Properties

Label 832.4.f.i.129.3
Level $832$
Weight $4$
Character 832.129
Analytic conductor $49.090$
Analytic rank $0$
Dimension $4$
CM discriminant -52
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(129,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 129.3
Root \(-1.30278i\) of defining polynomial
Character \(\chi\) \(=\) 832.129
Dual form 832.4.f.i.129.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.972244i q^{7} -27.0000 q^{9} +19.7611i q^{11} -46.8722 q^{13} -7.21110 q^{17} -146.772i q^{19} +125.000 q^{25} +252.389 q^{29} +276.572i q^{31} +225.638i q^{47} +342.055 q^{49} -310.000 q^{53} -791.549i q^{59} +882.000 q^{61} -26.2506i q^{63} -1081.97i q^{67} +1042.15i q^{71} -19.2126 q^{77} +729.000 q^{81} +1219.25i q^{83} -45.5712i q^{91} -533.551i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 108 q^{9} + 500 q^{25} - 1372 q^{49} - 1240 q^{53} + 3528 q^{61} - 5240 q^{77} + 2916 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0.972244i 0.0524962i 0.999655 + 0.0262481i \(0.00835599\pi\)
−0.999655 + 0.0262481i \(0.991644\pi\)
\(8\) 0 0
\(9\) −27.0000 −1.00000
\(10\) 0 0
\(11\) 19.7611i 0.541655i 0.962628 + 0.270828i \(0.0872973\pi\)
−0.962628 + 0.270828i \(0.912703\pi\)
\(12\) 0 0
\(13\) −46.8722 −1.00000
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.21110 −0.102879 −0.0514397 0.998676i \(-0.516381\pi\)
−0.0514397 + 0.998676i \(0.516381\pi\)
\(18\) 0 0
\(19\) − 146.772i − 1.77220i −0.463493 0.886101i \(-0.653404\pi\)
0.463493 0.886101i \(-0.346596\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 125.000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 252.389 1.61612 0.808058 0.589102i \(-0.200519\pi\)
0.808058 + 0.589102i \(0.200519\pi\)
\(30\) 0 0
\(31\) 276.572i 1.60238i 0.598410 + 0.801190i \(0.295799\pi\)
−0.598410 + 0.801190i \(0.704201\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 225.638i 0.700271i 0.936699 + 0.350136i \(0.113864\pi\)
−0.936699 + 0.350136i \(0.886136\pi\)
\(48\) 0 0
\(49\) 342.055 0.997244
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −310.000 −0.803430 −0.401715 0.915765i \(-0.631586\pi\)
−0.401715 + 0.915765i \(0.631586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 791.549i − 1.74663i −0.487159 0.873313i \(-0.661967\pi\)
0.487159 0.873313i \(-0.338033\pi\)
\(60\) 0 0
\(61\) 882.000 1.85129 0.925644 0.378396i \(-0.123524\pi\)
0.925644 + 0.378396i \(0.123524\pi\)
\(62\) 0 0
\(63\) − 26.2506i − 0.0524962i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1081.97i − 1.97289i −0.164082 0.986447i \(-0.552466\pi\)
0.164082 0.986447i \(-0.447534\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1042.15i 1.74198i 0.491303 + 0.870989i \(0.336521\pi\)
−0.491303 + 0.870989i \(0.663479\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −19.2126 −0.0284349
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) 1219.25i 1.61241i 0.591636 + 0.806205i \(0.298482\pi\)
−0.591636 + 0.806205i \(0.701518\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 45.5712i − 0.0524962i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) − 533.551i − 0.541655i
\(100\) 0 0
\(101\) 1498.00 1.47581 0.737904 0.674906i \(-0.235816\pi\)
0.737904 + 0.674906i \(0.235816\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2069.59 1.72292 0.861462 0.507823i \(-0.169550\pi\)
0.861462 + 0.507823i \(0.169550\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1265.55 1.00000
\(118\) 0 0
\(119\) − 7.01095i − 0.00540078i
\(120\) 0 0
\(121\) 940.497 0.706610
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 142.698 0.0930339
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 926.247i − 0.541655i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) − 585.430i − 0.315507i −0.987479 0.157754i \(-0.949575\pi\)
0.987479 0.157754i \(-0.0504252\pi\)
\(152\) 0 0
\(153\) 194.700 0.102879
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3021.45 1.53591 0.767956 0.640503i \(-0.221274\pi\)
0.767956 + 0.640503i \(0.221274\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2415.47i 1.16070i 0.814367 + 0.580350i \(0.197084\pi\)
−0.814367 + 0.580350i \(0.802916\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 4135.14i − 1.91609i −0.286624 0.958043i \(-0.592533\pi\)
0.286624 0.958043i \(-0.407467\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 3962.85i 1.77220i
\(172\) 0 0
\(173\) 770.000 0.338393 0.169197 0.985582i \(-0.445883\pi\)
0.169197 + 0.985582i \(0.445883\pi\)
\(174\) 0 0
\(175\) 121.530i 0.0524962i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −1622.50 −0.666295 −0.333147 0.942875i \(-0.608111\pi\)
−0.333147 + 0.942875i \(0.608111\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 142.500i − 0.0557252i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 245.383i 0.0848400i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2900.38 0.959922
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −268.895 −0.0841189
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 338.000 0.102879
\(222\) 0 0
\(223\) − 4354.47i − 1.30761i −0.756663 0.653805i \(-0.773172\pi\)
0.756663 0.653805i \(-0.226828\pi\)
\(224\) 0 0
\(225\) −3375.00 −1.00000
\(226\) 0 0
\(227\) 1859.36i 0.543658i 0.962346 + 0.271829i \(0.0876285\pi\)
−0.962346 + 0.271829i \(0.912372\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5990.00 −1.68420 −0.842099 0.539324i \(-0.818680\pi\)
−0.842099 + 0.539324i \(0.818680\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 5129.44i − 1.38827i −0.719846 0.694134i \(-0.755787\pi\)
0.719846 0.694134i \(-0.244213\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6879.53i 1.77220i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8050.00 1.95387 0.976936 0.213531i \(-0.0684966\pi\)
0.976936 + 0.213531i \(0.0684966\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6814.49 −1.61612
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5444.38 1.23401 0.617007 0.786958i \(-0.288345\pi\)
0.617007 + 0.786958i \(0.288345\pi\)
\(270\) 0 0
\(271\) 8472.57i 1.89916i 0.313527 + 0.949579i \(0.398489\pi\)
−0.313527 + 0.949579i \(0.601511\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2470.14i 0.541655i
\(276\) 0 0
\(277\) −2070.00 −0.449004 −0.224502 0.974474i \(-0.572076\pi\)
−0.224502 + 0.974474i \(0.572076\pi\)
\(278\) 0 0
\(279\) − 7467.44i − 1.60238i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4861.00 −0.989416
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 10716.5i − 1.99226i −0.0878848 0.996131i \(-0.528011\pi\)
0.0878848 0.996131i \(-0.471989\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −10189.3 −1.84004 −0.920020 0.391871i \(-0.871828\pi\)
−0.920020 + 0.391871i \(0.871828\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 4987.49i 0.875378i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1058.39i 0.182323i
\(324\) 0 0
\(325\) −5859.02 −1.00000
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −219.375 −0.0367616
\(330\) 0 0
\(331\) − 11807.1i − 1.96066i −0.197369 0.980329i \(-0.563240\pi\)
0.197369 0.980329i \(-0.436760\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6915.45 1.11783 0.558915 0.829225i \(-0.311218\pi\)
0.558915 + 0.829225i \(0.311218\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5465.38 −0.867938
\(342\) 0 0
\(343\) 666.040i 0.104848i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13207.1i 1.94162i 0.239849 + 0.970810i \(0.422902\pi\)
−0.239849 + 0.970810i \(0.577098\pi\)
\(360\) 0 0
\(361\) −14683.0 −2.14070
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 301.396i − 0.0421770i
\(372\) 0 0
\(373\) −14083.3 −1.95497 −0.977486 0.210999i \(-0.932328\pi\)
−0.977486 + 0.210999i \(0.932328\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11830.0 −1.61612
\(378\) 0 0
\(379\) 6387.28i 0.865679i 0.901471 + 0.432840i \(0.142488\pi\)
−0.901471 + 0.432840i \(0.857512\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14602.9i 1.94823i 0.226060 + 0.974113i \(0.427415\pi\)
−0.226060 + 0.974113i \(0.572585\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4795.38 −0.625027 −0.312514 0.949913i \(-0.601171\pi\)
−0.312514 + 0.949913i \(0.601171\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) − 12963.5i − 1.60238i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 769.579 0.0916913
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) − 6092.24i − 0.700271i
\(424\) 0 0
\(425\) −901.388 −0.102879
\(426\) 0 0
\(427\) 857.519i 0.0971856i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 13124.5i − 1.46679i −0.679802 0.733395i \(-0.737934\pi\)
0.679802 0.733395i \(-0.262066\pi\)
\(432\) 0 0
\(433\) 11970.0 1.32850 0.664251 0.747509i \(-0.268751\pi\)
0.664251 + 0.747509i \(0.268751\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −9235.48 −0.997244
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 10884.5i 1.09254i 0.837608 + 0.546271i \(0.183953\pi\)
−0.837608 + 0.546271i \(0.816047\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 1051.94 0.103569
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 18346.5i − 1.77220i
\(476\) 0 0
\(477\) 8370.00 0.803430
\(478\) 0 0
\(479\) − 20117.4i − 1.91898i −0.281751 0.959488i \(-0.590915\pi\)
0.281751 0.959488i \(-0.409085\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 19465.0i 1.81117i 0.424160 + 0.905587i \(0.360569\pi\)
−0.424160 + 0.905587i \(0.639431\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −1820.00 −0.166265
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1013.22 −0.0914472
\(498\) 0 0
\(499\) 20353.3i 1.82593i 0.408042 + 0.912963i \(0.366212\pi\)
−0.408042 + 0.912963i \(0.633788\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −4458.87 −0.379306
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9482.60 0.797390 0.398695 0.917084i \(-0.369463\pi\)
0.398695 + 0.917084i \(0.369463\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1994.39i − 0.164852i
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 21371.8i 1.74663i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6759.39i 0.540163i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) −23814.0 −1.85129
\(550\) 0 0
\(551\) − 37043.6i − 2.86408i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 708.766i 0.0524962i
\(568\) 0 0
\(569\) 9994.00 0.736327 0.368164 0.929761i \(-0.379987\pi\)
0.368164 + 0.929761i \(0.379987\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1185.41 −0.0846454
\(582\) 0 0
\(583\) − 6125.95i − 0.435182i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27904.2i 1.96206i 0.193848 + 0.981032i \(0.437903\pi\)
−0.193848 + 0.981032i \(0.562097\pi\)
\(588\) 0 0
\(589\) 40593.0 2.83974
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −28880.5 −1.96016 −0.980082 0.198592i \(-0.936363\pi\)
−0.980082 + 0.198592i \(0.936363\pi\)
\(602\) 0 0
\(603\) 29213.2i 1.97289i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 10576.2i − 0.700271i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) − 27356.8i − 1.77635i −0.459504 0.888175i \(-0.651973\pi\)
0.459504 0.888175i \(-0.348027\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 452.146i 0.0285256i 0.999898 + 0.0142628i \(0.00454015\pi\)
−0.999898 + 0.0142628i \(0.995460\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −16032.8 −0.997244
\(638\) 0 0
\(639\) − 28138.0i − 1.74198i
\(640\) 0 0
\(641\) 31548.6 1.94398 0.971992 0.235014i \(-0.0755136\pi\)
0.971992 + 0.235014i \(0.0755136\pi\)
\(642\) 0 0
\(643\) − 22840.5i − 1.40084i −0.713730 0.700421i \(-0.752996\pi\)
0.713730 0.700421i \(-0.247004\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 15641.9 0.946069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29731.4 1.78174 0.890872 0.454255i \(-0.150094\pi\)
0.890872 + 0.454255i \(0.150094\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17429.3i 1.00276i
\(672\) 0 0
\(673\) 26702.7 1.52944 0.764721 0.644362i \(-0.222877\pi\)
0.764721 + 0.644362i \(0.222877\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23450.0 1.33125 0.665625 0.746286i \(-0.268165\pi\)
0.665625 + 0.746286i \(0.268165\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35517.1i 1.98979i 0.100929 + 0.994894i \(0.467818\pi\)
−0.100929 + 0.994894i \(0.532182\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14530.4 0.803430
\(690\) 0 0
\(691\) 17224.4i 0.948261i 0.880455 + 0.474131i \(0.157238\pi\)
−0.880455 + 0.474131i \(0.842762\pi\)
\(692\) 0 0
\(693\) 518.741 0.0284349
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22462.6 1.21027 0.605136 0.796122i \(-0.293119\pi\)
0.605136 + 0.796122i \(0.293119\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1456.42i 0.0774743i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 31548.6 1.61612
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21381.0 1.06863
\(738\) 0 0
\(739\) 8285.24i 0.412419i 0.978508 + 0.206209i \(0.0661128\pi\)
−0.978508 + 0.206209i \(0.933887\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 40412.2i − 1.99540i −0.0677989 0.997699i \(-0.521598\pi\)
0.0677989 0.997699i \(-0.478402\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 32919.7i − 1.61241i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −37910.0 −1.82016 −0.910081 0.414431i \(-0.863981\pi\)
−0.910081 + 0.414431i \(0.863981\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 37101.6i 1.74663i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 34571.5i 1.60238i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −20594.1 −0.943551
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 33492.9i − 1.51702i −0.651662 0.758510i \(-0.725928\pi\)
0.651662 0.758510i \(-0.274072\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2012.14i 0.0904470i
\(792\) 0 0
\(793\) −41341.3 −1.85129
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16866.8 0.749626 0.374813 0.927101i \(-0.377707\pi\)
0.374813 + 0.927101i \(0.377707\pi\)
\(798\) 0 0
\(799\) − 1627.10i − 0.0720435i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40634.6 1.76593 0.882964 0.469441i \(-0.155545\pi\)
0.882964 + 0.469441i \(0.155545\pi\)
\(810\) 0 0
\(811\) − 11933.3i − 0.516691i −0.966053 0.258345i \(-0.916823\pi\)
0.966053 0.258345i \(-0.0831773\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1230.42i 0.0524962i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 47245.6i − 1.98657i −0.115707 0.993283i \(-0.536913\pi\)
0.115707 0.993283i \(-0.463087\pi\)
\(828\) 0 0
\(829\) 39634.0 1.66049 0.830245 0.557399i \(-0.188201\pi\)
0.830245 + 0.557399i \(0.188201\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2466.59 −0.102596
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 45011.9i 1.85219i 0.377295 + 0.926093i \(0.376854\pi\)
−0.377295 + 0.926093i \(0.623146\pi\)
\(840\) 0 0
\(841\) 39311.0 1.61183
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 914.393i 0.0370943i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24710.0 −0.984921 −0.492461 0.870335i \(-0.663902\pi\)
−0.492461 + 0.870335i \(0.663902\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 19626.1i − 0.774137i −0.922051 0.387068i \(-0.873488\pi\)
0.922051 0.387068i \(-0.126512\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 50714.3i 1.97289i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34258.0 1.31008 0.655040 0.755594i \(-0.272652\pi\)
0.655040 + 0.755594i \(0.272652\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 14405.9i 0.541655i
\(892\) 0 0
\(893\) 33117.4 1.24102
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 69803.6i 2.58963i
\(900\) 0 0
\(901\) 2235.44 0.0826563
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) −40446.0 −1.47581
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −24093.8 −0.873371
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 48847.8i − 1.74198i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) − 50204.1i − 1.76732i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5670.00 −0.197685 −0.0988425 0.995103i \(-0.531514\pi\)
−0.0988425 + 0.995103i \(0.531514\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 57461.7i − 1.97176i −0.167459 0.985879i \(-0.553556\pi\)
0.167459 0.985879i \(-0.446444\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52250.0 1.77602 0.888008 0.459828i \(-0.152089\pi\)
0.888008 + 0.459828i \(0.152089\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −46701.0 −1.56762
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 31684.0i − 1.05366i −0.849970 0.526830i \(-0.823380\pi\)
0.849970 0.526830i \(-0.176620\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2839.78i 0.0921415i 0.998938 + 0.0460707i \(0.0146700\pi\)
−0.998938 + 0.0460707i \(0.985330\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 40250.0 1.27857 0.639283 0.768972i \(-0.279231\pi\)
0.639283 + 0.768972i \(0.279231\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.f.i.129.3 4
4.3 odd 2 inner 832.4.f.i.129.2 4
8.3 odd 2 416.4.f.b.129.2 4
8.5 even 2 416.4.f.b.129.3 yes 4
13.12 even 2 inner 832.4.f.i.129.2 4
52.51 odd 2 CM 832.4.f.i.129.3 4
104.51 odd 2 416.4.f.b.129.3 yes 4
104.77 even 2 416.4.f.b.129.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.f.b.129.2 4 8.3 odd 2
416.4.f.b.129.2 4 104.77 even 2
416.4.f.b.129.3 yes 4 8.5 even 2
416.4.f.b.129.3 yes 4 104.51 odd 2
832.4.f.i.129.2 4 4.3 odd 2 inner
832.4.f.i.129.2 4 13.12 even 2 inner
832.4.f.i.129.3 4 1.1 even 1 trivial
832.4.f.i.129.3 4 52.51 odd 2 CM