Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [833,2,Mod(120,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([8, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.120");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 833 = 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 833.k (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.65153848837\) |
Analytic rank: | \(0\) |
Dimension: | \(234\) |
Relative dimension: | \(39\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
120.1 | −2.50182 | + | 1.20481i | −0.171341 | + | 0.750694i | 3.56055 | − | 4.46478i | 0.877681 | − | 3.84537i | −0.475782 | − | 2.08454i | 0.315183 | + | 2.62691i | −2.29282 | + | 10.0455i | 2.16872 | + | 1.04440i | 2.43715 | + | 10.6779i |
120.2 | −2.43956 | + | 1.17483i | −0.760566 | + | 3.33226i | 3.32426 | − | 4.16849i | −0.286235 | + | 1.25408i | −2.05939 | − | 9.02278i | 2.05845 | − | 1.66216i | −2.00742 | + | 8.79508i | −7.82256 | − | 3.76715i | −0.775040 | − | 3.39567i |
120.3 | −2.37785 | + | 1.14511i | 0.690513 | − | 3.02534i | 3.09592 | − | 3.88216i | −0.837852 | + | 3.67087i | 1.82241 | + | 7.98452i | 2.27520 | − | 1.35035i | −1.74156 | + | 7.63029i | −5.97295 | − | 2.87642i | −2.21127 | − | 9.68822i |
120.4 | −2.37198 | + | 1.14228i | 0.0745220 | − | 0.326502i | 3.07448 | − | 3.85528i | 0.126569 | − | 0.554535i | 0.196194 | + | 0.859581i | 2.08018 | − | 1.63489i | −1.71712 | + | 7.52319i | 2.60186 | + | 1.25299i | 0.333218 | + | 1.45992i |
120.5 | −2.26588 | + | 1.09119i | 0.619080 | − | 2.71237i | 2.69652 | − | 3.38133i | 0.778175 | − | 3.40941i | 1.55694 | + | 6.82142i | −1.62207 | − | 2.09019i | −1.30107 | + | 5.70034i | −4.27077 | − | 2.05669i | 1.95706 | + | 8.57443i |
120.6 | −2.09590 | + | 1.00933i | −0.366696 | + | 1.60660i | 2.12706 | − | 2.66725i | −0.829036 | + | 3.63224i | −0.853033 | − | 3.73738i | −2.52695 | + | 0.783922i | −0.730672 | + | 3.20128i | 0.256213 | + | 0.123386i | −1.92856 | − | 8.44958i |
120.7 | −1.89747 | + | 0.913774i | −0.429516 | + | 1.88183i | 1.51844 | − | 1.90406i | −0.158555 | + | 0.694674i | −0.904575 | − | 3.96320i | 1.77019 | + | 1.96633i | −0.204037 | + | 0.893943i | −0.653899 | − | 0.314901i | −0.333922 | − | 1.46301i |
120.8 | −1.87670 | + | 0.903770i | 0.219850 | − | 0.963228i | 1.45822 | − | 1.82855i | 0.469031 | − | 2.05496i | 0.457944 | + | 2.00638i | −2.41920 | + | 1.07119i | −0.157035 | + | 0.688016i | 1.82343 | + | 0.878119i | 0.976982 | + | 4.28044i |
120.9 | −1.84959 | + | 0.890715i | 0.302495 | − | 1.32532i | 1.38063 | − | 1.73125i | −0.656828 | + | 2.87775i | 0.620989 | + | 2.72073i | 0.0701726 | + | 2.64482i | −0.0979182 | + | 0.429007i | 1.03794 | + | 0.499847i | −1.34840 | − | 5.90771i |
120.10 | −1.52554 | + | 0.734659i | −0.245038 | + | 1.07358i | 0.540556 | − | 0.677835i | 0.390090 | − | 1.70910i | −0.414902 | − | 1.81780i | −2.19439 | − | 1.47806i | 0.426894 | − | 1.87034i | 1.61038 | + | 0.775517i | 0.660507 | + | 2.89387i |
120.11 | −1.47390 | + | 0.709793i | −0.503806 | + | 2.20732i | 0.421595 | − | 0.528664i | −0.472460 | + | 2.06998i | −0.824180 | − | 3.61097i | 0.428847 | − | 2.61076i | 0.481899 | − | 2.11134i | −1.91554 | − | 0.922474i | −0.772900 | − | 3.38630i |
120.12 | −1.43433 | + | 0.690739i | 0.146861 | − | 0.643439i | 0.333216 | − | 0.417840i | 0.0319535 | − | 0.139998i | 0.233801 | + | 1.02435i | 0.161382 | − | 2.64082i | 0.519178 | − | 2.27467i | 2.31046 | + | 1.11266i | 0.0508698 | + | 0.222875i |
120.13 | −1.26981 | + | 0.611506i | −0.685266 | + | 3.00235i | −0.00851313 | + | 0.0106751i | 0.695947 | − | 3.04914i | −0.965799 | − | 4.23144i | −1.96917 | + | 1.76703i | 0.631514 | − | 2.76684i | −5.84159 | − | 2.81316i | 0.980852 | + | 4.29739i |
120.14 | −1.12739 | + | 0.542922i | 0.534232 | − | 2.34063i | −0.270739 | + | 0.339496i | −0.192389 | + | 0.842913i | 0.668489 | + | 2.92884i | 2.56882 | − | 0.633388i | 0.677792 | − | 2.96960i | −2.49022 | − | 1.19922i | −0.240738 | − | 1.05474i |
120.15 | −0.673989 | + | 0.324576i | 0.377036 | − | 1.65190i | −0.898068 | + | 1.12614i | −0.915531 | + | 4.01120i | 0.282050 | + | 1.23574i | −2.46973 | − | 0.948900i | 0.572693 | − | 2.50913i | 0.116275 | + | 0.0559949i | −0.684882 | − | 3.00067i |
120.16 | −0.594110 | + | 0.286108i | 0.427979 | − | 1.87510i | −0.975871 | + | 1.22370i | −0.0308663 | + | 0.135234i | 0.282214 | + | 1.23646i | −2.18951 | + | 1.48527i | 0.523129 | − | 2.29198i | −0.629919 | − | 0.303353i | −0.0203536 | − | 0.0891751i |
120.17 | −0.537156 | + | 0.258681i | −0.382965 | + | 1.67788i | −1.02536 | + | 1.28576i | 0.472733 | − | 2.07118i | −0.228323 | − | 1.00035i | −0.280380 | + | 2.63085i | 0.483510 | − | 2.11840i | 0.0342871 | + | 0.0165118i | 0.281843 | + | 1.23483i |
120.18 | −0.165953 | + | 0.0799190i | −0.539573 | + | 2.36403i | −1.22583 | + | 1.53714i | −0.385039 | + | 1.68696i | −0.0993864 | − | 0.435440i | −2.64115 | − | 0.155956i | 0.162558 | − | 0.712213i | −2.59457 | − | 1.24948i | −0.0709220 | − | 0.310729i |
120.19 | −0.133811 | + | 0.0644401i | −0.0351422 | + | 0.153968i | −1.23323 | + | 1.54642i | −0.364104 | + | 1.59524i | −0.00521929 | − | 0.0228672i | 0.812254 | − | 2.51798i | 0.131466 | − | 0.575988i | 2.68044 | + | 1.29083i | −0.0540764 | − | 0.236924i |
120.20 | 0.209208 | − | 0.100749i | −0.167779 | + | 0.735090i | −1.21336 | + | 1.52151i | −0.201636 | + | 0.883426i | 0.0389590 | + | 0.170691i | 1.33538 | + | 2.28403i | −0.203895 | + | 0.893322i | 2.19070 | + | 1.05499i | 0.0468207 | + | 0.205135i |
See next 80 embeddings (of 234 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.e | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 833.2.k.c | ✓ | 234 |
49.e | even | 7 | 1 | inner | 833.2.k.c | ✓ | 234 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
833.2.k.c | ✓ | 234 | 1.a | even | 1 | 1 | trivial |
833.2.k.c | ✓ | 234 | 49.e | even | 7 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{234} - T_{2}^{233} + 59 T_{2}^{232} - 43 T_{2}^{231} + 1896 T_{2}^{230} - 1058 T_{2}^{229} + \cdots + 42\!\cdots\!61 \) acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\).