Properties

Label 832.6.p
Level $832$
Weight $6$
Character orbit 832.p
Rep. character $\chi_{832}(337,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $276$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 832.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(i)\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(832, [\chi])\).

Total New Old
Modular forms 1136 284 852
Cusp forms 1104 276 828
Eisenstein series 32 8 24

Trace form

\( 276 q + 4 q^{3} - 2 q^{13} - 8 q^{17} + 6496 q^{27} - 4 q^{29} + 12504 q^{35} + 660 q^{43} + 605044 q^{49} + 976 q^{51} - 4 q^{53} - 4 q^{61} - 27692 q^{65} + 968 q^{69} + 83156 q^{75} - 67232 q^{77} + 249648 q^{79}+ \cdots + 577608 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)