Properties

Label 833.2.e.h
Level 833833
Weight 22
Character orbit 833.e
Analytic conductor 6.6526.652
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(18,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 833=7217 833 = 7^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 833.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.651538488376.65153848837
Analytic rank: 00
Dimension: 1010
Relative dimension: 55 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x102x9+9x810x7+44x649x5+99x420x3+31x23x+9 x^{10} - 2x^{9} + 9x^{8} - 10x^{7} + 44x^{6} - 49x^{5} + 99x^{4} - 20x^{3} + 31x^{2} - 3x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ4q2+(β8β7+β3)q3+(β8+2β5+β3)q4+(β6β5+β4+1)q5+(2β9β8+2β4+1)q6++(4β9+2β8+10)q99+O(q100) q - \beta_{4} q^{2} + ( - \beta_{8} - \beta_{7} + \beta_{3}) q^{3} + ( - \beta_{8} + 2 \beta_{5} + \beta_{3}) q^{4} + ( - \beta_{6} - \beta_{5} + \beta_{4} + \cdots - 1) q^{5} + (2 \beta_{9} - \beta_{8} + 2 \beta_{4} + \cdots - 1) q^{6}+ \cdots + ( - 4 \beta_{9} + 2 \beta_{8} + \cdots - 10) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q2q22q310q4+2q6+12q811q9+4q10+2q1122q124q13+16q154q16+5q17+18q18+6q19+38q20+12q22+10q23+124q99+O(q100) 10 q - 2 q^{2} - 2 q^{3} - 10 q^{4} + 2 q^{6} + 12 q^{8} - 11 q^{9} + 4 q^{10} + 2 q^{11} - 22 q^{12} - 4 q^{13} + 16 q^{15} - 4 q^{16} + 5 q^{17} + 18 q^{18} + 6 q^{19} + 38 q^{20} + 12 q^{22} + 10 q^{23}+ \cdots - 124 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x102x9+9x810x7+44x649x5+99x420x3+31x23x+9 x^{10} - 2x^{9} + 9x^{8} - 10x^{7} + 44x^{6} - 49x^{5} + 99x^{4} - 20x^{3} + 31x^{2} - 3x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (4212ν9+3675ν815575ν715678ν674025ν5+88200ν4++2078070)/773879 ( - 4212 \nu^{9} + 3675 \nu^{8} - 15575 \nu^{7} - 15678 \nu^{6} - 74025 \nu^{5} + 88200 \nu^{4} + \cdots + 2078070 ) / 773879 Copy content Toggle raw display
β3\beta_{3}== (4749ν9+22333ν857798ν7+111303ν6118188ν5+535992ν4++37908)/773879 ( - 4749 \nu^{9} + 22333 \nu^{8} - 57798 \nu^{7} + 111303 \nu^{6} - 118188 \nu^{5} + 535992 \nu^{4} + \cdots + 37908 ) / 773879 Copy content Toggle raw display
β4\beta_{4}== (19451ν9+168550ν8235263ν7+1002431ν6631225ν5++1479609)/2321637 ( - 19451 \nu^{9} + 168550 \nu^{8} - 235263 \nu^{7} + 1002431 \nu^{6} - 631225 \nu^{5} + \cdots + 1479609 ) / 2321637 Copy content Toggle raw display
β5\beta_{5}== (28988ν9+23213ν8+85878ν7+451846ν6+416857ν5+2104870ν4++188058)/2321637 ( 28988 \nu^{9} + 23213 \nu^{8} + 85878 \nu^{7} + 451846 \nu^{6} + 416857 \nu^{5} + 2104870 \nu^{4} + \cdots + 188058 ) / 2321637 Copy content Toggle raw display
β6\beta_{6}== (24776ν926888ν870303ν7436168ν6342832ν52193070ν4+2266128)/773879 ( - 24776 \nu^{9} - 26888 \nu^{8} - 70303 \nu^{7} - 436168 \nu^{6} - 342832 \nu^{5} - 2193070 \nu^{4} + \cdots - 2266128 ) / 773879 Copy content Toggle raw display
β7\beta_{7}== (27063ν9+58338ν8247242ν7+286205ν61175094ν5+1400112ν4++86964)/773879 ( - 27063 \nu^{9} + 58338 \nu^{8} - 247242 \nu^{7} + 286205 \nu^{6} - 1175094 \nu^{5} + 1400112 \nu^{4} + \cdots + 86964 ) / 773879 Copy content Toggle raw display
β8\beta_{8}== (108252ν9+233352ν8988968ν7+1144820ν64700376ν5++347856)/773879 ( - 108252 \nu^{9} + 233352 \nu^{8} - 988968 \nu^{7} + 1144820 \nu^{6} - 4700376 \nu^{5} + \cdots + 347856 ) / 773879 Copy content Toggle raw display
β9\beta_{9}== (329980ν9+541460ν82773827ν7+2469163ν613670405ν5++681951)/2321637 ( - 329980 \nu^{9} + 541460 \nu^{8} - 2773827 \nu^{7} + 2469163 \nu^{6} - 13670405 \nu^{5} + \cdots + 681951 ) / 2321637 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+3β5+β2 \beta_{6} + 3\beta_{5} + \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β84β74β1 \beta_{8} - 4\beta_{7} - 4\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 5β613β5β4+β313 -5\beta_{6} - 13\beta_{5} - \beta_{4} + \beta_{3} - 13 Copy content Toggle raw display
ν5\nu^{5}== 2β97β8+19β7+β5+7β3 2\beta_{9} - 7\beta_{8} + 19\beta_{7} + \beta_{5} + 7\beta_{3} Copy content Toggle raw display
ν6\nu^{6}== 9β99β8+β7+9β424β2+β1+60 9\beta_{9} - 9\beta_{8} + \beta_{7} + 9\beta_{4} - 24\beta_{2} + \beta _1 + 60 Copy content Toggle raw display
ν7\nu^{7}== β66β5+18β442β3+93β16 \beta_{6} - 6\beta_{5} + 18\beta_{4} - 42\beta_{3} + 93\beta _1 - 6 Copy content Toggle raw display
ν8\nu^{8}== 60β9+61β813β7+117β6+285β561β3+117β2 -60\beta_{9} + 61\beta_{8} - 13\beta_{7} + 117\beta_{6} + 285\beta_{5} - 61\beta_{3} + 117\beta_{2} Copy content Toggle raw display
ν9\nu^{9}== 121β9+238β8462β7121β4+14β2462β1+20 -121\beta_{9} + 238\beta_{8} - 462\beta_{7} - 121\beta_{4} + 14\beta_{2} - 462\beta _1 + 20 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/833Z)×\left(\mathbb{Z}/833\mathbb{Z}\right)^\times.

nn 5252 785785
χ(n)\chi(n) 1β5-1 - \beta_{5} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
18.1
0.304720 + 0.527790i
−1.08840 1.88516i
1.16091 + 2.01076i
−0.272099 0.471289i
0.894862 + 1.54995i
0.304720 0.527790i
−1.08840 + 1.88516i
1.16091 2.01076i
−0.272099 + 0.471289i
0.894862 1.54995i
−1.24613 2.15837i −1.41042 + 2.44292i −2.10570 + 3.64718i 1.25944 + 2.18142i 7.03030 0 5.51141 −2.47858 4.29302i 3.13887 5.43669i
18.2 −1.18400 2.05075i 0.284689 0.493096i −1.80371 + 3.12411i −2.07732 3.59803i −1.34829 0 3.80636 1.33790 + 2.31732i −4.91910 + 8.52013i
18.3 −0.438917 0.760227i 0.453789 0.785986i 0.614704 1.06470i 1.51909 + 2.63114i −0.796703 0 −2.83488 1.08815 + 1.88473i 1.33351 2.30971i
18.4 0.704339 + 1.21995i 1.27991 2.21687i 0.00781334 0.0135331i 0.883300 + 1.52992i 3.60597 0 2.83937 −1.77635 3.07673i −1.24428 + 2.15516i
18.5 1.16471 + 2.01734i −1.60797 + 2.78508i −1.71311 + 2.96719i −1.58451 2.74445i −7.49128 0 −3.32226 −3.67113 6.35858i 3.69100 6.39300i
324.1 −1.24613 + 2.15837i −1.41042 2.44292i −2.10570 3.64718i 1.25944 2.18142i 7.03030 0 5.51141 −2.47858 + 4.29302i 3.13887 + 5.43669i
324.2 −1.18400 + 2.05075i 0.284689 + 0.493096i −1.80371 3.12411i −2.07732 + 3.59803i −1.34829 0 3.80636 1.33790 2.31732i −4.91910 8.52013i
324.3 −0.438917 + 0.760227i 0.453789 + 0.785986i 0.614704 + 1.06470i 1.51909 2.63114i −0.796703 0 −2.83488 1.08815 1.88473i 1.33351 + 2.30971i
324.4 0.704339 1.21995i 1.27991 + 2.21687i 0.00781334 + 0.0135331i 0.883300 1.52992i 3.60597 0 2.83937 −1.77635 + 3.07673i −1.24428 2.15516i
324.5 1.16471 2.01734i −1.60797 2.78508i −1.71311 2.96719i −1.58451 + 2.74445i −7.49128 0 −3.32226 −3.67113 + 6.35858i 3.69100 + 6.39300i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 18.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 833.2.e.h 10
7.b odd 2 1 833.2.e.i 10
7.c even 3 1 833.2.a.g 5
7.c even 3 1 inner 833.2.e.h 10
7.d odd 6 1 119.2.a.b 5
7.d odd 6 1 833.2.e.i 10
21.g even 6 1 1071.2.a.m 5
21.h odd 6 1 7497.2.a.br 5
28.f even 6 1 1904.2.a.t 5
35.i odd 6 1 2975.2.a.m 5
56.j odd 6 1 7616.2.a.bt 5
56.m even 6 1 7616.2.a.bq 5
119.h odd 6 1 2023.2.a.j 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.2.a.b 5 7.d odd 6 1
833.2.a.g 5 7.c even 3 1
833.2.e.h 10 1.a even 1 1 trivial
833.2.e.h 10 7.c even 3 1 inner
833.2.e.i 10 7.b odd 2 1
833.2.e.i 10 7.d odd 6 1
1071.2.a.m 5 21.g even 6 1
1904.2.a.t 5 28.f even 6 1
2023.2.a.j 5 119.h odd 6 1
2975.2.a.m 5 35.i odd 6 1
7497.2.a.br 5 21.h odd 6 1
7616.2.a.bq 5 56.m even 6 1
7616.2.a.bt 5 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(833,[χ])S_{2}^{\mathrm{new}}(833, [\chi]):

T210+2T29+12T28+12T27+78T26+73T25+274T24++289 T_{2}^{10} + 2 T_{2}^{9} + 12 T_{2}^{8} + 12 T_{2}^{7} + 78 T_{2}^{6} + 73 T_{2}^{5} + 274 T_{2}^{4} + \cdots + 289 Copy content Toggle raw display
T310+2T39+15T38+2T37+114T364T35+509T34++144 T_{3}^{10} + 2 T_{3}^{9} + 15 T_{3}^{8} + 2 T_{3}^{7} + 114 T_{3}^{6} - 4 T_{3}^{5} + 509 T_{3}^{4} + \cdots + 144 Copy content Toggle raw display
T510+23T5836T57+398T56592T55+3337T545830T53++31684 T_{5}^{10} + 23 T_{5}^{8} - 36 T_{5}^{7} + 398 T_{5}^{6} - 592 T_{5}^{5} + 3337 T_{5}^{4} - 5830 T_{5}^{3} + \cdots + 31684 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10+2T9++289 T^{10} + 2 T^{9} + \cdots + 289 Copy content Toggle raw display
33 T10+2T9++144 T^{10} + 2 T^{9} + \cdots + 144 Copy content Toggle raw display
55 T10+23T8++31684 T^{10} + 23 T^{8} + \cdots + 31684 Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T102T9++36864 T^{10} - 2 T^{9} + \cdots + 36864 Copy content Toggle raw display
1313 (T5+2T4++544)2 (T^{5} + 2 T^{4} + \cdots + 544)^{2} Copy content Toggle raw display
1717 (T2T+1)5 (T^{2} - T + 1)^{5} Copy content Toggle raw display
1919 T106T9++4096 T^{10} - 6 T^{9} + \cdots + 4096 Copy content Toggle raw display
2323 T1010T9++16384 T^{10} - 10 T^{9} + \cdots + 16384 Copy content Toggle raw display
2929 (T5+8T4++2592)2 (T^{5} + 8 T^{4} + \cdots + 2592)^{2} Copy content Toggle raw display
3131 T10+33T8++256 T^{10} + 33 T^{8} + \cdots + 256 Copy content Toggle raw display
3737 T10+8T9++19219456 T^{10} + 8 T^{9} + \cdots + 19219456 Copy content Toggle raw display
4141 (T5+18T4+162)2 (T^{5} + 18 T^{4} + \cdots - 162)^{2} Copy content Toggle raw display
4343 (T58T4+1052)2 (T^{5} - 8 T^{4} + \cdots - 1052)^{2} Copy content Toggle raw display
4747 T10+10T9++5308416 T^{10} + 10 T^{9} + \cdots + 5308416 Copy content Toggle raw display
5353 T10+4T9++19044 T^{10} + 4 T^{9} + \cdots + 19044 Copy content Toggle raw display
5959 T108T9++9437184 T^{10} - 8 T^{9} + \cdots + 9437184 Copy content Toggle raw display
6161 T1022T9++30713764 T^{10} - 22 T^{9} + \cdots + 30713764 Copy content Toggle raw display
6767 T10+16T9++3489424 T^{10} + 16 T^{9} + \cdots + 3489424 Copy content Toggle raw display
7171 (T5+2T4++13696)2 (T^{5} + 2 T^{4} + \cdots + 13696)^{2} Copy content Toggle raw display
7373 T10++123609924 T^{10} + \cdots + 123609924 Copy content Toggle raw display
7979 T10+18T9++9437184 T^{10} + 18 T^{9} + \cdots + 9437184 Copy content Toggle raw display
8383 (T512T4+1984)2 (T^{5} - 12 T^{4} + \cdots - 1984)^{2} Copy content Toggle raw display
8989 T1020T9++55591936 T^{10} - 20 T^{9} + \cdots + 55591936 Copy content Toggle raw display
9797 (T5+12T4+218)2 (T^{5} + 12 T^{4} + \cdots - 218)^{2} Copy content Toggle raw display
show more
show less