Properties

Label 832.6.ba
Level $832$
Weight $6$
Character orbit 832.ba
Rep. character $\chi_{832}(225,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $280$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(832, [\chi])\).

Total New Old
Modular forms 1144 280 864
Cusp forms 1096 280 816
Eisenstein series 48 0 48

Trace form

\( 280 q + 11340 q^{9} + 1212 q^{17} + 193696 q^{25} - 22284 q^{41} + 306876 q^{49} - 64572 q^{65} - 918540 q^{81} - 442128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)