Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [833,2,Mod(18,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.18");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 833.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 119) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18.1 |
|
−1.24613 | − | 2.15837i | −1.41042 | + | 2.44292i | −2.10570 | + | 3.64718i | 1.25944 | + | 2.18142i | 7.03030 | 0 | 5.51141 | −2.47858 | − | 4.29302i | 3.13887 | − | 5.43669i | ||||||||||||||||||||||||||||||||||||
18.2 | −1.18400 | − | 2.05075i | 0.284689 | − | 0.493096i | −1.80371 | + | 3.12411i | −2.07732 | − | 3.59803i | −1.34829 | 0 | 3.80636 | 1.33790 | + | 2.31732i | −4.91910 | + | 8.52013i | |||||||||||||||||||||||||||||||||||||
18.3 | −0.438917 | − | 0.760227i | 0.453789 | − | 0.785986i | 0.614704 | − | 1.06470i | 1.51909 | + | 2.63114i | −0.796703 | 0 | −2.83488 | 1.08815 | + | 1.88473i | 1.33351 | − | 2.30971i | |||||||||||||||||||||||||||||||||||||
18.4 | 0.704339 | + | 1.21995i | 1.27991 | − | 2.21687i | 0.00781334 | − | 0.0135331i | 0.883300 | + | 1.52992i | 3.60597 | 0 | 2.83937 | −1.77635 | − | 3.07673i | −1.24428 | + | 2.15516i | |||||||||||||||||||||||||||||||||||||
18.5 | 1.16471 | + | 2.01734i | −1.60797 | + | 2.78508i | −1.71311 | + | 2.96719i | −1.58451 | − | 2.74445i | −7.49128 | 0 | −3.32226 | −3.67113 | − | 6.35858i | 3.69100 | − | 6.39300i | |||||||||||||||||||||||||||||||||||||
324.1 | −1.24613 | + | 2.15837i | −1.41042 | − | 2.44292i | −2.10570 | − | 3.64718i | 1.25944 | − | 2.18142i | 7.03030 | 0 | 5.51141 | −2.47858 | + | 4.29302i | 3.13887 | + | 5.43669i | |||||||||||||||||||||||||||||||||||||
324.2 | −1.18400 | + | 2.05075i | 0.284689 | + | 0.493096i | −1.80371 | − | 3.12411i | −2.07732 | + | 3.59803i | −1.34829 | 0 | 3.80636 | 1.33790 | − | 2.31732i | −4.91910 | − | 8.52013i | |||||||||||||||||||||||||||||||||||||
324.3 | −0.438917 | + | 0.760227i | 0.453789 | + | 0.785986i | 0.614704 | + | 1.06470i | 1.51909 | − | 2.63114i | −0.796703 | 0 | −2.83488 | 1.08815 | − | 1.88473i | 1.33351 | + | 2.30971i | |||||||||||||||||||||||||||||||||||||
324.4 | 0.704339 | − | 1.21995i | 1.27991 | + | 2.21687i | 0.00781334 | + | 0.0135331i | 0.883300 | − | 1.52992i | 3.60597 | 0 | 2.83937 | −1.77635 | + | 3.07673i | −1.24428 | − | 2.15516i | |||||||||||||||||||||||||||||||||||||
324.5 | 1.16471 | − | 2.01734i | −1.60797 | − | 2.78508i | −1.71311 | − | 2.96719i | −1.58451 | + | 2.74445i | −7.49128 | 0 | −3.32226 | −3.67113 | + | 6.35858i | 3.69100 | + | 6.39300i | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 833.2.e.h | 10 | |
7.b | odd | 2 | 1 | 833.2.e.i | 10 | ||
7.c | even | 3 | 1 | 833.2.a.g | 5 | ||
7.c | even | 3 | 1 | inner | 833.2.e.h | 10 | |
7.d | odd | 6 | 1 | 119.2.a.b | ✓ | 5 | |
7.d | odd | 6 | 1 | 833.2.e.i | 10 | ||
21.g | even | 6 | 1 | 1071.2.a.m | 5 | ||
21.h | odd | 6 | 1 | 7497.2.a.br | 5 | ||
28.f | even | 6 | 1 | 1904.2.a.t | 5 | ||
35.i | odd | 6 | 1 | 2975.2.a.m | 5 | ||
56.j | odd | 6 | 1 | 7616.2.a.bt | 5 | ||
56.m | even | 6 | 1 | 7616.2.a.bq | 5 | ||
119.h | odd | 6 | 1 | 2023.2.a.j | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
119.2.a.b | ✓ | 5 | 7.d | odd | 6 | 1 | |
833.2.a.g | 5 | 7.c | even | 3 | 1 | ||
833.2.e.h | 10 | 1.a | even | 1 | 1 | trivial | |
833.2.e.h | 10 | 7.c | even | 3 | 1 | inner | |
833.2.e.i | 10 | 7.b | odd | 2 | 1 | ||
833.2.e.i | 10 | 7.d | odd | 6 | 1 | ||
1071.2.a.m | 5 | 21.g | even | 6 | 1 | ||
1904.2.a.t | 5 | 28.f | even | 6 | 1 | ||
2023.2.a.j | 5 | 119.h | odd | 6 | 1 | ||
2975.2.a.m | 5 | 35.i | odd | 6 | 1 | ||
7497.2.a.br | 5 | 21.h | odd | 6 | 1 | ||
7616.2.a.bq | 5 | 56.m | even | 6 | 1 | ||
7616.2.a.bt | 5 | 56.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|