Properties

Label 832.4.e.a
Level $832$
Weight $4$
Character orbit 832.e
Analytic conductor $49.090$
Analytic rank $0$
Dimension $4$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(545,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.545");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - 6 \beta_{3} q^{5} + 5 \beta_{2} q^{7} + 23 q^{9} + 13 \beta_{3} q^{13} - 6 \beta_{2} q^{15} + 114 q^{17} - 20 \beta_{3} q^{21} + 343 q^{25} + 50 \beta_1 q^{27} + 41 \beta_{2} q^{31}+ \cdots - 164 \beta_{3} q^{93}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 92 q^{9} + 456 q^{17} + 1372 q^{25} - 3828 q^{49} - 4056 q^{65} + 1684 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{3} + 8\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} + 20\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{2} + 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
545.1
1.30278i
2.30278i
1.30278i
2.30278i
0 2.00000i 0 −21.6333 0 36.0555i 0 23.0000 0
545.2 0 2.00000i 0 21.6333 0 36.0555i 0 23.0000 0
545.3 0 2.00000i 0 −21.6333 0 36.0555i 0 23.0000 0
545.4 0 2.00000i 0 21.6333 0 36.0555i 0 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
13.b even 2 1 inner
52.b odd 2 1 inner
104.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.e.a 4
4.b odd 2 1 inner 832.4.e.a 4
8.b even 2 1 inner 832.4.e.a 4
8.d odd 2 1 inner 832.4.e.a 4
13.b even 2 1 inner 832.4.e.a 4
52.b odd 2 1 inner 832.4.e.a 4
104.e even 2 1 inner 832.4.e.a 4
104.h odd 2 1 CM 832.4.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
832.4.e.a 4 1.a even 1 1 trivial
832.4.e.a 4 4.b odd 2 1 inner
832.4.e.a 4 8.b even 2 1 inner
832.4.e.a 4 8.d odd 2 1 inner
832.4.e.a 4 13.b even 2 1 inner
832.4.e.a 4 52.b odd 2 1 inner
832.4.e.a 4 104.e even 2 1 inner
832.4.e.a 4 104.h odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(832, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 468 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 468)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1300)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 2197)^{2} \) Copy content Toggle raw display
$17$ \( (T - 114)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 87412)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 87412)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 47524)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 79092)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 1033812)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less