gp: [N,k,chi] = [8325,2,Mod(1,8325)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8325.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [3,1,0,5,0,0,-4,0,0,0,-1,0,-15]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
37 37 3 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 8325 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(8325)) S 2 n e w ( Γ 0 ( 8 3 2 5 ) ) :
T 2 3 − T 2 2 − 5 T 2 + 4 T_{2}^{3} - T_{2}^{2} - 5T_{2} + 4 T 2 3 − T 2 2 − 5 T 2 + 4
T2^3 - T2^2 - 5*T2 + 4
T 7 3 + 4 T 7 2 − 7 T 7 − 14 T_{7}^{3} + 4T_{7}^{2} - 7T_{7} - 14 T 7 3 + 4 T 7 2 − 7 T 7 − 1 4
T7^3 + 4*T7^2 - 7*T7 - 14
T 11 3 + T 11 2 − 7 T 11 + 4 T_{11}^{3} + T_{11}^{2} - 7T_{11} + 4 T 1 1 3 + T 1 1 2 − 7 T 1 1 + 4
T11^3 + T11^2 - 7*T11 + 4
T 13 + 5 T_{13} + 5 T 1 3 + 5
T13 + 5
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 − T 2 − 5 T + 4 T^{3} - T^{2} - 5T + 4 T 3 − T 2 − 5 T + 4
T^3 - T^2 - 5*T + 4
3 3 3
T 3 T^{3} T 3
T^3
5 5 5
T 3 T^{3} T 3
T^3
7 7 7
T 3 + 4 T 2 + ⋯ − 14 T^{3} + 4 T^{2} + \cdots - 14 T 3 + 4 T 2 + ⋯ − 1 4
T^3 + 4*T^2 - 7*T - 14
11 11 1 1
T 3 + T 2 − 7 T + 4 T^{3} + T^{2} - 7T + 4 T 3 + T 2 − 7 T + 4
T^3 + T^2 - 7*T + 4
13 13 1 3
( T + 5 ) 3 (T + 5)^{3} ( T + 5 ) 3
(T + 5)^3
17 17 1 7
T 3 − 7 T 2 + ⋯ + 86 T^{3} - 7 T^{2} + \cdots + 86 T 3 − 7 T 2 + ⋯ + 8 6
T^3 - 7*T^2 - 19*T + 86
19 19 1 9
T 3 + 5 T 2 + ⋯ − 2 T^{3} + 5 T^{2} + \cdots - 2 T 3 + 5 T 2 + ⋯ − 2
T^3 + 5*T^2 + 3*T - 2
23 23 2 3
T 3 + 4 T 2 + ⋯ − 14 T^{3} + 4 T^{2} + \cdots - 14 T 3 + 4 T 2 + ⋯ − 1 4
T^3 + 4*T^2 - 7*T - 14
29 29 2 9
T 3 + 2 T 2 + ⋯ − 11 T^{3} + 2 T^{2} + \cdots - 11 T 3 + 2 T 2 + ⋯ − 1 1
T^3 + 2*T^2 - 6*T - 11
31 31 3 1
T 3 − 4 T 2 + ⋯ + 14 T^{3} - 4 T^{2} + \cdots + 14 T 3 − 4 T 2 + ⋯ + 1 4
T^3 - 4*T^2 - 7*T + 14
37 37 3 7
( T − 1 ) 3 (T - 1)^{3} ( T − 1 ) 3
(T - 1)^3
41 41 4 1
T 3 − 8 T 2 + ⋯ − 28 T^{3} - 8 T^{2} + \cdots - 28 T 3 − 8 T 2 + ⋯ − 2 8
T^3 - 8*T^2 - 33*T - 28
43 43 4 3
T 3 + 4 T 2 + ⋯ − 1 T^{3} + 4 T^{2} + \cdots - 1 T 3 + 4 T 2 + ⋯ − 1
T^3 + 4*T^2 - 2*T - 1
47 47 4 7
T 3 + 5 T 2 + ⋯ − 49 T^{3} + 5 T^{2} + \cdots - 49 T 3 + 5 T 2 + ⋯ − 4 9
T^3 + 5*T^2 - 13*T - 49
53 53 5 3
T 3 − 13 T 2 + 256 T^{3} - 13T^{2} + 256 T 3 − 1 3 T 2 + 2 5 6
T^3 - 13*T^2 + 256
59 59 5 9
T 3 − 16 T 2 + ⋯ + 1447 T^{3} - 16 T^{2} + \cdots + 1447 T 3 − 1 6 T 2 + ⋯ + 1 4 4 7
T^3 - 16*T^2 - 74*T + 1447
61 61 6 1
T 3 − 8 T 2 + ⋯ + 134 T^{3} - 8 T^{2} + \cdots + 134 T 3 − 8 T 2 + ⋯ + 1 3 4
T^3 - 8*T^2 - 51*T + 134
67 67 6 7
T 3 + 13 T 2 + ⋯ − 1192 T^{3} + 13 T^{2} + \cdots - 1192 T 3 + 1 3 T 2 + ⋯ − 1 1 9 2
T^3 + 13*T^2 - 113*T - 1192
71 71 7 1
T 3 − 7 T 2 + ⋯ + 16 T^{3} - 7 T^{2} + \cdots + 16 T 3 − 7 T 2 + ⋯ + 1 6
T^3 - 7*T^2 - 59*T + 16
73 73 7 3
T 3 − T 2 + ⋯ + 154 T^{3} - T^{2} + \cdots + 154 T 3 − T 2 + ⋯ + 1 5 4
T^3 - T^2 - 201*T + 154
79 79 7 9
T 3 + 11 T 2 + ⋯ − 112 T^{3} + 11 T^{2} + \cdots - 112 T 3 + 1 1 T 2 + ⋯ − 1 1 2
T^3 + 11*T^2 - 49*T - 112
83 83 8 3
T 3 + 12 T 2 + ⋯ − 241 T^{3} + 12 T^{2} + \cdots - 241 T 3 + 1 2 T 2 + ⋯ − 2 4 1
T^3 + 12*T^2 - 76*T - 241
89 89 8 9
T 3 + 19 T 2 + ⋯ + 17 T^{3} + 19 T^{2} + \cdots + 17 T 3 + 1 9 T 2 + ⋯ + 1 7
T^3 + 19*T^2 + 91*T + 17
97 97 9 7
T 3 + 26 T 2 + ⋯ − 178 T^{3} + 26 T^{2} + \cdots - 178 T 3 + 2 6 T 2 + ⋯ − 1 7 8
T^3 + 26*T^2 + 155*T - 178
show more
show less