Properties

Label 84.3.d.a
Level $84$
Weight $3$
Character orbit 84.d
Analytic conductor $2.289$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,3,Mod(13,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 84.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.28883422063\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - 4 \beta q^{5} - 7 q^{7} - 3 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{3} - 4 \beta q^{5} - 7 q^{7} - 3 q^{9} + 18 q^{11} - 12 \beta q^{13} - 12 q^{15} + 8 \beta q^{17} + 12 \beta q^{19} + 7 \beta q^{21} + 18 q^{23} - 23 q^{25} + 3 \beta q^{27} + 18 q^{29} + 24 \beta q^{31} - 18 \beta q^{33} + 28 \beta q^{35} + 10 q^{37} - 36 q^{39} - 32 \beta q^{41} - 38 q^{43} + 12 \beta q^{45} - 16 \beta q^{47} + 49 q^{49} + 24 q^{51} + 18 q^{53} - 72 \beta q^{55} + 36 q^{57} + 4 \beta q^{59} - 12 \beta q^{61} + 21 q^{63} - 144 q^{65} + 26 q^{67} - 18 \beta q^{69} + 18 q^{71} + 24 \beta q^{73} + 23 \beta q^{75} - 126 q^{77} + 2 q^{79} + 9 q^{81} - 20 \beta q^{83} + 96 q^{85} - 18 \beta q^{87} + 84 \beta q^{91} + 72 q^{93} + 144 q^{95} + 96 \beta q^{97} - 54 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 14 q^{7} - 6 q^{9} + 36 q^{11} - 24 q^{15} + 36 q^{23} - 46 q^{25} + 36 q^{29} + 20 q^{37} - 72 q^{39} - 76 q^{43} + 98 q^{49} + 48 q^{51} + 36 q^{53} + 72 q^{57} + 42 q^{63} - 288 q^{65} + 52 q^{67} + 36 q^{71} - 252 q^{77} + 4 q^{79} + 18 q^{81} + 192 q^{85} + 144 q^{93} + 288 q^{95} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 6.92820i 0 −7.00000 0 −3.00000 0
13.2 0 1.73205i 0 6.92820i 0 −7.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.3.d.a 2
3.b odd 2 1 252.3.d.a 2
4.b odd 2 1 336.3.f.b 2
5.b even 2 1 2100.3.j.c 2
5.c odd 4 2 2100.3.p.b 4
7.b odd 2 1 inner 84.3.d.a 2
7.c even 3 1 588.3.m.b 2
7.c even 3 1 588.3.m.c 2
7.d odd 6 1 588.3.m.b 2
7.d odd 6 1 588.3.m.c 2
8.b even 2 1 1344.3.f.a 2
8.d odd 2 1 1344.3.f.d 2
12.b even 2 1 1008.3.f.f 2
21.c even 2 1 252.3.d.a 2
21.g even 6 1 1764.3.z.a 2
21.g even 6 1 1764.3.z.g 2
21.h odd 6 1 1764.3.z.a 2
21.h odd 6 1 1764.3.z.g 2
28.d even 2 1 336.3.f.b 2
35.c odd 2 1 2100.3.j.c 2
35.f even 4 2 2100.3.p.b 4
56.e even 2 1 1344.3.f.d 2
56.h odd 2 1 1344.3.f.a 2
84.h odd 2 1 1008.3.f.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.3.d.a 2 1.a even 1 1 trivial
84.3.d.a 2 7.b odd 2 1 inner
252.3.d.a 2 3.b odd 2 1
252.3.d.a 2 21.c even 2 1
336.3.f.b 2 4.b odd 2 1
336.3.f.b 2 28.d even 2 1
588.3.m.b 2 7.c even 3 1
588.3.m.b 2 7.d odd 6 1
588.3.m.c 2 7.c even 3 1
588.3.m.c 2 7.d odd 6 1
1008.3.f.f 2 12.b even 2 1
1008.3.f.f 2 84.h odd 2 1
1344.3.f.a 2 8.b even 2 1
1344.3.f.a 2 56.h odd 2 1
1344.3.f.d 2 8.d odd 2 1
1344.3.f.d 2 56.e even 2 1
1764.3.z.a 2 21.g even 6 1
1764.3.z.a 2 21.h odd 6 1
1764.3.z.g 2 21.g even 6 1
1764.3.z.g 2 21.h odd 6 1
2100.3.j.c 2 5.b even 2 1
2100.3.j.c 2 35.c odd 2 1
2100.3.p.b 4 5.c odd 4 2
2100.3.p.b 4 35.f even 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(84, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} + 48 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( (T - 18)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 432 \) Copy content Toggle raw display
$17$ \( T^{2} + 192 \) Copy content Toggle raw display
$19$ \( T^{2} + 432 \) Copy content Toggle raw display
$23$ \( (T - 18)^{2} \) Copy content Toggle raw display
$29$ \( (T - 18)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1728 \) Copy content Toggle raw display
$37$ \( (T - 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 3072 \) Copy content Toggle raw display
$43$ \( (T + 38)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 768 \) Copy content Toggle raw display
$53$ \( (T - 18)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 48 \) Copy content Toggle raw display
$61$ \( T^{2} + 432 \) Copy content Toggle raw display
$67$ \( (T - 26)^{2} \) Copy content Toggle raw display
$71$ \( (T - 18)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1728 \) Copy content Toggle raw display
$79$ \( (T - 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1200 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 27648 \) Copy content Toggle raw display
show more
show less