\) 30.0000 + 8.66025i 1.10208 + 0.318142i
\(742\) 0 0
\(743\) 11.2583 + 6.50000i 0.413028 + 0.238462i 0.692090 0.721811i \(-0.256690\pi\)
−0.279062 + 0.960273i \(0.590023\pi\)
\(744\) 0 0
\(745\) −15.0000 25.9808i −0.549557 0.951861i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 25.9808i 0.949316i
\(750\) 0 0
\(751\) −6.06218 + 10.5000i −0.221212 + 0.383150i −0.955176 0.296038i \(-0.904335\pi\)
0.733964 + 0.679188i \(0.237668\pi\)
\(752\) 0 0
\(753\) −27.0000 −0.983935
\(754\) 0 0
\(755\) −6.92820 −0.252143
\(756\) 0 0
\(757\) 26.5000 45.8993i 0.963159 1.66824i 0.248677 0.968587i \(-0.420004\pi\)
0.714482 0.699654i \(-0.246662\pi\)
\(758\) 0 0
\(759\) 45.0000i 1.63340i
\(760\) 0 0
\(761\) 40.5000 23.3827i 1.46812 0.847622i 0.468761 0.883325i \(-0.344700\pi\)
0.999362 + 0.0357031i \(0.0113671\pi\)
\(762\) 0 0
\(763\) 15.5885 + 27.0000i 0.564340 + 0.977466i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.06218 24.5000i −0.218893 0.884644i
\(768\) 0 0
\(769\) −25.5000 14.7224i −0.919554 0.530904i −0.0360609 0.999350i \(-0.511481\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) −19.9186 34.5000i −0.717350 1.24249i
\(772\) 0 0
\(773\) 1.50000 0.866025i 0.0539513 0.0311488i −0.472782 0.881180i \(-0.656750\pi\)
0.526733 + 0.850031i \(0.323417\pi\)
\(774\) 0 0
\(775\) 14.0000i 0.502895i
\(776\) 0 0
\(777\) 13.5000 23.3827i 0.484310 0.838849i
\(778\) 0 0
\(779\) 8.66025 0.310286
\(780\) 0 0
\(781\) −35.0000 −1.25240
\(782\) 0 0
\(783\) −12.9904 + 22.5000i −0.464238 + 0.804084i
\(784\) 0 0
\(785\) 27.7128i 0.989113i
\(786\) 0 0
\(787\) 7.79423 4.50000i 0.277834 0.160408i −0.354608 0.935015i \(-0.615386\pi\)
0.632443 + 0.774607i \(0.282052\pi\)
\(788\) 0 0
\(789\) −1.50000 2.59808i −0.0534014 0.0924940i
\(790\) 0 0
\(791\) 12.9904 + 7.50000i 0.461885 + 0.266669i
\(792\) 0 0
\(793\) 10.5000 2.59808i 0.372866 0.0922604i
\(794\) 0 0
\(795\) −20.7846 12.0000i −0.737154 0.425596i
\(796\) 0 0
\(797\) 9.50000 + 16.4545i 0.336507 + 0.582848i 0.983773 0.179417i \(-0.0574210\pi\)
−0.647266 + 0.762264i \(0.724088\pi\)
\(798\) 0 0
\(799\) −24.2487 + 14.0000i −0.857858 + 0.495284i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −8.66025 + 15.0000i −0.305614 + 0.529339i
\(804\) 0 0
\(805\) 54.0000 1.90325
\(806\) 0 0
\(807\) 1.73205 0.0609711
\(808\) 0 0
\(809\) 5.50000 9.52628i 0.193370 0.334926i −0.752995 0.658026i \(-0.771392\pi\)
0.946365 + 0.323100i \(0.104725\pi\)
\(810\) 0 0
\(811\) 32.0000i 1.12367i −0.827249 0.561836i \(-0.810095\pi\)
0.827249 0.561836i \(-0.189905\pi\)
\(812\) 0 0
\(813\) −13.5000 + 7.79423i −0.473466 + 0.273356i
\(814\) 0 0
\(815\) −32.9090 57.0000i −1.15275 1.99662i
\(816\) 0 0
\(817\) −22.5000 12.9904i −0.787175 0.454476i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.5000 + 9.52628i 0.575854 + 0.332469i 0.759484 0.650526i \(-0.225452\pi\)
−0.183630 + 0.982995i \(0.558785\pi\)
\(822\) 0 0
\(823\) 4.33013 + 7.50000i 0.150939 + 0.261434i 0.931573 0.363555i \(-0.118437\pi\)
−0.780634 + 0.624988i \(0.785104\pi\)
\(824\) 0 0
\(825\) 52.5000 30.3109i 1.82782 1.05529i
\(826\) 0 0
\(827\) 22.0000i 0.765015i −0.923952 0.382507i \(-0.875061\pi\)
0.923952 0.382507i \(-0.124939\pi\)
\(828\) 0 0
\(829\) 17.5000 30.3109i 0.607800 1.05274i −0.383802 0.923415i \(-0.625386\pi\)
0.991602 0.129325i \(-0.0412811\pi\)
\(830\) 0 0
\(831\) 15.5885 0.540758
\(832\) 0 0
\(833\) 14.0000 0.485071
\(834\) 0 0
\(835\) −32.9090 + 57.0000i −1.13886 + 1.97257i
\(836\) 0 0
\(837\) 10.3923i 0.359211i
\(838\) 0 0
\(839\) 9.52628 5.50000i 0.328884 0.189881i −0.326462 0.945210i \(-0.605856\pi\)
0.655345 + 0.755329i \(0.272523\pi\)
\(840\) 0 0
\(841\) 2.00000 + 3.46410i 0.0689655 + 0.119452i
\(842\) 0 0
\(843\) 36.3731 + 21.0000i 1.25275 + 0.723278i
\(844\) 0 0
\(845\) 24.0000 38.1051i 0.825625 1.31086i
\(846\) 0 0
\(847\) −36.3731 21.0000i −1.24979 0.721569i
\(848\) 0 0
\(849\) 28.5000 + 49.3634i 0.978117 + 1.69415i
\(850\) 0 0
\(851\) 23.3827 13.5000i 0.801548 0.462774i
\(852\) 0 0
\(853\) 17.3205i 0.593043i 0.955026 + 0.296521i \(0.0958266\pi\)
−0.955026 + 0.296521i \(0.904173\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −44.0000 −1.50301 −0.751506 0.659727i \(-0.770672\pi\)
−0.751506 + 0.659727i \(0.770672\pi\)
\(858\) 0 0
\(859\) 41.5692 1.41832 0.709162 0.705046i \(-0.249074\pi\)
0.709162 + 0.705046i \(0.249074\pi\)
\(860\) 0 0
\(861\) 4.50000 7.79423i 0.153360 0.265627i
\(862\) 0 0
\(863\) 2.00000i 0.0680808i 0.999420 + 0.0340404i \(0.0108375\pi\)
−0.999420 + 0.0340404i \(0.989163\pi\)
\(864\) 0 0
\(865\) −21.0000 + 12.1244i −0.714021 + 0.412240i
\(866\) 0 0
\(867\) 27.7128 + 48.0000i 0.941176 + 1.63017i
\(868\) 0 0
\(869\) −15.0000 8.66025i −0.508840 0.293779i
\(870\) 0 0
\(871\) −7.79423 + 7.50000i −0.264097 + 0.254128i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.3923 + 18.0000i 0.351324 + 0.608511i
\(876\) 0 0
\(877\) −7.50000 + 4.33013i −0.253257 + 0.146218i −0.621255 0.783609i \(-0.713377\pi\)
0.367998 + 0.929827i \(0.380043\pi\)
\(878\) 0 0
\(879\) 45.0000i 1.51781i
\(880\) 0 0
\(881\) −12.5000 + 21.6506i −0.421136 + 0.729428i −0.996051 0.0887846i \(-0.971702\pi\)
0.574915 + 0.818213i \(0.305035\pi\)
\(882\) 0 0
\(883\) −13.8564 −0.466305 −0.233153 0.972440i \(-0.574904\pi\)
−0.233153 + 0.972440i \(0.574904\pi\)
\(884\) 0 0
\(885\) 42.0000 1.41181
\(886\) 0 0
\(887\) −25.1147 + 43.5000i −0.843270 + 1.46059i 0.0438445 + 0.999038i \(0.486039\pi\)
−0.887115 + 0.461549i \(0.847294\pi\)
\(888\) 0 0
\(889\) 57.1577i 1.91701i
\(890\) 0 0
\(891\) −38.9711 + 22.5000i −1.30558 + 0.753778i
\(892\) 0 0
\(893\) −10.0000 17.3205i −0.334637 0.579609i
\(894\) 0 0
\(895\) −57.1577 33.0000i −1.91057 1.10307i
\(896\) 0 0
\(897\) 31.5000 7.79423i 1.05175 0.260242i
\(898\) 0 0
\(899\) −8.66025 5.00000i −0.288836 0.166759i
\(900\) 0 0
\(901\) −14.0000 24.2487i −0.466408 0.807842i
\(902\) 0 0
\(903\) −23.3827 + 13.5000i −0.778127 + 0.449252i
\(904\) 0 0
\(905\) 41.5692i 1.38181i
\(906\) 0 0
\(907\) 21.6506 37.5000i 0.718898 1.24517i −0.242539 0.970142i \(-0.577980\pi\)
0.961437 0.275026i \(-0.0886863\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.8564 0.459083 0.229542 0.973299i \(-0.426277\pi\)
0.229542 + 0.973299i \(0.426277\pi\)
\(912\) 0 0
\(913\) 35.0000 60.6218i 1.15833 2.00629i
\(914\) 0 0
\(915\) 18.0000i 0.595062i
\(916\) 0 0
\(917\) −36.0000 + 20.7846i −1.18882 + 0.686368i
\(918\) 0 0
\(919\) −21.6506 37.5000i −0.714189 1.23701i −0.963272 0.268529i \(-0.913463\pi\)
0.249083 0.968482i \(-0.419871\pi\)
\(920\) 0 0
\(921\) 9.00000 + 5.19615i 0.296560 + 0.171219i
\(922\) 0 0
\(923\) −6.06218 24.5000i −0.199539 0.806427i
\(924\) 0 0
\(925\) 31.5000 + 18.1865i 1.03571 + 0.597970i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −37.5000 + 21.6506i −1.23034 + 0.710334i −0.967100 0.254397i \(-0.918123\pi\)
−0.263235 + 0.964732i \(0.584790\pi\)
\(930\) 0 0
\(931\) 10.0000i 0.327737i
\(932\) 0 0
\(933\) 18.0000 31.1769i 0.589294 1.02069i
\(934\) 0 0
\(935\) 121.244 3.96509
\(936\) 0 0
\(937\) −24.0000 −0.784046 −0.392023 0.919955i \(-0.628225\pi\)
−0.392023 + 0.919955i \(0.628225\pi\)
\(938\) 0 0
\(939\) 10.3923 18.0000i 0.339140 0.587408i
\(940\) 0 0
\(941\) 20.7846i 0.677559i 0.940866 + 0.338779i \(0.110014\pi\)
−0.940866 + 0.338779i \(0.889986\pi\)
\(942\) 0 0
\(943\) 7.79423 4.50000i 0.253815 0.146540i
\(944\) 0 0
\(945\) −27.0000 46.7654i −0.878310 1.52128i
\(946\) 0 0
\(947\) 26.8468 + 15.5000i 0.872403 + 0.503682i 0.868146 0.496309i \(-0.165312\pi\)
0.00425721 + 0.999991i \(0.498645\pi\)
\(948\) 0 0
\(949\) −12.0000 3.46410i −0.389536 0.112449i
\(950\) 0 0
\(951\) −10.3923 6.00000i −0.336994 0.194563i
\(952\) 0 0
\(953\) 6.50000 + 11.2583i 0.210556 + 0.364693i 0.951889 0.306444i \(-0.0991394\pi\)
−0.741333 + 0.671137i \(0.765806\pi\)
\(954\) 0 0
\(955\) −36.3731 + 21.0000i −1.17700 + 0.679544i
\(956\) 0 0
\(957\) 43.3013i 1.39973i
\(958\) 0 0
\(959\) 7.79423 13.5000i 0.251689 0.435938i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −21.0000 + 36.3731i −0.676014 + 1.17089i
\(966\) 0 0
\(967\) 2.00000i 0.0643157i 0.999483 + 0.0321578i \(0.0102379\pi\)
−0.999483 + 0.0321578i \(0.989762\pi\)
\(968\) 0 0
\(969\) −52.5000 + 30.3109i −1.68654 + 0.973726i
\(970\) 0 0
\(971\) 23.3827 + 40.5000i 0.750386 + 1.29971i 0.947636 + 0.319354i \(0.103466\pi\)
−0.197250 + 0.980353i \(0.563201\pi\)
\(972\) 0 0
\(973\) −22.5000 12.9904i −0.721317 0.416452i
\(974\) 0 0
\(975\) 30.3109 + 31.5000i 0.970725 + 1.00881i
\(976\) 0 0
\(977\) −22.5000 12.9904i −0.719839 0.415599i 0.0948546 0.995491i \(-0.469761\pi\)
−0.814693 + 0.579892i \(0.803095\pi\)
\(978\) 0 0
\(979\) −4.33013 7.50000i −0.138391 0.239701i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 14.0000i 0.446531i −0.974758 0.223265i \(-0.928328\pi\)
0.974758 0.223265i \(-0.0716716\pi\)
\(984\) 0 0
\(985\) 3.00000 5.19615i 0.0955879 0.165563i
\(986\) 0 0
\(987\) −20.7846 −0.661581
\(988\) 0 0
\(989\) −27.0000 −0.858550
\(990\) 0 0
\(991\) −14.7224 + 25.5000i −0.467673 + 0.810034i −0.999318 0.0369336i \(-0.988241\pi\)
0.531644 + 0.846968i \(0.321574\pi\)
\(992\) 0 0
\(993\) 25.9808i 0.824475i
\(994\) 0 0
\(995\) −5.19615 + 3.00000i −0.164729 + 0.0951064i
\(996\) 0 0
\(997\) 9.50000 + 16.4545i 0.300868 + 0.521119i 0.976333 0.216274i \(-0.0693903\pi\)
−0.675465 + 0.737392i \(0.736057\pi\)
\(998\) 0 0
\(999\) −23.3827 13.5000i −0.739795 0.427121i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.w.e.641.2 4
4.3 odd 2 inner 832.2.w.e.641.1 4
8.3 odd 2 416.2.w.a.225.2 yes 4
8.5 even 2 416.2.w.a.225.1 4
13.10 even 6 inner 832.2.w.e.257.2 4
52.23 odd 6 inner 832.2.w.e.257.1 4
104.19 even 12 5408.2.a.u.1.1 2
104.45 odd 12 5408.2.a.z.1.2 2
104.59 even 12 5408.2.a.z.1.1 2
104.75 odd 6 416.2.w.a.257.2 yes 4
104.85 odd 12 5408.2.a.u.1.2 2
104.101 even 6 416.2.w.a.257.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.w.a.225.1 4 8.5 even 2
416.2.w.a.225.2 yes 4 8.3 odd 2
416.2.w.a.257.1 yes 4 104.101 even 6
416.2.w.a.257.2 yes 4 104.75 odd 6
832.2.w.e.257.1 4 52.23 odd 6 inner
832.2.w.e.257.2 4 13.10 even 6 inner
832.2.w.e.641.1 4 4.3 odd 2 inner
832.2.w.e.641.2 4 1.1 even 1 trivial
5408.2.a.u.1.1 2 104.19 even 12
5408.2.a.u.1.2 2 104.85 odd 12
5408.2.a.z.1.1 2 104.59 even 12
5408.2.a.z.1.2 2 104.45 odd 12