Properties

Label 832.4.e.a
Level 832832
Weight 44
Character orbit 832.e
Analytic conductor 49.09049.090
Analytic rank 00
Dimension 44
CM discriminant -104
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(545,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.545");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 832.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 49.089589124849.0895891248
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,13)\Q(i, \sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+7x2+9 x^{4} + 7x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q36β3q5+5β2q7+23q9+13β3q136β2q15+114q1720β3q21+343q25+50β1q27+41β2q31+164β3q93+O(q100) q + \beta_1 q^{3} - 6 \beta_{3} q^{5} + 5 \beta_{2} q^{7} + 23 q^{9} + 13 \beta_{3} q^{13} - 6 \beta_{2} q^{15} + 114 q^{17} - 20 \beta_{3} q^{21} + 343 q^{25} + 50 \beta_1 q^{27} + 41 \beta_{2} q^{31}+ \cdots - 164 \beta_{3} q^{93}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+92q9+456q17+1372q253828q494056q65+1684q81+O(q100) 4 q + 92 q^{9} + 456 q^{17} + 1372 q^{25} - 3828 q^{49} - 4056 q^{65} + 1684 q^{81}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+7x2+9 x^{4} + 7x^{2} + 9 : Copy content Toggle raw display

β1\beta_{1}== (2ν3+8ν)/3 ( 2\nu^{3} + 8\nu ) / 3 Copy content Toggle raw display
β2\beta_{2}== (2ν3+20ν)/3 ( 2\nu^{3} + 20\nu ) / 3 Copy content Toggle raw display
β3\beta_{3}== 2ν2+7 2\nu^{2} + 7 Copy content Toggle raw display
ν\nu== (β2β1)/4 ( \beta_{2} - \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β37)/2 ( \beta_{3} - 7 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β2+5β1)/2 ( -2\beta_{2} + 5\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/832Z)×\left(\mathbb{Z}/832\mathbb{Z}\right)^\times.

nn 261261 703703 769769
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
545.1
1.30278i
2.30278i
1.30278i
2.30278i
0 2.00000i 0 −21.6333 0 36.0555i 0 23.0000 0
545.2 0 2.00000i 0 21.6333 0 36.0555i 0 23.0000 0
545.3 0 2.00000i 0 −21.6333 0 36.0555i 0 23.0000 0
545.4 0 2.00000i 0 21.6333 0 36.0555i 0 23.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by Q(26)\Q(\sqrt{-26})
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
13.b even 2 1 inner
52.b odd 2 1 inner
104.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.e.a 4
4.b odd 2 1 inner 832.4.e.a 4
8.b even 2 1 inner 832.4.e.a 4
8.d odd 2 1 inner 832.4.e.a 4
13.b even 2 1 inner 832.4.e.a 4
52.b odd 2 1 inner 832.4.e.a 4
104.e even 2 1 inner 832.4.e.a 4
104.h odd 2 1 CM 832.4.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
832.4.e.a 4 1.a even 1 1 trivial
832.4.e.a 4 4.b odd 2 1 inner
832.4.e.a 4 8.b even 2 1 inner
832.4.e.a 4 8.d odd 2 1 inner
832.4.e.a 4 13.b even 2 1 inner
832.4.e.a 4 52.b odd 2 1 inner
832.4.e.a 4 104.e even 2 1 inner
832.4.e.a 4 104.h odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(832,[χ])S_{4}^{\mathrm{new}}(832, [\chi]):

T32+4 T_{3}^{2} + 4 Copy content Toggle raw display
T52468 T_{5}^{2} - 468 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
55 (T2468)2 (T^{2} - 468)^{2} Copy content Toggle raw display
77 (T2+1300)2 (T^{2} + 1300)^{2} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 (T22197)2 (T^{2} - 2197)^{2} Copy content Toggle raw display
1717 (T114)4 (T - 114)^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2+87412)2 (T^{2} + 87412)^{2} Copy content Toggle raw display
3737 (T287412)2 (T^{2} - 87412)^{2} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T2+47524)2 (T^{2} + 47524)^{2} Copy content Toggle raw display
4747 (T2+79092)2 (T^{2} + 79092)^{2} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 (T2+1033812)2 (T^{2} + 1033812)^{2} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less