Properties

Label 833.2.e.i.324.3
Level $833$
Weight $2$
Character 833.324
Analytic conductor $6.652$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(18,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 10x^{7} + 44x^{6} - 49x^{5} + 99x^{4} - 20x^{3} + 31x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 324.3
Root \(1.16091 - 2.01076i\) of defining polynomial
Character \(\chi\) \(=\) 833.324
Dual form 833.2.e.i.18.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.438917 + 0.760227i) q^{2} +(-0.453789 - 0.785986i) q^{3} +(0.614704 + 1.06470i) q^{4} +(-1.51909 + 2.63114i) q^{5} +0.796703 q^{6} -2.83488 q^{8} +(1.08815 - 1.88473i) q^{9} +O(q^{10})\) \(q+(-0.438917 + 0.760227i) q^{2} +(-0.453789 - 0.785986i) q^{3} +(0.614704 + 1.06470i) q^{4} +(-1.51909 + 2.63114i) q^{5} +0.796703 q^{6} -2.83488 q^{8} +(1.08815 - 1.88473i) q^{9} +(-1.33351 - 2.30971i) q^{10} +(-2.39089 - 4.14114i) q^{11} +(0.557892 - 0.966297i) q^{12} -4.39933 q^{13} +2.75739 q^{15} +(0.0148720 - 0.0257591i) q^{16} +(-0.500000 - 0.866025i) q^{17} +(0.955216 + 1.65448i) q^{18} +(1.32183 - 2.28947i) q^{19} -3.73516 q^{20} +4.19761 q^{22} +(4.22941 - 7.32555i) q^{23} +(1.28644 + 2.22818i) q^{24} +(-2.11527 - 3.66376i) q^{25} +(1.93094 - 3.34449i) q^{26} -4.69790 q^{27} +7.04298 q^{29} +(-1.21026 + 2.09624i) q^{30} +(1.71032 + 2.96236i) q^{31} +(-2.82183 - 4.88755i) q^{32} +(-2.16992 + 3.75841i) q^{33} +0.877834 q^{34} +2.67556 q^{36} +(-4.83488 + 8.37426i) q^{37} +(1.16035 + 2.00978i) q^{38} +(1.99637 + 3.45781i) q^{39} +(4.30645 - 7.45898i) q^{40} +1.33675 q^{41} +2.52513 q^{43} +(2.93938 - 5.09115i) q^{44} +(3.30600 + 5.72616i) q^{45} +(3.71272 + 6.43062i) q^{46} +(2.78541 - 4.82448i) q^{47} -0.0269950 q^{48} +3.71372 q^{50} +(-0.453789 + 0.785986i) q^{51} +(-2.70428 - 4.68395i) q^{52} +(-2.58815 - 4.48281i) q^{53} +(2.06199 - 3.57147i) q^{54} +14.5279 q^{55} -2.39933 q^{57} +(-3.09129 + 5.35426i) q^{58} +(-4.64366 - 8.04305i) q^{59} +(1.69498 + 2.93578i) q^{60} +(-3.33162 + 5.77054i) q^{61} -3.00275 q^{62} +5.01368 q^{64} +(6.68297 - 11.5753i) q^{65} +(-1.90483 - 3.29926i) q^{66} +(-2.64126 - 4.57479i) q^{67} +(0.614704 - 1.06470i) q^{68} -7.67704 q^{69} -11.9310 q^{71} +(-3.08478 + 5.34300i) q^{72} +(-6.35773 - 11.0119i) q^{73} +(-4.24423 - 7.35122i) q^{74} +(-1.91977 + 3.32515i) q^{75} +3.25013 q^{76} -3.50496 q^{78} +(-0.970256 + 1.68053i) q^{79} +(0.0451838 + 0.0782607i) q^{80} +(-1.13260 - 1.96172i) q^{81} +(-0.586724 + 1.01624i) q^{82} -4.58417 q^{83} +3.03818 q^{85} +(-1.10832 + 1.91967i) q^{86} +(-3.19603 - 5.53569i) q^{87} +(6.77789 + 11.7397i) q^{88} +(6.69779 - 11.6009i) q^{89} -5.80424 q^{90} +10.3993 q^{92} +(1.55225 - 2.68857i) q^{93} +(2.44513 + 4.23509i) q^{94} +(4.01596 + 6.95584i) q^{95} +(-2.56103 + 4.43583i) q^{96} -15.1668 q^{97} -10.4066 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} + 2 q^{3} - 10 q^{4} - 2 q^{6} + 12 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 2 q^{2} + 2 q^{3} - 10 q^{4} - 2 q^{6} + 12 q^{8} - 11 q^{9} - 4 q^{10} + 2 q^{11} + 22 q^{12} + 4 q^{13} + 16 q^{15} - 4 q^{16} - 5 q^{17} + 18 q^{18} - 6 q^{19} - 38 q^{20} + 12 q^{22} + 10 q^{23} - 2 q^{24} - 21 q^{25} + 26 q^{26} - 52 q^{27} - 16 q^{29} + 51 q^{30} - 9 q^{32} - 6 q^{33} + 4 q^{34} + 78 q^{36} - 8 q^{37} - 14 q^{38} - 14 q^{39} - 5 q^{40} + 36 q^{41} + 16 q^{43} + 14 q^{44} - 8 q^{46} + 10 q^{47} - 54 q^{48} + 54 q^{50} + 2 q^{51} - 4 q^{52} - 4 q^{53} - 5 q^{54} - 48 q^{55} + 24 q^{57} - 12 q^{58} - 8 q^{59} + 7 q^{60} - 22 q^{61} + 32 q^{62} - 32 q^{64} + 30 q^{65} - 68 q^{66} - 16 q^{67} - 10 q^{68} - 64 q^{69} - 4 q^{71} - 9 q^{72} - 10 q^{73} + 40 q^{74} + 14 q^{75} + 48 q^{76} + 60 q^{78} - 18 q^{79} + 4 q^{80} - 25 q^{81} + 31 q^{82} - 24 q^{83} - 23 q^{86} + 26 q^{87} + 46 q^{88} - 20 q^{89} + 194 q^{90} + 56 q^{92} + 28 q^{93} + 42 q^{94} + 22 q^{95} + 18 q^{96} + 24 q^{97} - 124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.438917 + 0.760227i −0.310361 + 0.537561i −0.978441 0.206529i \(-0.933783\pi\)
0.668079 + 0.744090i \(0.267117\pi\)
\(3\) −0.453789 0.785986i −0.261995 0.453789i 0.704777 0.709429i \(-0.251047\pi\)
−0.966772 + 0.255640i \(0.917714\pi\)
\(4\) 0.614704 + 1.06470i 0.307352 + 0.532349i
\(5\) −1.51909 + 2.63114i −0.679358 + 1.17668i 0.295817 + 0.955245i \(0.404408\pi\)
−0.975175 + 0.221438i \(0.928925\pi\)
\(6\) 0.796703 0.325253
\(7\) 0 0
\(8\) −2.83488 −1.00228
\(9\) 1.08815 1.88473i 0.362717 0.628244i
\(10\) −1.33351 2.30971i −0.421693 0.730393i
\(11\) −2.39089 4.14114i −0.720880 1.24860i −0.960647 0.277771i \(-0.910404\pi\)
0.239767 0.970830i \(-0.422929\pi\)
\(12\) 0.557892 0.966297i 0.161049 0.278946i
\(13\) −4.39933 −1.22015 −0.610077 0.792342i \(-0.708861\pi\)
−0.610077 + 0.792342i \(0.708861\pi\)
\(14\) 0 0
\(15\) 2.75739 0.711954
\(16\) 0.0148720 0.0257591i 0.00371800 0.00643977i
\(17\) −0.500000 0.866025i −0.121268 0.210042i
\(18\) 0.955216 + 1.65448i 0.225147 + 0.389965i
\(19\) 1.32183 2.28947i 0.303248 0.525242i −0.673621 0.739077i \(-0.735262\pi\)
0.976870 + 0.213835i \(0.0685955\pi\)
\(20\) −3.73516 −0.835207
\(21\) 0 0
\(22\) 4.19761 0.894933
\(23\) 4.22941 7.32555i 0.881892 1.52748i 0.0326578 0.999467i \(-0.489603\pi\)
0.849235 0.528016i \(-0.177064\pi\)
\(24\) 1.28644 + 2.22818i 0.262593 + 0.454825i
\(25\) −2.11527 3.66376i −0.423054 0.732751i
\(26\) 1.93094 3.34449i 0.378688 0.655908i
\(27\) −4.69790 −0.904111
\(28\) 0 0
\(29\) 7.04298 1.30785 0.653925 0.756560i \(-0.273121\pi\)
0.653925 + 0.756560i \(0.273121\pi\)
\(30\) −1.21026 + 2.09624i −0.220963 + 0.382719i
\(31\) 1.71032 + 2.96236i 0.307182 + 0.532055i 0.977745 0.209798i \(-0.0672806\pi\)
−0.670563 + 0.741853i \(0.733947\pi\)
\(32\) −2.82183 4.88755i −0.498834 0.864005i
\(33\) −2.16992 + 3.75841i −0.377734 + 0.654255i
\(34\) 0.877834 0.150547
\(35\) 0 0
\(36\) 2.67556 0.445927
\(37\) −4.83488 + 8.37426i −0.794850 + 1.37672i 0.128084 + 0.991763i \(0.459117\pi\)
−0.922934 + 0.384957i \(0.874216\pi\)
\(38\) 1.16035 + 2.00978i 0.188233 + 0.326029i
\(39\) 1.99637 + 3.45781i 0.319674 + 0.553692i
\(40\) 4.30645 7.45898i 0.680909 1.17937i
\(41\) 1.33675 0.208766 0.104383 0.994537i \(-0.466713\pi\)
0.104383 + 0.994537i \(0.466713\pi\)
\(42\) 0 0
\(43\) 2.52513 0.385078 0.192539 0.981289i \(-0.438328\pi\)
0.192539 + 0.981289i \(0.438328\pi\)
\(44\) 2.93938 5.09115i 0.443128 0.767520i
\(45\) 3.30600 + 5.72616i 0.492829 + 0.853605i
\(46\) 3.71272 + 6.43062i 0.547410 + 0.948143i
\(47\) 2.78541 4.82448i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(48\) −0.0269950 −0.00389639
\(49\) 0 0
\(50\) 3.71372 0.525199
\(51\) −0.453789 + 0.785986i −0.0635432 + 0.110060i
\(52\) −2.70428 4.68395i −0.375016 0.649547i
\(53\) −2.58815 4.48281i −0.355510 0.615761i 0.631695 0.775217i \(-0.282359\pi\)
−0.987205 + 0.159456i \(0.949026\pi\)
\(54\) 2.06199 3.57147i 0.280601 0.486015i
\(55\) 14.5279 1.95894
\(56\) 0 0
\(57\) −2.39933 −0.317799
\(58\) −3.09129 + 5.35426i −0.405906 + 0.703049i
\(59\) −4.64366 8.04305i −0.604553 1.04712i −0.992122 0.125275i \(-0.960019\pi\)
0.387569 0.921841i \(-0.373315\pi\)
\(60\) 1.69498 + 2.93578i 0.218820 + 0.379008i
\(61\) −3.33162 + 5.77054i −0.426571 + 0.738842i −0.996566 0.0828061i \(-0.973612\pi\)
0.569995 + 0.821648i \(0.306945\pi\)
\(62\) −3.00275 −0.381350
\(63\) 0 0
\(64\) 5.01368 0.626710
\(65\) 6.68297 11.5753i 0.828921 1.43573i
\(66\) −1.90483 3.29926i −0.234468 0.406111i
\(67\) −2.64126 4.57479i −0.322681 0.558900i 0.658359 0.752704i \(-0.271251\pi\)
−0.981040 + 0.193804i \(0.937917\pi\)
\(68\) 0.614704 1.06470i 0.0745438 0.129114i
\(69\) −7.67704 −0.924206
\(70\) 0 0
\(71\) −11.9310 −1.41595 −0.707973 0.706239i \(-0.750390\pi\)
−0.707973 + 0.706239i \(0.750390\pi\)
\(72\) −3.08478 + 5.34300i −0.363545 + 0.629678i
\(73\) −6.35773 11.0119i −0.744116 1.28885i −0.950606 0.310399i \(-0.899537\pi\)
0.206490 0.978449i \(-0.433796\pi\)
\(74\) −4.24423 7.35122i −0.493381 0.854562i
\(75\) −1.91977 + 3.32515i −0.221676 + 0.383955i
\(76\) 3.25013 0.372816
\(77\) 0 0
\(78\) −3.50496 −0.396858
\(79\) −0.970256 + 1.68053i −0.109162 + 0.189075i −0.915431 0.402475i \(-0.868150\pi\)
0.806269 + 0.591549i \(0.201483\pi\)
\(80\) 0.0451838 + 0.0782607i 0.00505171 + 0.00874981i
\(81\) −1.13260 1.96172i −0.125844 0.217968i
\(82\) −0.586724 + 1.01624i −0.0647928 + 0.112224i
\(83\) −4.58417 −0.503178 −0.251589 0.967834i \(-0.580953\pi\)
−0.251589 + 0.967834i \(0.580953\pi\)
\(84\) 0 0
\(85\) 3.03818 0.329537
\(86\) −1.10832 + 1.91967i −0.119513 + 0.207003i
\(87\) −3.19603 5.53569i −0.342650 0.593488i
\(88\) 6.77789 + 11.7397i 0.722526 + 1.25145i
\(89\) 6.69779 11.6009i 0.709965 1.22969i −0.254905 0.966966i \(-0.582044\pi\)
0.964870 0.262729i \(-0.0846225\pi\)
\(90\) −5.80424 −0.611820
\(91\) 0 0
\(92\) 10.3993 1.08420
\(93\) 1.55225 2.68857i 0.160960 0.278792i
\(94\) 2.44513 + 4.23509i 0.252196 + 0.436816i
\(95\) 4.01596 + 6.95584i 0.412028 + 0.713654i
\(96\) −2.56103 + 4.43583i −0.261384 + 0.452730i
\(97\) −15.1668 −1.53995 −0.769976 0.638073i \(-0.779732\pi\)
−0.769976 + 0.638073i \(0.779732\pi\)
\(98\) 0 0
\(99\) −10.4066 −1.04590
\(100\) 2.60053 4.50425i 0.260053 0.450425i
\(101\) −1.62393 2.81273i −0.161587 0.279877i 0.773851 0.633368i \(-0.218328\pi\)
−0.935438 + 0.353491i \(0.884995\pi\)
\(102\) −0.398352 0.689965i −0.0394427 0.0683167i
\(103\) 6.35157 11.0012i 0.625839 1.08399i −0.362539 0.931969i \(-0.618090\pi\)
0.988378 0.152016i \(-0.0485767\pi\)
\(104\) 12.4716 1.22294
\(105\) 0 0
\(106\) 4.54393 0.441346
\(107\) −1.95705 + 3.38971i −0.189195 + 0.327696i −0.944982 0.327122i \(-0.893921\pi\)
0.755787 + 0.654818i \(0.227255\pi\)
\(108\) −2.88782 5.00184i −0.277880 0.481303i
\(109\) 1.78178 + 3.08613i 0.170663 + 0.295598i 0.938652 0.344866i \(-0.112076\pi\)
−0.767989 + 0.640464i \(0.778742\pi\)
\(110\) −6.37655 + 11.0445i −0.607980 + 1.05305i
\(111\) 8.77607 0.832988
\(112\) 0 0
\(113\) 0.966622 0.0909322 0.0454661 0.998966i \(-0.485523\pi\)
0.0454661 + 0.998966i \(0.485523\pi\)
\(114\) 1.05311 1.82403i 0.0986323 0.170836i
\(115\) 12.8497 + 22.2563i 1.19824 + 2.07541i
\(116\) 4.32935 + 7.49865i 0.401970 + 0.696232i
\(117\) −4.78713 + 8.29155i −0.442570 + 0.766554i
\(118\) 8.15272 0.750519
\(119\) 0 0
\(120\) −7.81687 −0.713579
\(121\) −5.93270 + 10.2757i −0.539337 + 0.934159i
\(122\) −2.92461 5.06558i −0.264782 0.458616i
\(123\) −0.606604 1.05067i −0.0546957 0.0947356i
\(124\) −2.10268 + 3.64194i −0.188826 + 0.327056i
\(125\) −2.33775 −0.209095
\(126\) 0 0
\(127\) −5.55875 −0.493260 −0.246630 0.969110i \(-0.579323\pi\)
−0.246630 + 0.969110i \(0.579323\pi\)
\(128\) 3.44307 5.96357i 0.304327 0.527110i
\(129\) −1.14587 1.98471i −0.100889 0.174744i
\(130\) 5.86654 + 10.1612i 0.514530 + 0.891192i
\(131\) 1.75567 3.04091i 0.153393 0.265685i −0.779079 0.626925i \(-0.784313\pi\)
0.932473 + 0.361240i \(0.117646\pi\)
\(132\) −5.33543 −0.464389
\(133\) 0 0
\(134\) 4.63717 0.400590
\(135\) 7.13653 12.3608i 0.614215 1.06385i
\(136\) 1.41744 + 2.45508i 0.121545 + 0.210522i
\(137\) 0.968898 + 1.67818i 0.0827786 + 0.143377i 0.904442 0.426596i \(-0.140287\pi\)
−0.821664 + 0.569972i \(0.806954\pi\)
\(138\) 3.36958 5.83629i 0.286838 0.496818i
\(139\) 4.69834 0.398508 0.199254 0.979948i \(-0.436148\pi\)
0.199254 + 0.979948i \(0.436148\pi\)
\(140\) 0 0
\(141\) −5.05596 −0.425789
\(142\) 5.23671 9.07024i 0.439455 0.761158i
\(143\) 10.5183 + 18.2182i 0.879585 + 1.52349i
\(144\) −0.0323660 0.0560595i −0.00269716 0.00467162i
\(145\) −10.6989 + 18.5311i −0.888498 + 1.53892i
\(146\) 11.1621 0.923780
\(147\) 0 0
\(148\) −11.8881 −0.977194
\(149\) −2.12081 + 3.67335i −0.173743 + 0.300932i −0.939726 0.341929i \(-0.888920\pi\)
0.765982 + 0.642862i \(0.222253\pi\)
\(150\) −1.68524 2.91893i −0.137600 0.238329i
\(151\) −6.22919 10.7893i −0.506924 0.878018i −0.999968 0.00801357i \(-0.997449\pi\)
0.493044 0.870004i \(-0.335884\pi\)
\(152\) −3.74723 + 6.49040i −0.303941 + 0.526441i
\(153\) −2.17630 −0.175944
\(154\) 0 0
\(155\) −10.3925 −0.834746
\(156\) −2.45435 + 4.25105i −0.196505 + 0.340357i
\(157\) 8.82359 + 15.2829i 0.704199 + 1.21971i 0.966980 + 0.254853i \(0.0820272\pi\)
−0.262780 + 0.964856i \(0.584639\pi\)
\(158\) −0.851724 1.47523i −0.0677595 0.117363i
\(159\) −2.34895 + 4.06850i −0.186284 + 0.322653i
\(160\) 17.1465 1.35555
\(161\) 0 0
\(162\) 1.98847 0.156229
\(163\) 1.33778 2.31711i 0.104783 0.181490i −0.808866 0.587993i \(-0.799918\pi\)
0.913650 + 0.406503i \(0.133252\pi\)
\(164\) 0.821707 + 1.42324i 0.0641645 + 0.111136i
\(165\) −6.59261 11.4187i −0.513234 0.888947i
\(166\) 2.01207 3.48501i 0.156167 0.270489i
\(167\) −1.95783 −0.151501 −0.0757507 0.997127i \(-0.524135\pi\)
−0.0757507 + 0.997127i \(0.524135\pi\)
\(168\) 0 0
\(169\) 6.35407 0.488775
\(170\) −1.33351 + 2.30971i −0.102276 + 0.177146i
\(171\) −2.87670 4.98259i −0.219987 0.381028i
\(172\) 1.55220 + 2.68850i 0.118354 + 0.204996i
\(173\) −3.00866 + 5.21115i −0.228744 + 0.396196i −0.957436 0.288645i \(-0.906795\pi\)
0.728692 + 0.684841i \(0.240129\pi\)
\(174\) 5.61117 0.425382
\(175\) 0 0
\(176\) −0.142229 −0.0107209
\(177\) −4.21448 + 7.29970i −0.316780 + 0.548679i
\(178\) 5.87955 + 10.1837i 0.440691 + 0.763299i
\(179\) −0.875558 1.51651i −0.0654423 0.113349i 0.831448 0.555603i \(-0.187512\pi\)
−0.896890 + 0.442253i \(0.854179\pi\)
\(180\) −4.06442 + 7.03978i −0.302944 + 0.524714i
\(181\) 2.76491 0.205514 0.102757 0.994707i \(-0.467234\pi\)
0.102757 + 0.994707i \(0.467234\pi\)
\(182\) 0 0
\(183\) 6.04742 0.447038
\(184\) −11.9899 + 20.7671i −0.883906 + 1.53097i
\(185\) −14.6893 25.4425i −1.07998 1.87057i
\(186\) 1.36261 + 2.36012i 0.0999118 + 0.173052i
\(187\) −2.39089 + 4.14114i −0.174839 + 0.302830i
\(188\) 6.84881 0.499501
\(189\) 0 0
\(190\) −7.05069 −0.511511
\(191\) −9.42303 + 16.3212i −0.681827 + 1.18096i 0.292596 + 0.956236i \(0.405481\pi\)
−0.974423 + 0.224723i \(0.927852\pi\)
\(192\) −2.27516 3.94068i −0.164195 0.284394i
\(193\) −5.95533 10.3149i −0.428674 0.742485i 0.568082 0.822972i \(-0.307686\pi\)
−0.996756 + 0.0804869i \(0.974352\pi\)
\(194\) 6.65695 11.5302i 0.477941 0.827819i
\(195\) −12.1306 −0.868693
\(196\) 0 0
\(197\) −17.2682 −1.23031 −0.615153 0.788408i \(-0.710906\pi\)
−0.615153 + 0.788408i \(0.710906\pi\)
\(198\) 4.56763 7.91137i 0.324607 0.562237i
\(199\) 7.62257 + 13.2027i 0.540350 + 0.935913i 0.998884 + 0.0472365i \(0.0150414\pi\)
−0.458534 + 0.888677i \(0.651625\pi\)
\(200\) 5.99655 + 10.3863i 0.424020 + 0.734424i
\(201\) −2.39715 + 4.15198i −0.169082 + 0.292858i
\(202\) 2.85108 0.200601
\(203\) 0 0
\(204\) −1.11578 −0.0781204
\(205\) −2.03065 + 3.51719i −0.141827 + 0.245651i
\(206\) 5.57563 + 9.65727i 0.388472 + 0.672854i
\(207\) −9.20447 15.9426i −0.639755 1.10809i
\(208\) −0.0654268 + 0.113323i −0.00453653 + 0.00785750i
\(209\) −12.6414 −0.874423
\(210\) 0 0
\(211\) 8.51331 0.586080 0.293040 0.956100i \(-0.405333\pi\)
0.293040 + 0.956100i \(0.405333\pi\)
\(212\) 3.18189 5.51120i 0.218533 0.378511i
\(213\) 5.41415 + 9.37758i 0.370971 + 0.642541i
\(214\) −1.71797 2.97560i −0.117438 0.203408i
\(215\) −3.83589 + 6.64396i −0.261606 + 0.453115i
\(216\) 13.3180 0.906175
\(217\) 0 0
\(218\) −3.12821 −0.211869
\(219\) −5.77014 + 9.99418i −0.389910 + 0.675344i
\(220\) 8.93036 + 15.4678i 0.602085 + 1.04284i
\(221\) 2.19966 + 3.80993i 0.147965 + 0.256284i
\(222\) −3.85197 + 6.67180i −0.258527 + 0.447782i
\(223\) −2.49093 −0.166805 −0.0834027 0.996516i \(-0.526579\pi\)
−0.0834027 + 0.996516i \(0.526579\pi\)
\(224\) 0 0
\(225\) −9.20694 −0.613796
\(226\) −0.424267 + 0.734852i −0.0282218 + 0.0488816i
\(227\) 8.49210 + 14.7087i 0.563640 + 0.976253i 0.997175 + 0.0751165i \(0.0239329\pi\)
−0.433535 + 0.901137i \(0.642734\pi\)
\(228\) −1.47487 2.55456i −0.0976759 0.169180i
\(229\) 8.16515 14.1425i 0.539568 0.934560i −0.459359 0.888251i \(-0.651921\pi\)
0.998927 0.0463089i \(-0.0147459\pi\)
\(230\) −22.5598 −1.48755
\(231\) 0 0
\(232\) −19.9660 −1.31083
\(233\) 2.88912 5.00411i 0.189273 0.327830i −0.755735 0.654877i \(-0.772720\pi\)
0.945008 + 0.327047i \(0.106054\pi\)
\(234\) −4.20231 7.27861i −0.274713 0.475818i
\(235\) 8.46259 + 14.6576i 0.552038 + 0.956158i
\(236\) 5.70895 9.88818i 0.371621 0.643666i
\(237\) 1.76117 0.114400
\(238\) 0 0
\(239\) 7.44275 0.481432 0.240716 0.970596i \(-0.422618\pi\)
0.240716 + 0.970596i \(0.422618\pi\)
\(240\) 0.0410079 0.0710277i 0.00264705 0.00458482i
\(241\) −10.9518 18.9691i −0.705467 1.22190i −0.966523 0.256581i \(-0.917404\pi\)
0.261056 0.965324i \(-0.415929\pi\)
\(242\) −5.20793 9.02040i −0.334778 0.579853i
\(243\) −8.07477 + 13.9859i −0.517997 + 0.897197i
\(244\) −8.19184 −0.524429
\(245\) 0 0
\(246\) 1.06500 0.0679016
\(247\) −5.81516 + 10.0721i −0.370010 + 0.640875i
\(248\) −4.84855 8.39793i −0.307883 0.533269i
\(249\) 2.08025 + 3.60309i 0.131830 + 0.228337i
\(250\) 1.02608 1.77722i 0.0648949 0.112401i
\(251\) 16.5769 1.04632 0.523162 0.852233i \(-0.324752\pi\)
0.523162 + 0.852233i \(0.324752\pi\)
\(252\) 0 0
\(253\) −40.4482 −2.54296
\(254\) 2.43983 4.22591i 0.153089 0.265157i
\(255\) −1.37869 2.38797i −0.0863371 0.149540i
\(256\) 8.03613 + 13.9190i 0.502258 + 0.869936i
\(257\) −6.05791 + 10.4926i −0.377882 + 0.654511i −0.990754 0.135672i \(-0.956681\pi\)
0.612872 + 0.790182i \(0.290014\pi\)
\(258\) 2.01178 0.125248
\(259\) 0 0
\(260\) 16.4322 1.01908
\(261\) 7.66383 13.2741i 0.474379 0.821649i
\(262\) 1.54119 + 2.66941i 0.0952148 + 0.164917i
\(263\) −1.60067 2.77245i −0.0987018 0.170956i 0.812446 0.583037i \(-0.198136\pi\)
−0.911148 + 0.412080i \(0.864802\pi\)
\(264\) 6.15147 10.6547i 0.378597 0.655749i
\(265\) 15.7265 0.966074
\(266\) 0 0
\(267\) −12.1575 −0.744030
\(268\) 3.24718 5.62428i 0.198353 0.343558i
\(269\) −7.72002 13.3715i −0.470698 0.815273i 0.528740 0.848784i \(-0.322664\pi\)
−0.999438 + 0.0335109i \(0.989331\pi\)
\(270\) 6.26469 + 10.8508i 0.381257 + 0.660357i
\(271\) 12.4439 21.5534i 0.755912 1.30928i −0.189007 0.981976i \(-0.560527\pi\)
0.944919 0.327303i \(-0.106140\pi\)
\(272\) −0.0297440 −0.00180349
\(273\) 0 0
\(274\) −1.70106 −0.102765
\(275\) −10.1148 + 17.5193i −0.609943 + 1.05645i
\(276\) −4.71910 8.17372i −0.284056 0.492000i
\(277\) 5.64352 + 9.77486i 0.339086 + 0.587315i 0.984261 0.176720i \(-0.0565488\pi\)
−0.645175 + 0.764035i \(0.723216\pi\)
\(278\) −2.06218 + 3.57181i −0.123682 + 0.214223i
\(279\) 7.44433 0.445680
\(280\) 0 0
\(281\) 13.0332 0.777495 0.388747 0.921344i \(-0.372908\pi\)
0.388747 + 0.921344i \(0.372908\pi\)
\(282\) 2.21915 3.84368i 0.132148 0.228888i
\(283\) −10.8595 18.8092i −0.645531 1.11809i −0.984179 0.177179i \(-0.943303\pi\)
0.338648 0.940913i \(-0.390031\pi\)
\(284\) −7.33401 12.7029i −0.435194 0.753777i
\(285\) 3.64479 6.31297i 0.215899 0.373948i
\(286\) −18.4667 −1.09196
\(287\) 0 0
\(288\) −12.2823 −0.723742
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) −9.39189 16.2672i −0.551511 0.955244i
\(291\) 6.88251 + 11.9209i 0.403460 + 0.698813i
\(292\) 7.81624 13.5381i 0.457411 0.792259i
\(293\) −28.9400 −1.69069 −0.845346 0.534219i \(-0.820606\pi\)
−0.845346 + 0.534219i \(0.820606\pi\)
\(294\) 0 0
\(295\) 28.2165 1.64283
\(296\) 13.7063 23.7401i 0.796665 1.37986i
\(297\) 11.2322 + 19.4547i 0.651756 + 1.12887i
\(298\) −1.86172 3.22459i −0.107846 0.186795i
\(299\) −18.6065 + 32.2275i −1.07604 + 1.86376i
\(300\) −4.72037 −0.272531
\(301\) 0 0
\(302\) 10.9364 0.629318
\(303\) −1.47384 + 2.55277i −0.0846701 + 0.146653i
\(304\) −0.0393165 0.0680981i −0.00225495 0.00390570i
\(305\) −10.1221 17.5319i −0.579588 1.00388i
\(306\) 0.955216 1.65448i 0.0546061 0.0945805i
\(307\) −11.5836 −0.661110 −0.330555 0.943787i \(-0.607236\pi\)
−0.330555 + 0.943787i \(0.607236\pi\)
\(308\) 0 0
\(309\) −11.5291 −0.655867
\(310\) 4.56145 7.90066i 0.259073 0.448727i
\(311\) 7.89996 + 13.6831i 0.447966 + 0.775900i 0.998254 0.0590756i \(-0.0188153\pi\)
−0.550288 + 0.834975i \(0.685482\pi\)
\(312\) −5.65947 9.80248i −0.320404 0.554956i
\(313\) −10.1329 + 17.5507i −0.572745 + 0.992024i 0.423537 + 0.905879i \(0.360788\pi\)
−0.996283 + 0.0861453i \(0.972545\pi\)
\(314\) −15.4913 −0.874225
\(315\) 0 0
\(316\) −2.38568 −0.134205
\(317\) −3.18268 + 5.51257i −0.178757 + 0.309617i −0.941455 0.337138i \(-0.890541\pi\)
0.762698 + 0.646755i \(0.223874\pi\)
\(318\) −2.06199 3.57147i −0.115631 0.200278i
\(319\) −16.8390 29.1660i −0.942803 1.63298i
\(320\) −7.61624 + 13.1917i −0.425761 + 0.737439i
\(321\) 3.55235 0.198273
\(322\) 0 0
\(323\) −2.64366 −0.147097
\(324\) 1.39242 2.41175i 0.0773569 0.133986i
\(325\) 9.30577 + 16.1181i 0.516191 + 0.894069i
\(326\) 1.17435 + 2.03404i 0.0650414 + 0.112655i
\(327\) 1.61710 2.80091i 0.0894260 0.154890i
\(328\) −3.78954 −0.209242
\(329\) 0 0
\(330\) 11.5744 0.637151
\(331\) −12.2955 + 21.2965i −0.675823 + 1.17056i 0.300405 + 0.953812i \(0.402878\pi\)
−0.976228 + 0.216748i \(0.930455\pi\)
\(332\) −2.81791 4.88076i −0.154653 0.267866i
\(333\) 10.5222 + 18.2249i 0.576611 + 0.998720i
\(334\) 0.859325 1.48839i 0.0470202 0.0814413i
\(335\) 16.0492 0.876863
\(336\) 0 0
\(337\) 7.11956 0.387827 0.193913 0.981019i \(-0.437882\pi\)
0.193913 + 0.981019i \(0.437882\pi\)
\(338\) −2.78891 + 4.83053i −0.151697 + 0.262746i
\(339\) −0.438643 0.759751i −0.0238238 0.0412640i
\(340\) 1.86758 + 3.23474i 0.101284 + 0.175429i
\(341\) 8.17836 14.1653i 0.442883 0.767096i
\(342\) 5.05053 0.273101
\(343\) 0 0
\(344\) −7.15844 −0.385957
\(345\) 11.6621 20.1994i 0.627867 1.08750i
\(346\) −2.64110 4.57453i −0.141987 0.245928i
\(347\) −0.757387 1.31183i −0.0406586 0.0704228i 0.844980 0.534798i \(-0.179612\pi\)
−0.885639 + 0.464375i \(0.846279\pi\)
\(348\) 3.92922 6.80561i 0.210628 0.364819i
\(349\) 24.7937 1.32717 0.663587 0.748099i \(-0.269033\pi\)
0.663587 + 0.748099i \(0.269033\pi\)
\(350\) 0 0
\(351\) 20.6676 1.10315
\(352\) −13.4934 + 23.3712i −0.719199 + 1.24569i
\(353\) 5.92082 + 10.2552i 0.315133 + 0.545827i 0.979466 0.201610i \(-0.0646174\pi\)
−0.664332 + 0.747437i \(0.731284\pi\)
\(354\) −3.69962 6.40792i −0.196632 0.340577i
\(355\) 18.1242 31.3921i 0.961934 1.66612i
\(356\) 16.4686 0.872836
\(357\) 0 0
\(358\) 1.53719 0.0812430
\(359\) 13.3371 23.1006i 0.703907 1.21920i −0.263177 0.964747i \(-0.584770\pi\)
0.967085 0.254455i \(-0.0818962\pi\)
\(360\) −9.37212 16.2330i −0.493954 0.855554i
\(361\) 6.00554 + 10.4019i 0.316081 + 0.547468i
\(362\) −1.21356 + 2.10195i −0.0637835 + 0.110476i
\(363\) 10.7688 0.565215
\(364\) 0 0
\(365\) 38.6319 2.02209
\(366\) −2.65431 + 4.59741i −0.138743 + 0.240310i
\(367\) 14.3449 + 24.8460i 0.748796 + 1.29695i 0.948400 + 0.317076i \(0.102701\pi\)
−0.199604 + 0.979877i \(0.563966\pi\)
\(368\) −0.125799 0.217891i −0.00655775 0.0113584i
\(369\) 1.45459 2.51942i 0.0757229 0.131156i
\(370\) 25.7895 1.34073
\(371\) 0 0
\(372\) 3.81668 0.197886
\(373\) 13.4473 23.2914i 0.696275 1.20598i −0.273474 0.961879i \(-0.588173\pi\)
0.969749 0.244104i \(-0.0784939\pi\)
\(374\) −2.09880 3.63524i −0.108527 0.187974i
\(375\) 1.06085 + 1.83744i 0.0547818 + 0.0948849i
\(376\) −7.89632 + 13.6768i −0.407222 + 0.705329i
\(377\) −30.9844 −1.59578
\(378\) 0 0
\(379\) 0.960453 0.0493351 0.0246676 0.999696i \(-0.492147\pi\)
0.0246676 + 0.999696i \(0.492147\pi\)
\(380\) −4.93724 + 8.55156i −0.253275 + 0.438686i
\(381\) 2.52250 + 4.36910i 0.129232 + 0.223836i
\(382\) −8.27186 14.3273i −0.423225 0.733048i
\(383\) 5.49563 9.51871i 0.280814 0.486384i −0.690772 0.723073i \(-0.742729\pi\)
0.971585 + 0.236689i \(0.0760624\pi\)
\(384\) −6.24970 −0.318929
\(385\) 0 0
\(386\) 10.4556 0.532175
\(387\) 2.74772 4.75919i 0.139674 0.241923i
\(388\) −9.32306 16.1480i −0.473307 0.819791i
\(389\) 12.7119 + 22.0177i 0.644520 + 1.11634i 0.984412 + 0.175878i \(0.0562763\pi\)
−0.339892 + 0.940465i \(0.610390\pi\)
\(390\) 5.32435 9.22204i 0.269609 0.466976i
\(391\) −8.45881 −0.427781
\(392\) 0 0
\(393\) −3.18681 −0.160753
\(394\) 7.57930 13.1277i 0.381839 0.661365i
\(395\) −2.94781 5.10576i −0.148321 0.256899i
\(396\) −6.39697 11.0799i −0.321460 0.556785i
\(397\) 7.50702 13.0025i 0.376767 0.652579i −0.613823 0.789444i \(-0.710369\pi\)
0.990590 + 0.136865i \(0.0437026\pi\)
\(398\) −13.3827 −0.670815
\(399\) 0 0
\(400\) −0.125833 −0.00629166
\(401\) 5.53278 9.58306i 0.276294 0.478555i −0.694167 0.719814i \(-0.744227\pi\)
0.970461 + 0.241259i \(0.0775603\pi\)
\(402\) −2.10430 3.64475i −0.104953 0.181784i
\(403\) −7.52424 13.0324i −0.374809 0.649188i
\(404\) 1.99647 3.45799i 0.0993282 0.172041i
\(405\) 6.88207 0.341973
\(406\) 0 0
\(407\) 46.2387 2.29197
\(408\) 1.28644 2.22818i 0.0636882 0.110311i
\(409\) −14.2825 24.7380i −0.706225 1.22322i −0.966248 0.257615i \(-0.917063\pi\)
0.260023 0.965602i \(-0.416270\pi\)
\(410\) −1.78257 3.08751i −0.0880350 0.152481i
\(411\) 0.879351 1.52308i 0.0433752 0.0751280i
\(412\) 15.6173 0.769411
\(413\) 0 0
\(414\) 16.1600 0.794220
\(415\) 6.96377 12.0616i 0.341838 0.592081i
\(416\) 12.4141 + 21.5019i 0.608654 + 1.05422i
\(417\) −2.13206 3.69283i −0.104407 0.180839i
\(418\) 5.54852 9.61032i 0.271387 0.470056i
\(419\) −1.98566 −0.0970057 −0.0485029 0.998823i \(-0.515445\pi\)
−0.0485029 + 0.998823i \(0.515445\pi\)
\(420\) 0 0
\(421\) 25.1984 1.22810 0.614048 0.789269i \(-0.289540\pi\)
0.614048 + 0.789269i \(0.289540\pi\)
\(422\) −3.73664 + 6.47204i −0.181897 + 0.315054i
\(423\) −6.06190 10.4995i −0.294740 0.510504i
\(424\) 7.33711 + 12.7082i 0.356321 + 0.617167i
\(425\) −2.11527 + 3.66376i −0.102606 + 0.177718i
\(426\) −9.50544 −0.460540
\(427\) 0 0
\(428\) −4.81202 −0.232598
\(429\) 9.54618 16.5345i 0.460894 0.798292i
\(430\) −3.36728 5.83230i −0.162385 0.281258i
\(431\) 13.7492 + 23.8143i 0.662275 + 1.14709i 0.980017 + 0.198916i \(0.0637422\pi\)
−0.317742 + 0.948177i \(0.602925\pi\)
\(432\) −0.0698672 + 0.121013i −0.00336148 + 0.00582226i
\(433\) 28.1977 1.35509 0.677547 0.735480i \(-0.263043\pi\)
0.677547 + 0.735480i \(0.263043\pi\)
\(434\) 0 0
\(435\) 19.4202 0.931129
\(436\) −2.19053 + 3.79411i −0.104907 + 0.181705i
\(437\) −11.1811 19.3662i −0.534865 0.926413i
\(438\) −5.06523 8.77323i −0.242026 0.419201i
\(439\) −3.15649 + 5.46720i −0.150651 + 0.260935i −0.931467 0.363826i \(-0.881470\pi\)
0.780816 + 0.624761i \(0.214804\pi\)
\(440\) −41.1849 −1.96341
\(441\) 0 0
\(442\) −3.86188 −0.183691
\(443\) −13.2278 + 22.9113i −0.628473 + 1.08855i 0.359385 + 0.933189i \(0.382986\pi\)
−0.987858 + 0.155358i \(0.950347\pi\)
\(444\) 5.39468 + 9.34386i 0.256020 + 0.443440i
\(445\) 20.3491 + 35.2457i 0.964640 + 1.67081i
\(446\) 1.09331 1.89367i 0.0517699 0.0896681i
\(447\) 3.84960 0.182080
\(448\) 0 0
\(449\) −34.5555 −1.63077 −0.815387 0.578916i \(-0.803476\pi\)
−0.815387 + 0.578916i \(0.803476\pi\)
\(450\) 4.04108 6.99936i 0.190498 0.329953i
\(451\) −3.19603 5.53569i −0.150495 0.260665i
\(452\) 0.594186 + 1.02916i 0.0279482 + 0.0484076i
\(453\) −5.65347 + 9.79210i −0.265623 + 0.460073i
\(454\) −14.9093 −0.699728
\(455\) 0 0
\(456\) 6.80181 0.318524
\(457\) −13.2961 + 23.0295i −0.621965 + 1.07728i 0.367154 + 0.930160i \(0.380332\pi\)
−0.989119 + 0.147115i \(0.953001\pi\)
\(458\) 7.16765 + 12.4147i 0.334922 + 0.580102i
\(459\) 2.34895 + 4.06850i 0.109640 + 0.189901i
\(460\) −15.7975 + 27.3621i −0.736563 + 1.27576i
\(461\) −0.310199 −0.0144474 −0.00722371 0.999974i \(-0.502299\pi\)
−0.00722371 + 0.999974i \(0.502299\pi\)
\(462\) 0 0
\(463\) 22.4654 1.04406 0.522028 0.852928i \(-0.325175\pi\)
0.522028 + 0.852928i \(0.325175\pi\)
\(464\) 0.104743 0.181421i 0.00486258 0.00842224i
\(465\) 4.71600 + 8.16836i 0.218699 + 0.378799i
\(466\) 2.53617 + 4.39278i 0.117486 + 0.203492i
\(467\) 5.80628 10.0568i 0.268682 0.465372i −0.699839 0.714300i \(-0.746745\pi\)
0.968522 + 0.248929i \(0.0800785\pi\)
\(468\) −11.7707 −0.544099
\(469\) 0 0
\(470\) −14.8575 −0.685325
\(471\) 8.00810 13.8704i 0.368994 0.639116i
\(472\) 13.1642 + 22.8011i 0.605933 + 1.04951i
\(473\) −6.03730 10.4569i −0.277595 0.480809i
\(474\) −0.773006 + 1.33889i −0.0355053 + 0.0614971i
\(475\) −11.1841 −0.513162
\(476\) 0 0
\(477\) −11.2652 −0.515798
\(478\) −3.26675 + 5.65818i −0.149418 + 0.258799i
\(479\) −15.8988 27.5376i −0.726435 1.25822i −0.958380 0.285494i \(-0.907842\pi\)
0.231945 0.972729i \(-0.425491\pi\)
\(480\) −7.78087 13.4769i −0.355147 0.615132i
\(481\) 21.2702 36.8411i 0.969839 1.67981i
\(482\) 19.2277 0.875799
\(483\) 0 0
\(484\) −14.5874 −0.663064
\(485\) 23.0397 39.9059i 1.04618 1.81203i
\(486\) −7.08831 12.2773i −0.321532 0.556910i
\(487\) 11.5083 + 19.9329i 0.521490 + 0.903248i 0.999688 + 0.0249951i \(0.00795703\pi\)
−0.478197 + 0.878252i \(0.658710\pi\)
\(488\) 9.44477 16.3588i 0.427544 0.740529i
\(489\) −2.42829 −0.109811
\(490\) 0 0
\(491\) −33.3176 −1.50360 −0.751802 0.659389i \(-0.770815\pi\)
−0.751802 + 0.659389i \(0.770815\pi\)
\(492\) 0.745763 1.29170i 0.0336216 0.0582343i
\(493\) −3.52149 6.09940i −0.158600 0.274703i
\(494\) −5.10474 8.84167i −0.229673 0.397806i
\(495\) 15.8086 27.3812i 0.710542 1.23069i
\(496\) 0.101743 0.00456841
\(497\) 0 0
\(498\) −3.65222 −0.163660
\(499\) −18.5118 + 32.0634i −0.828703 + 1.43536i 0.0703537 + 0.997522i \(0.477587\pi\)
−0.899056 + 0.437833i \(0.855746\pi\)
\(500\) −1.43702 2.48900i −0.0642656 0.111311i
\(501\) 0.888442 + 1.53883i 0.0396926 + 0.0687497i
\(502\) −7.27589 + 12.6022i −0.324739 + 0.562464i
\(503\) −12.4172 −0.553654 −0.276827 0.960920i \(-0.589283\pi\)
−0.276827 + 0.960920i \(0.589283\pi\)
\(504\) 0 0
\(505\) 9.86759 0.439102
\(506\) 17.7534 30.7498i 0.789235 1.36699i
\(507\) −2.88341 4.99421i −0.128057 0.221801i
\(508\) −3.41699 5.91839i −0.151604 0.262586i
\(509\) −5.96285 + 10.3280i −0.264299 + 0.457779i −0.967380 0.253331i \(-0.918474\pi\)
0.703081 + 0.711110i \(0.251807\pi\)
\(510\) 2.42053 0.107183
\(511\) 0 0
\(512\) −0.336507 −0.0148716
\(513\) −6.20982 + 10.7557i −0.274170 + 0.474877i
\(514\) −5.31784 9.21077i −0.234560 0.406270i
\(515\) 19.2972 + 33.4238i 0.850337 + 1.47283i
\(516\) 1.40875 2.44002i 0.0620166 0.107416i
\(517\) −26.6385 −1.17156
\(518\) 0 0
\(519\) 5.46119 0.239719
\(520\) −18.9455 + 32.8145i −0.830813 + 1.43901i
\(521\) −13.1990 22.8613i −0.578259 1.00157i −0.995679 0.0928600i \(-0.970399\pi\)
0.417420 0.908713i \(-0.362934\pi\)
\(522\) 6.72757 + 11.6525i 0.294458 + 0.510016i
\(523\) −6.81358 + 11.8015i −0.297937 + 0.516042i −0.975664 0.219272i \(-0.929632\pi\)
0.677727 + 0.735314i \(0.262965\pi\)
\(524\) 4.31686 0.188583
\(525\) 0 0
\(526\) 2.81025 0.122533
\(527\) 1.71032 2.96236i 0.0745026 0.129042i
\(528\) 0.0645421 + 0.111790i 0.00280883 + 0.00486504i
\(529\) −24.2758 42.0469i −1.05547 1.82812i
\(530\) −6.90265 + 11.9557i −0.299832 + 0.519324i
\(531\) −20.2120 −0.877126
\(532\) 0 0
\(533\) −5.88081 −0.254726
\(534\) 5.33615 9.24249i 0.230918 0.399962i
\(535\) −5.94587 10.2986i −0.257062 0.445245i
\(536\) 7.48766 + 12.9690i 0.323417 + 0.560175i
\(537\) −0.794637 + 1.37635i −0.0342911 + 0.0593940i
\(538\) 13.5538 0.584346
\(539\) 0 0
\(540\) 17.5474 0.755120
\(541\) −13.1679 + 22.8075i −0.566132 + 0.980570i 0.430811 + 0.902442i \(0.358227\pi\)
−0.996943 + 0.0781276i \(0.975106\pi\)
\(542\) 10.9237 + 18.9204i 0.469212 + 0.812699i
\(543\) −1.25468 2.17318i −0.0538436 0.0932599i
\(544\) −2.82183 + 4.88755i −0.120985 + 0.209552i
\(545\) −10.8267 −0.463766
\(546\) 0 0
\(547\) −2.25139 −0.0962624 −0.0481312 0.998841i \(-0.515327\pi\)
−0.0481312 + 0.998841i \(0.515327\pi\)
\(548\) −1.19117 + 2.06317i −0.0508843 + 0.0881342i
\(549\) 7.25062 + 12.5584i 0.309449 + 0.535981i
\(550\) −8.87908 15.3790i −0.378605 0.655764i
\(551\) 9.30962 16.1247i 0.396603 0.686937i
\(552\) 21.7635 0.926316
\(553\) 0 0
\(554\) −9.90815 −0.420957
\(555\) −13.3316 + 23.0911i −0.565897 + 0.980162i
\(556\) 2.88809 + 5.00231i 0.122482 + 0.212145i
\(557\) −15.1678 26.2713i −0.642679 1.11315i −0.984832 0.173508i \(-0.944490\pi\)
0.342154 0.939644i \(-0.388844\pi\)
\(558\) −3.26744 + 5.65938i −0.138322 + 0.239581i
\(559\) −11.1089 −0.469854
\(560\) 0 0
\(561\) 4.33984 0.183228
\(562\) −5.72049 + 9.90818i −0.241304 + 0.417951i
\(563\) −5.49336 9.51478i −0.231518 0.401000i 0.726737 0.686915i \(-0.241036\pi\)
−0.958255 + 0.285915i \(0.907702\pi\)
\(564\) −3.10792 5.38307i −0.130867 0.226668i
\(565\) −1.46839 + 2.54332i −0.0617755 + 0.106998i
\(566\) 19.0657 0.801391
\(567\) 0 0
\(568\) 33.8229 1.41918
\(569\) 14.4240 24.9831i 0.604684 1.04734i −0.387417 0.921905i \(-0.626633\pi\)
0.992101 0.125440i \(-0.0400341\pi\)
\(570\) 3.19952 + 5.54174i 0.134013 + 0.232118i
\(571\) 5.25823 + 9.10753i 0.220050 + 0.381138i 0.954823 0.297175i \(-0.0960446\pi\)
−0.734773 + 0.678313i \(0.762711\pi\)
\(572\) −12.9313 + 22.3976i −0.540684 + 0.936492i
\(573\) 17.1043 0.714542
\(574\) 0 0
\(575\) −35.7854 −1.49235
\(576\) 5.45564 9.44945i 0.227319 0.393727i
\(577\) 18.4144 + 31.8947i 0.766601 + 1.32779i 0.939396 + 0.342835i \(0.111387\pi\)
−0.172794 + 0.984958i \(0.555280\pi\)
\(578\) −0.438917 0.760227i −0.0182565 0.0316213i
\(579\) −5.40493 + 9.36161i −0.224621 + 0.389055i
\(580\) −26.3067 −1.09233
\(581\) 0 0
\(582\) −12.0834 −0.500873
\(583\) −12.3760 + 21.4358i −0.512560 + 0.887780i
\(584\) 18.0234 + 31.2175i 0.745815 + 1.29179i
\(585\) −14.5442 25.1912i −0.601327 1.04153i
\(586\) 12.7023 22.0010i 0.524726 0.908851i
\(587\) 30.1420 1.24409 0.622047 0.782980i \(-0.286301\pi\)
0.622047 + 0.782980i \(0.286301\pi\)
\(588\) 0 0
\(589\) 9.04298 0.372610
\(590\) −12.3847 + 21.4510i −0.509871 + 0.883122i
\(591\) 7.83611 + 13.5725i 0.322334 + 0.558300i
\(592\) 0.143809 + 0.249084i 0.00591051 + 0.0102373i
\(593\) 3.94462 6.83229i 0.161986 0.280568i −0.773595 0.633681i \(-0.781543\pi\)
0.935581 + 0.353112i \(0.114877\pi\)
\(594\) −19.7199 −0.809119
\(595\) 0 0
\(596\) −5.21467 −0.213601
\(597\) 6.91808 11.9825i 0.283138 0.490410i
\(598\) −16.3335 28.2904i −0.667925 1.15688i
\(599\) −14.9029 25.8126i −0.608917 1.05468i −0.991419 0.130721i \(-0.958271\pi\)
0.382502 0.923955i \(-0.375062\pi\)
\(600\) 5.44234 9.42640i 0.222182 0.384831i
\(601\) 11.9432 0.487175 0.243587 0.969879i \(-0.421676\pi\)
0.243587 + 0.969879i \(0.421676\pi\)
\(602\) 0 0
\(603\) −11.4963 −0.468167
\(604\) 7.65820 13.2644i 0.311608 0.539721i
\(605\) −18.0246 31.2196i −0.732805 1.26926i
\(606\) −1.29379 2.24091i −0.0525566 0.0910308i
\(607\) 2.33641 4.04677i 0.0948318 0.164253i −0.814707 0.579873i \(-0.803102\pi\)
0.909538 + 0.415620i \(0.136435\pi\)
\(608\) −14.9199 −0.605082
\(609\) 0 0
\(610\) 17.7710 0.719527
\(611\) −12.2539 + 21.2244i −0.495741 + 0.858649i
\(612\) −1.33778 2.31710i −0.0540766 0.0936634i
\(613\) −21.1947 36.7103i −0.856046 1.48271i −0.875672 0.482907i \(-0.839581\pi\)
0.0196261 0.999807i \(-0.493752\pi\)
\(614\) 5.08424 8.80615i 0.205183 0.355387i
\(615\) 3.68595 0.148632
\(616\) 0 0
\(617\) −23.2809 −0.937255 −0.468628 0.883396i \(-0.655251\pi\)
−0.468628 + 0.883396i \(0.655251\pi\)
\(618\) 5.06032 8.76473i 0.203556 0.352569i
\(619\) 21.6101 + 37.4297i 0.868582 + 1.50443i 0.863446 + 0.504441i \(0.168302\pi\)
0.00513615 + 0.999987i \(0.498365\pi\)
\(620\) −6.38831 11.0649i −0.256561 0.444376i
\(621\) −19.8693 + 34.4147i −0.797329 + 1.38101i
\(622\) −13.8697 −0.556125
\(623\) 0 0
\(624\) 0.118760 0.00475420
\(625\) 14.1276 24.4697i 0.565104 0.978790i
\(626\) −8.89501 15.4066i −0.355516 0.615772i
\(627\) 5.73652 + 9.93595i 0.229095 + 0.396804i
\(628\) −10.8478 + 18.7889i −0.432874 + 0.749760i
\(629\) 9.66977 0.385559
\(630\) 0 0
\(631\) 30.6825 1.22145 0.610725 0.791843i \(-0.290878\pi\)
0.610725 + 0.791843i \(0.290878\pi\)
\(632\) 2.75056 4.76412i 0.109412 0.189506i
\(633\) −3.86325 6.69134i −0.153550 0.265957i
\(634\) −2.79387 4.83912i −0.110959 0.192186i
\(635\) 8.44425 14.6259i 0.335100 0.580410i
\(636\) −5.77563 −0.229019
\(637\) 0 0
\(638\) 29.5637 1.17044
\(639\) −12.9827 + 22.4867i −0.513588 + 0.889560i
\(640\) 10.4607 + 18.1184i 0.413494 + 0.716192i
\(641\) 10.6781 + 18.4950i 0.421758 + 0.730507i 0.996112 0.0881008i \(-0.0280798\pi\)
−0.574353 + 0.818608i \(0.694746\pi\)
\(642\) −1.55919 + 2.70059i −0.0615362 + 0.106584i
\(643\) 22.7013 0.895253 0.447626 0.894221i \(-0.352269\pi\)
0.447626 + 0.894221i \(0.352269\pi\)
\(644\) 0 0
\(645\) 6.96275 0.274158
\(646\) 1.16035 2.00978i 0.0456532 0.0790737i
\(647\) −17.6315 30.5386i −0.693165 1.20060i −0.970795 0.239909i \(-0.922882\pi\)
0.277630 0.960688i \(-0.410451\pi\)
\(648\) 3.21078 + 5.56124i 0.126131 + 0.218466i
\(649\) −22.2049 + 38.4601i −0.871620 + 1.50969i
\(650\) −16.3378 −0.640823
\(651\) 0 0
\(652\) 3.28936 0.128821
\(653\) 15.0296 26.0321i 0.588155 1.01871i −0.406319 0.913731i \(-0.633188\pi\)
0.994474 0.104983i \(-0.0334789\pi\)
\(654\) 1.41955 + 2.45873i 0.0555088 + 0.0961440i
\(655\) 5.33404 + 9.23883i 0.208418 + 0.360991i
\(656\) 0.0198802 0.0344335i 0.000776191 0.00134440i
\(657\) −27.6727 −1.07961
\(658\) 0 0
\(659\) −18.9747 −0.739148 −0.369574 0.929201i \(-0.620496\pi\)
−0.369574 + 0.929201i \(0.620496\pi\)
\(660\) 8.10500 14.0383i 0.315487 0.546439i
\(661\) −12.9019 22.3467i −0.501825 0.869187i −0.999998 0.00210905i \(-0.999329\pi\)
0.498172 0.867078i \(-0.334005\pi\)
\(662\) −10.7934 18.6948i −0.419498 0.726593i
\(663\) 1.99637 3.45781i 0.0775324 0.134290i
\(664\) 12.9956 0.504327
\(665\) 0 0
\(666\) −18.4734 −0.715831
\(667\) 29.7876 51.5937i 1.15338 1.99772i
\(668\) −1.20348 2.08450i −0.0465642 0.0806516i
\(669\) 1.13036 + 1.95784i 0.0437022 + 0.0756944i
\(670\) −7.04428 + 12.2011i −0.272144 + 0.471368i
\(671\) 31.8622 1.23003
\(672\) 0 0
\(673\) 4.38401 0.168991 0.0844956 0.996424i \(-0.473072\pi\)
0.0844956 + 0.996424i \(0.473072\pi\)
\(674\) −3.12489 + 5.41248i −0.120366 + 0.208481i
\(675\) 9.93733 + 17.2120i 0.382488 + 0.662489i
\(676\) 3.90587 + 6.76517i 0.150226 + 0.260199i
\(677\) 16.0557 27.8094i 0.617073 1.06880i −0.372945 0.927854i \(-0.621652\pi\)
0.990017 0.140947i \(-0.0450148\pi\)
\(678\) 0.770111 0.0295759
\(679\) 0 0
\(680\) −8.61289 −0.330289
\(681\) 7.70724 13.3493i 0.295342 0.511548i
\(682\) 7.17924 + 12.4348i 0.274907 + 0.476153i
\(683\) 9.35466 + 16.2027i 0.357946 + 0.619981i 0.987618 0.156881i \(-0.0501438\pi\)
−0.629672 + 0.776861i \(0.716811\pi\)
\(684\) 3.53663 6.12563i 0.135227 0.234219i
\(685\) −5.88738 −0.224945
\(686\) 0 0
\(687\) −14.8210 −0.565457
\(688\) 0.0375537 0.0650449i 0.00143172 0.00247981i
\(689\) 11.3861 + 19.7213i 0.433777 + 0.751323i
\(690\) 10.2374 + 17.7317i 0.389731 + 0.675034i
\(691\) 20.4566 35.4318i 0.778205 1.34789i −0.154771 0.987950i \(-0.549464\pi\)
0.932976 0.359940i \(-0.117203\pi\)
\(692\) −7.39773 −0.281220
\(693\) 0 0
\(694\) 1.32972 0.0504755
\(695\) −7.13721 + 12.3620i −0.270730 + 0.468918i
\(696\) 9.06037 + 15.6930i 0.343433 + 0.594843i
\(697\) −0.668377 1.15766i −0.0253166 0.0438496i
\(698\) −10.8824 + 18.8488i −0.411903 + 0.713438i
\(699\) −5.24421 −0.198354
\(700\) 0 0
\(701\) −17.6240 −0.665649 −0.332825 0.942989i \(-0.608002\pi\)
−0.332825 + 0.942989i \(0.608002\pi\)
\(702\) −9.07136 + 15.7121i −0.342376 + 0.593013i
\(703\) 12.7818 + 22.1387i 0.482074 + 0.834977i
\(704\) −11.9872 20.7624i −0.451783 0.782511i
\(705\) 7.68046 13.3029i 0.289263 0.501018i
\(706\) −10.3950 −0.391221
\(707\) 0 0
\(708\) −10.3626 −0.389451
\(709\) 4.09345 7.09007i 0.153733 0.266273i −0.778864 0.627193i \(-0.784204\pi\)
0.932597 + 0.360920i \(0.117537\pi\)
\(710\) 15.9101 + 27.5570i 0.597094 + 1.03420i
\(711\) 2.11157 + 3.65735i 0.0791901 + 0.137161i
\(712\) −18.9875 + 32.8873i −0.711585 + 1.23250i
\(713\) 28.9345 1.08361
\(714\) 0 0
\(715\) −63.9130 −2.39021
\(716\) 1.07642 1.86441i 0.0402276 0.0696763i
\(717\) −3.37744 5.84990i −0.126133 0.218468i
\(718\) 11.7078 + 20.2785i 0.436931 + 0.756787i
\(719\) −21.3047 + 36.9008i −0.794530 + 1.37617i 0.128607 + 0.991696i \(0.458949\pi\)
−0.923137 + 0.384470i \(0.874384\pi\)
\(720\) 0.196667 0.00732936
\(721\) 0 0
\(722\) −10.5437 −0.392397
\(723\) −9.93961 + 17.2159i −0.369658 + 0.640267i
\(724\) 1.69960 + 2.94379i 0.0631650 + 0.109405i
\(725\) −14.8978 25.8038i −0.553291 0.958329i
\(726\) −4.72660 + 8.18672i −0.175421 + 0.303838i
\(727\) −10.5470 −0.391166 −0.195583 0.980687i \(-0.562660\pi\)
−0.195583 + 0.980687i \(0.562660\pi\)
\(728\) 0 0
\(729\) 7.86138 0.291162
\(730\) −16.9562 + 29.3690i −0.627577 + 1.08700i
\(731\) −1.26256 2.18682i −0.0466976 0.0808826i
\(732\) 3.71737 + 6.43867i 0.137398 + 0.237980i
\(733\) −3.30745 + 5.72868i −0.122164 + 0.211594i −0.920621 0.390458i \(-0.872317\pi\)
0.798457 + 0.602052i \(0.205650\pi\)
\(734\) −25.1848 −0.929589
\(735\) 0 0
\(736\) −47.7387 −1.75967
\(737\) −12.6299 + 21.8756i −0.465228 + 0.805799i
\(738\) 1.27689 + 2.21164i 0.0470029 + 0.0814114i
\(739\) 0.417188 + 0.722591i 0.0153465 + 0.0265809i 0.873597 0.486651i \(-0.161782\pi\)
−0.858250 + 0.513232i \(0.828448\pi\)
\(740\) 18.0591 31.2792i 0.663865 1.14985i
\(741\) 10.5554 0.387763
\(742\) 0 0
\(743\) 52.9082 1.94101 0.970506 0.241077i \(-0.0775006\pi\)
0.970506 + 0.241077i \(0.0775006\pi\)
\(744\) −4.40044 + 7.62178i −0.161328 + 0.279428i
\(745\) −6.44340 11.1603i −0.236068 0.408882i
\(746\) 11.8045 + 20.4460i 0.432193 + 0.748581i
\(747\) −4.98827 + 8.63993i −0.182511 + 0.316119i
\(748\) −5.87875 −0.214948
\(749\) 0 0
\(750\) −1.86249 −0.0680086
\(751\) −17.6840 + 30.6297i −0.645300 + 1.11769i 0.338932 + 0.940811i \(0.389934\pi\)
−0.984232 + 0.176881i \(0.943399\pi\)
\(752\) −0.0828493 0.143499i −0.00302120 0.00523288i
\(753\) −7.52242 13.0292i −0.274132 0.474811i
\(754\) 13.5996 23.5552i 0.495267 0.857828i
\(755\) 37.8508 1.37753
\(756\) 0 0
\(757\) −19.6550 −0.714372 −0.357186 0.934033i \(-0.616264\pi\)
−0.357186 + 0.934033i \(0.616264\pi\)
\(758\) −0.421559 + 0.730162i −0.0153117 + 0.0265207i
\(759\) 18.3549 + 31.7917i 0.666242 + 1.15397i
\(760\) −11.3848 19.7190i −0.412969 0.715283i
\(761\) 3.40388 5.89569i 0.123390 0.213719i −0.797712 0.603038i \(-0.793957\pi\)
0.921103 + 0.389320i \(0.127290\pi\)
\(762\) −4.42868 −0.160434
\(763\) 0 0
\(764\) −23.1695 −0.838243
\(765\) 3.30600 5.72616i 0.119529 0.207030i
\(766\) 4.82425 + 8.35585i 0.174307 + 0.301909i
\(767\) 20.4290 + 35.3840i 0.737647 + 1.27764i
\(768\) 7.29341 12.6326i 0.263178 0.455838i
\(769\) 44.3645 1.59983 0.799913 0.600116i \(-0.204879\pi\)
0.799913 + 0.600116i \(0.204879\pi\)
\(770\) 0 0
\(771\) 10.9961 0.396013
\(772\) 7.32153 12.6813i 0.263508 0.456408i
\(773\) 12.8487 + 22.2546i 0.462135 + 0.800441i 0.999067 0.0431843i \(-0.0137503\pi\)
−0.536932 + 0.843625i \(0.680417\pi\)
\(774\) 2.41204 + 4.17778i 0.0866990 + 0.150167i
\(775\) 7.23557 12.5324i 0.259909 0.450176i
\(776\) 42.9960 1.54347
\(777\) 0 0
\(778\) −22.3179 −0.800137
\(779\) 1.76696 3.06046i 0.0633079 0.109652i
\(780\) −7.45675 12.9155i −0.266994 0.462448i
\(781\) 28.5256 + 49.4079i 1.02073 + 1.76795i
\(782\) 3.71272 6.43062i 0.132767 0.229958i
\(783\) −33.0872 −1.18244
\(784\) 0 0
\(785\) −53.6153 −1.91361
\(786\) 1.39875 2.42270i 0.0498916 0.0864149i
\(787\) −12.8283 22.2193i −0.457279 0.792031i 0.541537 0.840677i \(-0.317843\pi\)
−0.998816 + 0.0486462i \(0.984509\pi\)
\(788\) −10.6148 18.3854i −0.378137 0.654952i
\(789\) −1.45274 + 2.51621i −0.0517188 + 0.0895796i
\(790\) 5.17538 0.184132
\(791\) 0 0
\(792\) 29.5015 1.04829
\(793\) 14.6569 25.3865i 0.520482 0.901501i
\(794\) 6.58992 + 11.4141i 0.233867 + 0.405070i
\(795\) −7.13653 12.3608i −0.253107 0.438394i
\(796\) −9.37124 + 16.2315i −0.332155 + 0.575309i
\(797\) 20.3683 0.721483 0.360741 0.932666i \(-0.382524\pi\)
0.360741 + 0.932666i \(0.382524\pi\)
\(798\) 0 0
\(799\) −5.57082 −0.197082
\(800\) −11.9379 + 20.6770i −0.422067 + 0.731042i
\(801\) −14.5764 25.2471i −0.515032 0.892062i
\(802\) 4.85687 + 8.41234i 0.171502 + 0.297050i
\(803\) −30.4013 + 52.6566i −1.07284 + 1.85821i
\(804\) −5.89414 −0.207870
\(805\) 0 0
\(806\) 13.2101 0.465305
\(807\) −7.00652 + 12.1357i −0.246641 + 0.427195i
\(808\) 4.60365 + 7.97376i 0.161956 + 0.280516i
\(809\) 18.2740 + 31.6515i 0.642480 + 1.11281i 0.984877 + 0.173252i \(0.0554277\pi\)
−0.342398 + 0.939555i \(0.611239\pi\)
\(810\) −3.02066 + 5.23193i −0.106135 + 0.183831i
\(811\) 7.33037 0.257404 0.128702 0.991683i \(-0.458919\pi\)
0.128702 + 0.991683i \(0.458919\pi\)
\(812\) 0 0
\(813\) −22.5876 −0.792182
\(814\) −20.2950 + 35.1519i −0.711338 + 1.23207i
\(815\) 4.06443 + 7.03980i 0.142371 + 0.246593i
\(816\) 0.0134975 + 0.0233784i 0.000472507 + 0.000818406i
\(817\) 3.33778 5.78121i 0.116774 0.202259i
\(818\) 25.0754 0.876739
\(819\) 0 0
\(820\) −4.99299 −0.174363
\(821\) −0.881607 + 1.52699i −0.0307683 + 0.0532922i −0.881000 0.473117i \(-0.843129\pi\)
0.850231 + 0.526409i \(0.176462\pi\)
\(822\) 0.771924 + 1.33701i 0.0269240 + 0.0466337i
\(823\) −0.318161 0.551072i −0.0110904 0.0192092i 0.860427 0.509574i \(-0.170197\pi\)
−0.871517 + 0.490365i \(0.836864\pi\)
\(824\) −18.0060 + 31.1873i −0.627268 + 1.08646i
\(825\) 18.3599 0.639209
\(826\) 0 0
\(827\) −6.81869 −0.237109 −0.118554 0.992948i \(-0.537826\pi\)
−0.118554 + 0.992948i \(0.537826\pi\)
\(828\) 11.3160 19.5999i 0.393259 0.681145i
\(829\) −25.4740 44.1223i −0.884749 1.53243i −0.846001 0.533181i \(-0.820997\pi\)
−0.0387473 0.999249i \(-0.512337\pi\)
\(830\) 6.11303 + 10.5881i 0.212187 + 0.367518i
\(831\) 5.12193 8.87145i 0.177678 0.307747i
\(832\) −22.0568 −0.764683
\(833\) 0 0
\(834\) 3.74318 0.129616
\(835\) 2.97412 5.15133i 0.102924 0.178269i
\(836\) −7.77071 13.4593i −0.268755 0.465498i
\(837\) −8.03489 13.9168i −0.277727 0.481037i
\(838\) 0.871539 1.50955i 0.0301068 0.0521466i
\(839\) 2.95064 0.101867 0.0509336 0.998702i \(-0.483780\pi\)
0.0509336 + 0.998702i \(0.483780\pi\)
\(840\) 0 0
\(841\) 20.6036 0.710470
\(842\) −11.0600 + 19.1565i −0.381153 + 0.660177i
\(843\) −5.91432 10.2439i −0.203700 0.352819i
\(844\) 5.23316 + 9.06410i 0.180133 + 0.311999i
\(845\) −9.65241 + 16.7185i −0.332053 + 0.575133i
\(846\) 10.6427 0.365903
\(847\) 0 0
\(848\) −0.153964 −0.00528714
\(849\) −9.85586 + 17.0708i −0.338252 + 0.585870i
\(850\) −1.85686 3.21617i −0.0636897 0.110314i
\(851\) 40.8974 + 70.8363i 1.40194 + 2.42824i
\(852\) −6.65619 + 11.5289i −0.228037 + 0.394972i
\(853\) −28.8764 −0.988709 −0.494355 0.869260i \(-0.664596\pi\)
−0.494355 + 0.869260i \(0.664596\pi\)
\(854\) 0 0
\(855\) 17.4799 0.597799
\(856\) 5.54801 9.60943i 0.189627 0.328444i
\(857\) 4.91988 + 8.52149i 0.168060 + 0.291089i 0.937738 0.347344i \(-0.112916\pi\)
−0.769678 + 0.638433i \(0.779583\pi\)
\(858\) 8.37997 + 14.5145i 0.286087 + 0.495518i
\(859\) 5.56719 9.64266i 0.189950 0.329003i −0.755283 0.655398i \(-0.772501\pi\)
0.945233 + 0.326395i \(0.105834\pi\)
\(860\) −9.43175 −0.321620
\(861\) 0 0
\(862\) −24.1390 −0.822178
\(863\) −11.3515 + 19.6613i −0.386409 + 0.669280i −0.991964 0.126524i \(-0.959618\pi\)
0.605555 + 0.795804i \(0.292951\pi\)
\(864\) 13.2567 + 22.9612i 0.451001 + 0.781157i
\(865\) −9.14085 15.8324i −0.310798 0.538318i
\(866\) −12.3764 + 21.4366i −0.420569 + 0.728446i
\(867\) 0.907578 0.0308230
\(868\) 0 0
\(869\) 9.27910 0.314772
\(870\) −8.52387 + 14.7638i −0.288986 + 0.500539i
\(871\) 11.6197 + 20.1260i 0.393720 + 0.681943i
\(872\) −5.05114 8.74882i −0.171053 0.296273i
\(873\) −16.5037 + 28.5853i −0.558567 + 0.967466i
\(874\) 19.6303 0.664005
\(875\) 0 0
\(876\) −14.1877 −0.479358
\(877\) −0.778586 + 1.34855i −0.0262910 + 0.0455373i −0.878872 0.477059i \(-0.841703\pi\)
0.852581 + 0.522596i \(0.175036\pi\)
\(878\) −2.77088 4.79930i −0.0935125 0.161968i
\(879\) 13.1327 + 22.7464i 0.442954 + 0.767218i
\(880\) 0.216059 0.374225i 0.00728335 0.0126151i
\(881\) −10.3326 −0.348113 −0.174056 0.984736i \(-0.555687\pi\)
−0.174056 + 0.984736i \(0.555687\pi\)
\(882\) 0 0
\(883\) 23.6160 0.794743 0.397371 0.917658i \(-0.369922\pi\)
0.397371 + 0.917658i \(0.369922\pi\)
\(884\) −2.70428 + 4.68395i −0.0909548 + 0.157538i
\(885\) −12.8044 22.1778i −0.430414 0.745499i
\(886\) −11.6118 20.1123i −0.390107 0.675686i
\(887\) −6.96298 + 12.0602i −0.233794 + 0.404943i −0.958922 0.283672i \(-0.908447\pi\)
0.725128 + 0.688615i \(0.241781\pi\)
\(888\) −24.8791 −0.834889
\(889\) 0 0
\(890\) −35.7263 −1.19755
\(891\) −5.41583 + 9.38049i −0.181437 + 0.314258i
\(892\) −1.53119 2.65209i −0.0512679 0.0887986i
\(893\) −7.36368 12.7543i −0.246416 0.426805i
\(894\) −1.68965 + 2.92657i −0.0565105 + 0.0978791i
\(895\) 5.32021 0.177835
\(896\) 0 0
\(897\) 33.7738 1.12767
\(898\) 15.1670 26.2700i 0.506129 0.876641i
\(899\) 12.0457 + 20.8638i 0.401748 + 0.695847i
\(900\) −5.65954 9.80261i −0.188651 0.326754i
\(901\) −2.58815 + 4.48281i −0.0862238 + 0.149344i
\(902\) 5.61117 0.186831
\(903\) 0 0
\(904\) −2.74026 −0.0911398
\(905\) −4.20014 + 7.27486i −0.139617 + 0.241824i
\(906\) −4.96281 8.59584i −0.164878 0.285578i
\(907\) −5.68139 9.84046i −0.188648 0.326747i 0.756152 0.654396i \(-0.227077\pi\)
−0.944800 + 0.327649i \(0.893744\pi\)
\(908\) −10.4402 + 18.0830i −0.346472 + 0.600106i
\(909\) −7.06832 −0.234442
\(910\) 0 0
\(911\) 4.75507 0.157543 0.0787713 0.996893i \(-0.474900\pi\)
0.0787713 + 0.996893i \(0.474900\pi\)
\(912\) −0.0356828 + 0.0618044i −0.00118157 + 0.00204655i
\(913\) 10.9602 + 18.9837i 0.362731 + 0.628269i
\(914\) −11.6718 20.2161i −0.386068 0.668689i
\(915\) −9.18657 + 15.9116i −0.303699 + 0.526022i
\(916\) 20.0766 0.663349
\(917\) 0 0
\(918\) −4.12398 −0.136111
\(919\) 16.3152 28.2587i 0.538187 0.932168i −0.460815 0.887496i \(-0.652443\pi\)
0.999002 0.0446712i \(-0.0142240\pi\)
\(920\) −36.4274 63.0941i −1.20098 2.08015i
\(921\) 5.25651 + 9.10454i 0.173208 + 0.300005i
\(922\) 0.136152 0.235822i 0.00448392 0.00776637i
\(923\) 52.4882 1.72767
\(924\) 0 0
\(925\) 40.9084 1.34506
\(926\) −9.86046 + 17.0788i −0.324035 + 0.561245i
\(927\) −13.8229 23.9420i −0.454005 0.786360i
\(928\) −19.8741 34.4229i −0.652399 1.12999i
\(929\) 23.6773 41.0103i 0.776827 1.34550i −0.156934 0.987609i \(-0.550161\pi\)
0.933762 0.357895i \(-0.116506\pi\)
\(930\) −8.27974 −0.271503
\(931\) 0 0
\(932\) 7.10382 0.232693
\(933\) 7.16983 12.4185i 0.234730 0.406564i
\(934\) 5.09695 + 8.82817i 0.166777 + 0.288867i
\(935\) −7.26395 12.5815i −0.237557 0.411460i
\(936\) 13.5710 23.5056i 0.443581 0.768304i
\(937\) −51.6525 −1.68741 −0.843707 0.536803i \(-0.819632\pi\)
−0.843707 + 0.536803i \(0.819632\pi\)
\(938\) 0 0
\(939\) 18.3928 0.600226
\(940\) −10.4040 + 18.0202i −0.339340 + 0.587754i
\(941\) 27.3620 + 47.3923i 0.891975 + 1.54495i 0.837504 + 0.546431i \(0.184014\pi\)
0.0544710 + 0.998515i \(0.482653\pi\)
\(942\) 7.02979 + 12.1759i 0.229043 + 0.396714i
\(943\) 5.65367 9.79245i 0.184109 0.318886i
\(944\) −0.276242 −0.00899091
\(945\) 0 0
\(946\) 10.5995 0.344619
\(947\) 18.4864 32.0194i 0.600727 1.04049i −0.391984 0.919972i \(-0.628211\pi\)
0.992711 0.120518i \(-0.0384555\pi\)
\(948\) 1.08260 + 1.87511i 0.0351611 + 0.0609007i
\(949\) 27.9697 + 48.4450i 0.907936 + 1.57259i
\(950\) 4.90890 8.50246i 0.159266 0.275856i
\(951\) 5.77707 0.187334
\(952\) 0 0
\(953\) −7.91313 −0.256331 −0.128166 0.991753i \(-0.540909\pi\)
−0.128166 + 0.991753i \(0.540909\pi\)
\(954\) 4.94449 8.56410i 0.160084 0.277273i
\(955\) −28.6289 49.5867i −0.926409 1.60459i
\(956\) 4.57509 + 7.92428i 0.147969 + 0.256290i
\(957\) −15.2827 + 26.4704i −0.494020 + 0.855667i
\(958\) 27.9130 0.901830
\(959\) 0 0
\(960\) 13.8247 0.446189
\(961\) 9.64963 16.7137i 0.311279 0.539150i
\(962\) 18.6717 + 32.3404i 0.602001 + 1.04270i
\(963\) 4.25913 + 7.37703i 0.137249 + 0.237722i
\(964\) 13.4642 23.3207i 0.433653 0.751109i
\(965\) 36.1867 1.16489
\(966\) 0 0
\(967\) 8.05906 0.259162 0.129581 0.991569i \(-0.458637\pi\)
0.129581 + 0.991569i \(0.458637\pi\)
\(968\) 16.8185 29.1305i 0.540568 0.936291i
\(969\) 1.19966 + 2.07788i 0.0385387 + 0.0667510i
\(970\) 20.2250 + 35.0308i 0.649386 + 1.12477i
\(971\) 0.905965 1.56918i 0.0290738 0.0503573i −0.851122 0.524967i \(-0.824078\pi\)
0.880196 + 0.474610i \(0.157411\pi\)
\(972\) −19.8544 −0.636829
\(973\) 0 0
\(974\) −20.2047 −0.647401
\(975\) 8.44571 14.6284i 0.270479 0.468484i
\(976\) 0.0990958 + 0.171639i 0.00317198 + 0.00549403i
\(977\) −7.59669 13.1579i −0.243040 0.420957i 0.718539 0.695487i \(-0.244811\pi\)
−0.961579 + 0.274530i \(0.911478\pi\)
\(978\) 1.06582 1.84605i 0.0340811 0.0590301i
\(979\) −64.0547 −2.04720
\(980\) 0 0
\(981\) 7.75538 0.247610
\(982\) 14.6237 25.3290i 0.466661 0.808280i
\(983\) −5.82360 10.0868i −0.185744 0.321718i 0.758083 0.652158i \(-0.226136\pi\)
−0.943827 + 0.330440i \(0.892803\pi\)
\(984\) 1.71965 + 2.97853i 0.0548205 + 0.0949519i
\(985\) 26.2319 45.4350i 0.835818 1.44768i
\(986\) 6.18257 0.196893
\(987\) 0 0
\(988\) −14.2984 −0.454892
\(989\) 10.6798 18.4979i 0.339597 0.588200i
\(990\) 13.8773 + 24.0362i 0.441049 + 0.763920i
\(991\) 23.5879 + 40.8555i 0.749296 + 1.29782i 0.948161 + 0.317792i \(0.102941\pi\)
−0.198865 + 0.980027i \(0.563725\pi\)
\(992\) 9.65244 16.7185i 0.306465 0.530814i
\(993\) 22.3183 0.708249
\(994\) 0 0
\(995\) −46.3175 −1.46836
\(996\) −2.55747 + 4.42967i −0.0810365 + 0.140359i
\(997\) −19.8787 34.4309i −0.629564 1.09044i −0.987639 0.156744i \(-0.949900\pi\)
0.358075 0.933693i \(-0.383433\pi\)
\(998\) −16.2503 28.1464i −0.514394 0.890957i
\(999\) 22.7138 39.3414i 0.718633 1.24471i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.e.i.324.3 10
7.2 even 3 119.2.a.b.1.3 5
7.3 odd 6 833.2.e.h.18.3 10
7.4 even 3 inner 833.2.e.i.18.3 10
7.5 odd 6 833.2.a.g.1.3 5
7.6 odd 2 833.2.e.h.324.3 10
21.2 odd 6 1071.2.a.m.1.3 5
21.5 even 6 7497.2.a.br.1.3 5
28.23 odd 6 1904.2.a.t.1.2 5
35.9 even 6 2975.2.a.m.1.3 5
56.37 even 6 7616.2.a.bt.1.2 5
56.51 odd 6 7616.2.a.bq.1.4 5
119.16 even 6 2023.2.a.j.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.3 5 7.2 even 3
833.2.a.g.1.3 5 7.5 odd 6
833.2.e.h.18.3 10 7.3 odd 6
833.2.e.h.324.3 10 7.6 odd 2
833.2.e.i.18.3 10 7.4 even 3 inner
833.2.e.i.324.3 10 1.1 even 1 trivial
1071.2.a.m.1.3 5 21.2 odd 6
1904.2.a.t.1.2 5 28.23 odd 6
2023.2.a.j.1.3 5 119.16 even 6
2975.2.a.m.1.3 5 35.9 even 6
7497.2.a.br.1.3 5 21.5 even 6
7616.2.a.bq.1.4 5 56.51 odd 6
7616.2.a.bt.1.2 5 56.37 even 6