Properties

Label 832.4.f.i.129.3
Level 832832
Weight 44
Character 832.129
Analytic conductor 49.09049.090
Analytic rank 00
Dimension 44
CM discriminant -52
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(129,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 832.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 49.089589124849.0895891248
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,13)\Q(i, \sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+7x2+9 x^{4} + 7x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 129.3
Root 1.30278i-1.30278i of defining polynomial
Character χ\chi == 832.129
Dual form 832.4.f.i.129.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.972244iq727.0000q9+19.7611iq1146.8722q137.21110q17146.772iq19+125.000q25+252.389q29+276.572iq31+225.638iq47+342.055q49310.000q53791.549iq59+882.000q6126.2506iq631081.97iq67+1042.15iq7119.2126q77+729.000q81+1219.25iq8345.5712iq91533.551iq99+O(q100)q+0.972244i q^{7} -27.0000 q^{9} +19.7611i q^{11} -46.8722 q^{13} -7.21110 q^{17} -146.772i q^{19} +125.000 q^{25} +252.389 q^{29} +276.572i q^{31} +225.638i q^{47} +342.055 q^{49} -310.000 q^{53} -791.549i q^{59} +882.000 q^{61} -26.2506i q^{63} -1081.97i q^{67} +1042.15i q^{71} -19.2126 q^{77} +729.000 q^{81} +1219.25i q^{83} -45.5712i q^{91} -533.551i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q108q9+500q251372q491240q53+3528q615240q77+2916q81+O(q100) 4 q - 108 q^{9} + 500 q^{25} - 1372 q^{49} - 1240 q^{53} + 3528 q^{61} - 5240 q^{77} + 2916 q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/832Z)×\left(\mathbb{Z}/832\mathbb{Z}\right)^\times.

nn 261261 703703 769769
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
44 0 0
55 0 0 1.00000 00
−1.00000 π\pi
66 0 0
77 0.972244i 0.0524962i 0.999655 + 0.0262481i 0.00835599π0.00835599\pi
−0.999655 + 0.0262481i 0.991644π0.991644\pi
88 0 0
99 −27.0000 −1.00000
1010 0 0
1111 19.7611i 0.541655i 0.962628 + 0.270828i 0.0872973π0.0872973\pi
−0.962628 + 0.270828i 0.912703π0.912703\pi
1212 0 0
1313 −46.8722 −1.00000
1414 0 0
1515 0 0
1616 0 0
1717 −7.21110 −0.102879 −0.0514397 0.998676i 0.516381π-0.516381\pi
−0.0514397 + 0.998676i 0.516381π0.516381\pi
1818 0 0
1919 − 146.772i − 1.77220i −0.463493 0.886101i 0.653404π-0.653404\pi
0.463493 0.886101i 0.346596π-0.346596\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 125.000 1.00000
2626 0 0
2727 0 0
2828 0 0
2929 252.389 1.61612 0.808058 0.589102i 0.200519π-0.200519\pi
0.808058 + 0.589102i 0.200519π0.200519\pi
3030 0 0
3131 276.572i 1.60238i 0.598410 + 0.801190i 0.295799π0.295799\pi
−0.598410 + 0.801190i 0.704201π0.704201\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 225.638i 0.700271i 0.936699 + 0.350136i 0.113864π0.113864\pi
−0.936699 + 0.350136i 0.886136π0.886136\pi
4848 0 0
4949 342.055 0.997244
5050 0 0
5151 0 0
5252 0 0
5353 −310.000 −0.803430 −0.401715 0.915765i 0.631586π-0.631586\pi
−0.401715 + 0.915765i 0.631586π0.631586\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 − 791.549i − 1.74663i −0.487159 0.873313i 0.661967π-0.661967\pi
0.487159 0.873313i 0.338033π-0.338033\pi
6060 0 0
6161 882.000 1.85129 0.925644 0.378396i 0.123524π-0.123524\pi
0.925644 + 0.378396i 0.123524π0.123524\pi
6262 0 0
6363 − 26.2506i − 0.0524962i
6464 0 0
6565 0 0
6666 0 0
6767 − 1081.97i − 1.97289i −0.164082 0.986447i 0.552466π-0.552466\pi
0.164082 0.986447i 0.447534π-0.447534\pi
6868 0 0
6969 0 0
7070 0 0
7171 1042.15i 1.74198i 0.491303 + 0.870989i 0.336521π0.336521\pi
−0.491303 + 0.870989i 0.663479π0.663479\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 −19.2126 −0.0284349
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 729.000 1.00000
8282 0 0
8383 1219.25i 1.61241i 0.591636 + 0.806205i 0.298482π0.298482\pi
−0.591636 + 0.806205i 0.701518π0.701518\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 − 45.5712i − 0.0524962i
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 − 533.551i − 0.541655i
100100 0 0
101101 1498.00 1.47581 0.737904 0.674906i 0.235816π-0.235816\pi
0.737904 + 0.674906i 0.235816π0.235816\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 2069.59 1.72292 0.861462 0.507823i 0.169550π-0.169550\pi
0.861462 + 0.507823i 0.169550π0.169550\pi
114114 0 0
115115 0 0
116116 0 0
117117 1265.55 1.00000
118118 0 0
119119 − 7.01095i − 0.00540078i
120120 0 0
121121 940.497 0.706610
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 142.698 0.0930339
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 − 926.247i − 0.541655i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 − 585.430i − 0.315507i −0.987479 0.157754i 0.949575π-0.949575\pi
0.987479 0.157754i 0.0504252π-0.0504252\pi
152152 0 0
153153 194.700 0.102879
154154 0 0
155155 0 0
156156 0 0
157157 3021.45 1.53591 0.767956 0.640503i 0.221274π-0.221274\pi
0.767956 + 0.640503i 0.221274π0.221274\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 2415.47i 1.16070i 0.814367 + 0.580350i 0.197084π0.197084\pi
−0.814367 + 0.580350i 0.802916π0.802916\pi
164164 0 0
165165 0 0
166166 0 0
167167 − 4135.14i − 1.91609i −0.286624 0.958043i 0.592533π-0.592533\pi
0.286624 0.958043i 0.407467π-0.407467\pi
168168 0 0
169169 2197.00 1.00000
170170 0 0
171171 3962.85i 1.77220i
172172 0 0
173173 770.000 0.338393 0.169197 0.985582i 0.445883π-0.445883\pi
0.169197 + 0.985582i 0.445883π0.445883\pi
174174 0 0
175175 121.530i 0.0524962i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −1622.50 −0.666295 −0.333147 0.942875i 0.608111π-0.608111\pi
−0.333147 + 0.942875i 0.608111π0.608111\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 − 142.500i − 0.0557252i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 245.383i 0.0848400i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 2900.38 0.959922
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 −268.895 −0.0841189
218218 0 0
219219 0 0
220220 0 0
221221 338.000 0.102879
222222 0 0
223223 − 4354.47i − 1.30761i −0.756663 0.653805i 0.773172π-0.773172\pi
0.756663 0.653805i 0.226828π-0.226828\pi
224224 0 0
225225 −3375.00 −1.00000
226226 0 0
227227 1859.36i 0.543658i 0.962346 + 0.271829i 0.0876285π0.0876285\pi
−0.962346 + 0.271829i 0.912372π0.912372\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 −5990.00 −1.68420 −0.842099 0.539324i 0.818680π-0.818680\pi
−0.842099 + 0.539324i 0.818680π0.818680\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 − 5129.44i − 1.38827i −0.719846 0.694134i 0.755787π-0.755787\pi
0.719846 0.694134i 0.244213π-0.244213\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 6879.53i 1.77220i
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 8050.00 1.95387 0.976936 0.213531i 0.0684966π-0.0684966\pi
0.976936 + 0.213531i 0.0684966π0.0684966\pi
258258 0 0
259259 0 0
260260 0 0
261261 −6814.49 −1.61612
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 5444.38 1.23401 0.617007 0.786958i 0.288345π-0.288345\pi
0.617007 + 0.786958i 0.288345π0.288345\pi
270270 0 0
271271 8472.57i 1.89916i 0.313527 + 0.949579i 0.398489π0.398489\pi
−0.313527 + 0.949579i 0.601511π0.601511\pi
272272 0 0
273273 0 0
274274 0 0
275275 2470.14i 0.541655i
276276 0 0
277277 −2070.00 −0.449004 −0.224502 0.974474i 0.572076π-0.572076\pi
−0.224502 + 0.974474i 0.572076π0.572076\pi
278278 0 0
279279 − 7467.44i − 1.60238i
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −4861.00 −0.989416
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 − 10716.5i − 1.99226i −0.0878848 0.996131i 0.528011π-0.528011\pi
0.0878848 0.996131i 0.471989π-0.471989\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 −10189.3 −1.84004 −0.920020 0.391871i 0.871828π-0.871828\pi
−0.920020 + 0.391871i 0.871828π0.871828\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 4987.49i 0.875378i
320320 0 0
321321 0 0
322322 0 0
323323 1058.39i 0.182323i
324324 0 0
325325 −5859.02 −1.00000
326326 0 0
327327 0 0
328328 0 0
329329 −219.375 −0.0367616
330330 0 0
331331 − 11807.1i − 1.96066i −0.197369 0.980329i 0.563240π-0.563240\pi
0.197369 0.980329i 0.436760π-0.436760\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 6915.45 1.11783 0.558915 0.829225i 0.311218π-0.311218\pi
0.558915 + 0.829225i 0.311218π0.311218\pi
338338 0 0
339339 0 0
340340 0 0
341341 −5465.38 −0.867938
342342 0 0
343343 666.040i 0.104848i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 13207.1i 1.94162i 0.239849 + 0.970810i 0.422902π0.422902\pi
−0.239849 + 0.970810i 0.577098π0.577098\pi
360360 0 0
361361 −14683.0 −2.14070
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 − 301.396i − 0.0421770i
372372 0 0
373373 −14083.3 −1.95497 −0.977486 0.210999i 0.932328π-0.932328\pi
−0.977486 + 0.210999i 0.932328π0.932328\pi
374374 0 0
375375 0 0
376376 0 0
377377 −11830.0 −1.61612
378378 0 0
379379 6387.28i 0.865679i 0.901471 + 0.432840i 0.142488π0.142488\pi
−0.901471 + 0.432840i 0.857512π0.857512\pi
380380 0 0
381381 0 0
382382 0 0
383383 14602.9i 1.94823i 0.226060 + 0.974113i 0.427415π0.427415\pi
−0.226060 + 0.974113i 0.572585π0.572585\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −4795.38 −0.625027 −0.312514 0.949913i 0.601171π-0.601171\pi
−0.312514 + 0.949913i 0.601171π0.601171\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 − 12963.5i − 1.60238i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 769.579 0.0916913
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 − 6092.24i − 0.700271i
424424 0 0
425425 −901.388 −0.102879
426426 0 0
427427 857.519i 0.0971856i
428428 0 0
429429 0 0
430430 0 0
431431 − 13124.5i − 1.46679i −0.679802 0.733395i 0.737934π-0.737934\pi
0.679802 0.733395i 0.262066π-0.262066\pi
432432 0 0
433433 11970.0 1.32850 0.664251 0.747509i 0.268751π-0.268751\pi
0.664251 + 0.747509i 0.268751π0.268751\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 −9235.48 −0.997244
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 10884.5i 1.09254i 0.837608 + 0.546271i 0.183953π0.183953\pi
−0.837608 + 0.546271i 0.816047π0.816047\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 1051.94 0.103569
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 − 18346.5i − 1.77220i
476476 0 0
477477 8370.00 0.803430
478478 0 0
479479 − 20117.4i − 1.91898i −0.281751 0.959488i 0.590915π-0.590915\pi
0.281751 0.959488i 0.409085π-0.409085\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 19465.0i 1.81117i 0.424160 + 0.905587i 0.360569π0.360569\pi
−0.424160 + 0.905587i 0.639431π0.639431\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 −1820.00 −0.166265
494494 0 0
495495 0 0
496496 0 0
497497 −1013.22 −0.0914472
498498 0 0
499499 20353.3i 1.82593i 0.408042 + 0.912963i 0.366212π0.366212\pi
−0.408042 + 0.912963i 0.633788π0.633788\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 −4458.87 −0.379306
518518 0 0
519519 0 0
520520 0 0
521521 9482.60 0.797390 0.398695 0.917084i 0.369463π-0.369463\pi
0.398695 + 0.917084i 0.369463π0.369463\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 − 1994.39i − 0.164852i
528528 0 0
529529 −12167.0 −1.00000
530530 0 0
531531 21371.8i 1.74663i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 6759.39i 0.540163i
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 −23814.0 −1.85129
550550 0 0
551551 − 37043.6i − 2.86408i
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 708.766i 0.0524962i
568568 0 0
569569 9994.00 0.736327 0.368164 0.929761i 0.379987π-0.379987\pi
0.368164 + 0.929761i 0.379987π0.379987\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 −1185.41 −0.0846454
582582 0 0
583583 − 6125.95i − 0.435182i
584584 0 0
585585 0 0
586586 0 0
587587 27904.2i 1.96206i 0.193848 + 0.981032i 0.437903π0.437903\pi
−0.193848 + 0.981032i 0.562097π0.562097\pi
588588 0 0
589589 40593.0 2.83974
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −28880.5 −1.96016 −0.980082 0.198592i 0.936363π-0.936363\pi
−0.980082 + 0.198592i 0.936363π0.936363\pi
602602 0 0
603603 29213.2i 1.97289i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 − 10576.2i − 0.700271i
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 − 27356.8i − 1.77635i −0.459504 0.888175i 0.651973π-0.651973\pi
0.459504 0.888175i 0.348027π-0.348027\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 15625.0 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 452.146i 0.0285256i 0.999898 + 0.0142628i 0.00454015π0.00454015\pi
−0.999898 + 0.0142628i 0.995460π0.995460\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −16032.8 −0.997244
638638 0 0
639639 − 28138.0i − 1.74198i
640640 0 0
641641 31548.6 1.94398 0.971992 0.235014i 0.0755136π-0.0755136\pi
0.971992 + 0.235014i 0.0755136π0.0755136\pi
642642 0 0
643643 − 22840.5i − 1.40084i −0.713730 0.700421i 0.752996π-0.752996\pi
0.713730 0.700421i 0.247004π-0.247004\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 15641.9 0.946069
650650 0 0
651651 0 0
652652 0 0
653653 29731.4 1.78174 0.890872 0.454255i 0.150094π-0.150094\pi
0.890872 + 0.454255i 0.150094π0.150094\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 17429.3i 1.00276i
672672 0 0
673673 26702.7 1.52944 0.764721 0.644362i 0.222877π-0.222877\pi
0.764721 + 0.644362i 0.222877π0.222877\pi
674674 0 0
675675 0 0
676676 0 0
677677 23450.0 1.33125 0.665625 0.746286i 0.268165π-0.268165\pi
0.665625 + 0.746286i 0.268165π0.268165\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 35517.1i 1.98979i 0.100929 + 0.994894i 0.467818π0.467818\pi
−0.100929 + 0.994894i 0.532182π0.532182\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 14530.4 0.803430
690690 0 0
691691 17224.4i 0.948261i 0.880455 + 0.474131i 0.157238π0.157238\pi
−0.880455 + 0.474131i 0.842762π0.842762\pi
692692 0 0
693693 518.741 0.0284349
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 22462.6 1.21027 0.605136 0.796122i 0.293119π-0.293119\pi
0.605136 + 0.796122i 0.293119π0.293119\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 1456.42i 0.0774743i
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 31548.6 1.61612
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −19683.0 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0 0
737737 21381.0 1.06863
738738 0 0
739739 8285.24i 0.412419i 0.978508 + 0.206209i 0.0661128π0.0661128\pi
−0.978508 + 0.206209i 0.933887π0.933887\pi
740740 0 0
741741 0 0
742742 0 0
743743 − 40412.2i − 1.99540i −0.0677989 0.997699i 0.521598π-0.521598\pi
0.0677989 0.997699i 0.478402π-0.478402\pi
744744 0 0
745745 0 0
746746 0 0
747747 − 32919.7i − 1.61241i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −37910.0 −1.82016 −0.910081 0.414431i 0.863981π-0.863981\pi
−0.910081 + 0.414431i 0.863981π0.863981\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 37101.6i 1.74663i
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 34571.5i 1.60238i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 −20594.1 −0.943551
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 − 33492.9i − 1.51702i −0.651662 0.758510i 0.725928π-0.725928\pi
0.651662 0.758510i 0.274072π-0.274072\pi
788788 0 0
789789 0 0
790790 0 0
791791 2012.14i 0.0904470i
792792 0 0
793793 −41341.3 −1.85129
794794 0 0
795795 0 0
796796 0 0
797797 16866.8 0.749626 0.374813 0.927101i 0.377707π-0.377707\pi
0.374813 + 0.927101i 0.377707π0.377707\pi
798798 0 0
799799 − 1627.10i − 0.0720435i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 40634.6 1.76593 0.882964 0.469441i 0.155545π-0.155545\pi
0.882964 + 0.469441i 0.155545π0.155545\pi
810810 0 0
811811 − 11933.3i − 0.516691i −0.966053 0.258345i 0.916823π-0.916823\pi
0.966053 0.258345i 0.0831773π-0.0831773\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 1230.42i 0.0524962i
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 − 47245.6i − 1.98657i −0.115707 0.993283i 0.536913π-0.536913\pi
0.115707 0.993283i 0.463087π-0.463087\pi
828828 0 0
829829 39634.0 1.66049 0.830245 0.557399i 0.188201π-0.188201\pi
0.830245 + 0.557399i 0.188201π0.188201\pi
830830 0 0
831831 0 0
832832 0 0
833833 −2466.59 −0.102596
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 45011.9i 1.85219i 0.377295 + 0.926093i 0.376854π0.376854\pi
−0.377295 + 0.926093i 0.623146π0.623146\pi
840840 0 0
841841 39311.0 1.61183
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 914.393i 0.0370943i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 −24710.0 −0.984921 −0.492461 0.870335i 0.663902π-0.663902\pi
−0.492461 + 0.870335i 0.663902π0.663902\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 − 19626.1i − 0.774137i −0.922051 0.387068i 0.873488π-0.873488\pi
0.922051 0.387068i 0.126512π-0.126512\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 50714.3i 1.97289i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 0 0
880880 0 0
881881 34258.0 1.31008 0.655040 0.755594i 0.272652π-0.272652\pi
0.655040 + 0.755594i 0.272652π0.272652\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 14405.9i 0.541655i
892892 0 0
893893 33117.4 1.24102
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 69803.6i 2.58963i
900900 0 0
901901 2235.44 0.0826563
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 −40446.0 −1.47581
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 −24093.8 −0.873371
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 − 48847.8i − 1.74198i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 − 50204.1i − 1.76732i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −5670.00 −0.197685 −0.0988425 0.995103i 0.531514π-0.531514\pi
−0.0988425 + 0.995103i 0.531514π0.531514\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 − 57461.7i − 1.97176i −0.167459 0.985879i 0.553556π-0.553556\pi
0.167459 0.985879i 0.446444π-0.446444\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 52250.0 1.77602 0.888008 0.459828i 0.152089π-0.152089\pi
0.888008 + 0.459828i 0.152089π0.152089\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −46701.0 −1.56762
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 − 31684.0i − 1.05366i −0.849970 0.526830i 0.823380π-0.823380\pi
0.849970 0.526830i 0.176620π-0.176620\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 2839.78i 0.0921415i 0.998938 + 0.0460707i 0.0146700π0.0146700\pi
−0.998938 + 0.0460707i 0.985330π0.985330\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 40250.0 1.27857 0.639283 0.768972i 0.279231π-0.279231\pi
0.639283 + 0.768972i 0.279231π0.279231\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.f.i.129.3 4
4.3 odd 2 inner 832.4.f.i.129.2 4
8.3 odd 2 416.4.f.b.129.2 4
8.5 even 2 416.4.f.b.129.3 yes 4
13.12 even 2 inner 832.4.f.i.129.2 4
52.51 odd 2 CM 832.4.f.i.129.3 4
104.51 odd 2 416.4.f.b.129.3 yes 4
104.77 even 2 416.4.f.b.129.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.f.b.129.2 4 8.3 odd 2
416.4.f.b.129.2 4 104.77 even 2
416.4.f.b.129.3 yes 4 8.5 even 2
416.4.f.b.129.3 yes 4 104.51 odd 2
832.4.f.i.129.2 4 4.3 odd 2 inner
832.4.f.i.129.2 4 13.12 even 2 inner
832.4.f.i.129.3 4 1.1 even 1 trivial
832.4.f.i.129.3 4 52.51 odd 2 CM