Properties

Label 84.4.e.a.71.12
Level $84$
Weight $4$
Character 84.71
Analytic conductor $4.956$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,4,Mod(71,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.71");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 84.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95616044048\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.12
Character \(\chi\) \(=\) 84.71
Dual form 84.4.e.a.71.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69169 + 2.26676i) q^{2} +(4.63286 - 2.35300i) q^{3} +(-2.27640 - 7.66929i) q^{4} +6.19268i q^{5} +(-2.50367 + 14.4821i) q^{6} +7.00000i q^{7} +(21.2354 + 7.81399i) q^{8} +(15.9268 - 21.8022i) q^{9} +(-14.0373 - 10.4761i) q^{10} +68.7622 q^{11} +(-28.5920 - 30.1744i) q^{12} +21.0411 q^{13} +(-15.8673 - 11.8418i) q^{14} +(14.5713 + 28.6898i) q^{15} +(-53.6360 + 34.9167i) q^{16} +112.772i q^{17} +(22.4772 + 72.9848i) q^{18} -57.7920i q^{19} +(47.4934 - 14.0970i) q^{20} +(16.4710 + 32.4300i) q^{21} +(-116.324 + 155.867i) q^{22} -106.466 q^{23} +(116.767 - 13.7657i) q^{24} +86.6508 q^{25} +(-35.5949 + 47.6950i) q^{26} +(22.4862 - 138.482i) q^{27} +(53.6850 - 15.9348i) q^{28} +14.4004i q^{29} +(-89.6830 - 15.5044i) q^{30} -117.828i q^{31} +(11.5876 - 180.648i) q^{32} +(318.566 - 161.797i) q^{33} +(-255.627 - 190.775i) q^{34} -43.3487 q^{35} +(-203.463 - 72.5168i) q^{36} -335.143 q^{37} +(131.000 + 97.7659i) q^{38} +(97.4803 - 49.5095i) q^{39} +(-48.3895 + 131.504i) q^{40} +105.821i q^{41} +(-101.375 - 17.5257i) q^{42} -287.527i q^{43} +(-156.530 - 527.357i) q^{44} +(135.014 + 98.6296i) q^{45} +(180.106 - 241.332i) q^{46} -355.416 q^{47} +(-166.329 + 287.970i) q^{48} -49.0000 q^{49} +(-146.586 + 196.416i) q^{50} +(265.353 + 522.458i) q^{51} +(-47.8978 - 161.370i) q^{52} -246.326i q^{53} +(275.867 + 285.239i) q^{54} +425.822i q^{55} +(-54.6979 + 148.648i) q^{56} +(-135.984 - 267.742i) q^{57} +(-32.6422 - 24.3610i) q^{58} +4.99979 q^{59} +(186.860 - 177.061i) q^{60} +476.146 q^{61} +(267.087 + 199.327i) q^{62} +(152.616 + 111.488i) q^{63} +(389.883 + 331.866i) q^{64} +130.300i q^{65} +(-172.158 + 995.822i) q^{66} +392.103i q^{67} +(864.883 - 256.714i) q^{68} +(-493.241 + 250.513i) q^{69} +(73.3324 - 98.2611i) q^{70} -346.845 q^{71} +(508.574 - 338.527i) q^{72} -1017.15 q^{73} +(566.956 - 759.688i) q^{74} +(401.441 - 203.889i) q^{75} +(-443.223 + 131.557i) q^{76} +481.335i q^{77} +(-52.6798 + 304.719i) q^{78} -164.386i q^{79} +(-216.228 - 332.151i) q^{80} +(-221.673 - 694.480i) q^{81} +(-239.870 - 179.015i) q^{82} -533.141 q^{83} +(211.221 - 200.144i) q^{84} -698.362 q^{85} +(651.754 + 486.405i) q^{86} +(33.8841 + 66.7151i) q^{87} +(1460.19 + 537.307i) q^{88} -506.353i q^{89} +(-451.971 + 139.194i) q^{90} +147.287i q^{91} +(242.358 + 816.516i) q^{92} +(-277.248 - 545.879i) q^{93} +(601.252 - 805.642i) q^{94} +357.887 q^{95} +(-371.381 - 864.183i) q^{96} +652.469 q^{97} +(82.8926 - 111.071i) q^{98} +(1095.16 - 1499.17i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 12 q^{4} + 30 q^{6} + 20 q^{9} - 132 q^{10} - 78 q^{12} + 324 q^{16} + 424 q^{18} - 240 q^{22} - 382 q^{24} - 900 q^{25} + 168 q^{28} + 476 q^{30} + 848 q^{33} - 576 q^{34} + 412 q^{36} + 528 q^{37}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.69169 + 2.26676i −0.598101 + 0.801420i
\(3\) 4.63286 2.35300i 0.891595 0.452834i
\(4\) −2.27640 7.66929i −0.284550 0.958661i
\(5\) 6.19268i 0.553890i 0.960886 + 0.276945i \(0.0893219\pi\)
−0.960886 + 0.276945i \(0.910678\pi\)
\(6\) −2.50367 + 14.4821i −0.170353 + 0.985383i
\(7\) 7.00000i 0.377964i
\(8\) 21.2354 + 7.81399i 0.938480 + 0.345333i
\(9\) 15.9268 21.8022i 0.589882 0.807490i
\(10\) −14.0373 10.4761i −0.443899 0.331282i
\(11\) 68.7622 1.88478 0.942390 0.334515i \(-0.108573\pi\)
0.942390 + 0.334515i \(0.108573\pi\)
\(12\) −28.5920 30.1744i −0.687818 0.725883i
\(13\) 21.0411 0.448903 0.224451 0.974485i \(-0.427941\pi\)
0.224451 + 0.974485i \(0.427941\pi\)
\(14\) −15.8673 11.8418i −0.302908 0.226061i
\(15\) 14.5713 + 28.6898i 0.250820 + 0.493845i
\(16\) −53.6360 + 34.9167i −0.838063 + 0.545573i
\(17\) 112.772i 1.60890i 0.594021 + 0.804449i \(0.297539\pi\)
−0.594021 + 0.804449i \(0.702461\pi\)
\(18\) 22.4772 + 72.9848i 0.294330 + 0.955704i
\(19\) 57.7920i 0.697810i −0.937158 0.348905i \(-0.886554\pi\)
0.937158 0.348905i \(-0.113446\pi\)
\(20\) 47.4934 14.0970i 0.530993 0.157609i
\(21\) 16.4710 + 32.4300i 0.171155 + 0.336991i
\(22\) −116.324 + 155.867i −1.12729 + 1.51050i
\(23\) −106.466 −0.965201 −0.482600 0.875841i \(-0.660308\pi\)
−0.482600 + 0.875841i \(0.660308\pi\)
\(24\) 116.767 13.7657i 0.993123 0.117079i
\(25\) 86.6508 0.693206
\(26\) −35.5949 + 47.6950i −0.268489 + 0.359760i
\(27\) 22.4862 138.482i 0.160276 0.987072i
\(28\) 53.6850 15.9348i 0.362340 0.107550i
\(29\) 14.4004i 0.0922099i 0.998937 + 0.0461050i \(0.0146809\pi\)
−0.998937 + 0.0461050i \(0.985319\pi\)
\(30\) −89.6830 15.5044i −0.545794 0.0943568i
\(31\) 117.828i 0.682661i −0.939943 0.341330i \(-0.889123\pi\)
0.939943 0.341330i \(-0.110877\pi\)
\(32\) 11.5876 180.648i 0.0640129 0.997949i
\(33\) 318.566 161.797i 1.68046 0.853494i
\(34\) −255.627 190.775i −1.28940 0.962284i
\(35\) −43.3487 −0.209351
\(36\) −203.463 72.5168i −0.941960 0.335726i
\(37\) −335.143 −1.48911 −0.744556 0.667561i \(-0.767339\pi\)
−0.744556 + 0.667561i \(0.767339\pi\)
\(38\) 131.000 + 97.7659i 0.559239 + 0.417361i
\(39\) 97.4803 49.5095i 0.400239 0.203279i
\(40\) −48.3895 + 131.504i −0.191276 + 0.519815i
\(41\) 105.821i 0.403083i 0.979480 + 0.201541i \(0.0645951\pi\)
−0.979480 + 0.201541i \(0.935405\pi\)
\(42\) −101.375 17.5257i −0.372440 0.0643874i
\(43\) 287.527i 1.01971i −0.860261 0.509854i \(-0.829700\pi\)
0.860261 0.509854i \(-0.170300\pi\)
\(44\) −156.530 527.357i −0.536314 1.80687i
\(45\) 135.014 + 98.6296i 0.447260 + 0.326730i
\(46\) 180.106 241.332i 0.577288 0.773532i
\(47\) −355.416 −1.10304 −0.551519 0.834163i \(-0.685951\pi\)
−0.551519 + 0.834163i \(0.685951\pi\)
\(48\) −166.329 + 287.970i −0.500158 + 0.865934i
\(49\) −49.0000 −0.142857
\(50\) −146.586 + 196.416i −0.414607 + 0.555550i
\(51\) 265.353 + 522.458i 0.728565 + 1.43449i
\(52\) −47.8978 161.370i −0.127735 0.430346i
\(53\) 246.326i 0.638404i −0.947687 0.319202i \(-0.896585\pi\)
0.947687 0.319202i \(-0.103415\pi\)
\(54\) 275.867 + 285.239i 0.695198 + 0.718818i
\(55\) 425.822i 1.04396i
\(56\) −54.6979 + 148.648i −0.130523 + 0.354712i
\(57\) −135.984 267.742i −0.315992 0.622163i
\(58\) −32.6422 24.3610i −0.0738989 0.0551509i
\(59\) 4.99979 0.0110325 0.00551625 0.999985i \(-0.498244\pi\)
0.00551625 + 0.999985i \(0.498244\pi\)
\(60\) 186.860 177.061i 0.402059 0.380975i
\(61\) 476.146 0.999413 0.499707 0.866195i \(-0.333441\pi\)
0.499707 + 0.866195i \(0.333441\pi\)
\(62\) 267.087 + 199.327i 0.547098 + 0.408300i
\(63\) 152.616 + 111.488i 0.305202 + 0.222954i
\(64\) 389.883 + 331.866i 0.761491 + 0.648176i
\(65\) 130.300i 0.248643i
\(66\) −172.158 + 995.822i −0.321078 + 1.85723i
\(67\) 392.103i 0.714970i 0.933919 + 0.357485i \(0.116366\pi\)
−0.933919 + 0.357485i \(0.883634\pi\)
\(68\) 864.883 256.714i 1.54239 0.457811i
\(69\) −493.241 + 250.513i −0.860568 + 0.437076i
\(70\) 73.3324 98.2611i 0.125213 0.167778i
\(71\) −346.845 −0.579760 −0.289880 0.957063i \(-0.593615\pi\)
−0.289880 + 0.957063i \(0.593615\pi\)
\(72\) 508.574 338.527i 0.832445 0.554108i
\(73\) −1017.15 −1.63080 −0.815402 0.578896i \(-0.803484\pi\)
−0.815402 + 0.578896i \(0.803484\pi\)
\(74\) 566.956 759.688i 0.890639 1.19340i
\(75\) 401.441 203.889i 0.618059 0.313908i
\(76\) −443.223 + 131.557i −0.668963 + 0.198562i
\(77\) 481.335i 0.712380i
\(78\) −52.6798 + 304.719i −0.0764720 + 0.442341i
\(79\) 164.386i 0.234113i −0.993125 0.117056i \(-0.962654\pi\)
0.993125 0.117056i \(-0.0373458\pi\)
\(80\) −216.228 332.151i −0.302188 0.464195i
\(81\) −221.673 694.480i −0.304079 0.952647i
\(82\) −239.870 179.015i −0.323039 0.241084i
\(83\) −533.141 −0.705058 −0.352529 0.935801i \(-0.614678\pi\)
−0.352529 + 0.935801i \(0.614678\pi\)
\(84\) 211.221 200.144i 0.274358 0.259971i
\(85\) −698.362 −0.891152
\(86\) 651.754 + 486.405i 0.817214 + 0.609888i
\(87\) 33.8841 + 66.7151i 0.0417558 + 0.0822139i
\(88\) 1460.19 + 537.307i 1.76883 + 0.650876i
\(89\) 506.353i 0.603071i −0.953455 0.301536i \(-0.902501\pi\)
0.953455 0.301536i \(-0.0974992\pi\)
\(90\) −451.971 + 139.194i −0.529355 + 0.163026i
\(91\) 147.287i 0.169669i
\(92\) 242.358 + 816.516i 0.274648 + 0.925301i
\(93\) −277.248 545.879i −0.309132 0.608656i
\(94\) 601.252 805.642i 0.659728 0.883997i
\(95\) 357.887 0.386510
\(96\) −371.381 864.183i −0.394832 0.918753i
\(97\) 652.469 0.682971 0.341485 0.939887i \(-0.389070\pi\)
0.341485 + 0.939887i \(0.389070\pi\)
\(98\) 82.8926 111.071i 0.0854430 0.114489i
\(99\) 1095.16 1499.17i 1.11180 1.52194i
\(100\) −197.252 664.550i −0.197252 0.664550i
\(101\) 949.009i 0.934950i 0.884006 + 0.467475i \(0.154836\pi\)
−0.884006 + 0.467475i \(0.845164\pi\)
\(102\) −1633.18 282.344i −1.58538 0.274081i
\(103\) 1582.09i 1.51348i 0.653719 + 0.756738i \(0.273208\pi\)
−0.653719 + 0.756738i \(0.726792\pi\)
\(104\) 446.815 + 164.414i 0.421287 + 0.155021i
\(105\) −200.829 + 101.999i −0.186656 + 0.0948012i
\(106\) 558.361 + 416.705i 0.511630 + 0.381830i
\(107\) −503.414 −0.454830 −0.227415 0.973798i \(-0.573027\pi\)
−0.227415 + 0.973798i \(0.573027\pi\)
\(108\) −1113.25 + 142.788i −0.991875 + 0.127220i
\(109\) 267.700 0.235239 0.117619 0.993059i \(-0.462474\pi\)
0.117619 + 0.993059i \(0.462474\pi\)
\(110\) −965.236 720.357i −0.836652 0.624394i
\(111\) −1552.67 + 788.590i −1.32768 + 0.674321i
\(112\) −244.417 375.452i −0.206207 0.316758i
\(113\) 347.219i 0.289058i 0.989501 + 0.144529i \(0.0461668\pi\)
−0.989501 + 0.144529i \(0.953833\pi\)
\(114\) 836.950 + 144.692i 0.687610 + 0.118874i
\(115\) 659.307i 0.534615i
\(116\) 110.441 32.7810i 0.0883981 0.0262383i
\(117\) 335.117 458.742i 0.264800 0.362484i
\(118\) −8.45807 + 11.3333i −0.00659855 + 0.00884167i
\(119\) −789.405 −0.608106
\(120\) 85.2464 + 723.100i 0.0648491 + 0.550080i
\(121\) 3397.24 2.55240
\(122\) −805.489 + 1079.31i −0.597750 + 0.800950i
\(123\) 248.995 + 490.252i 0.182530 + 0.359386i
\(124\) −903.655 + 268.223i −0.654440 + 0.194251i
\(125\) 1310.68i 0.937850i
\(126\) −510.893 + 157.341i −0.361222 + 0.111246i
\(127\) 1122.08i 0.784007i −0.919964 0.392003i \(-0.871782\pi\)
0.919964 0.392003i \(-0.128218\pi\)
\(128\) −1411.82 + 322.358i −0.974910 + 0.222599i
\(129\) −676.550 1332.07i −0.461759 0.909166i
\(130\) −295.360 220.427i −0.199267 0.148714i
\(131\) −770.765 −0.514061 −0.257031 0.966403i \(-0.582744\pi\)
−0.257031 + 0.966403i \(0.582744\pi\)
\(132\) −1966.05 2074.86i −1.29639 1.36813i
\(133\) 404.544 0.263747
\(134\) −888.803 663.315i −0.572992 0.427624i
\(135\) 857.577 + 139.250i 0.546729 + 0.0887755i
\(136\) −881.200 + 2394.76i −0.555605 + 1.50992i
\(137\) 2713.01i 1.69188i −0.533277 0.845941i \(-0.679040\pi\)
0.533277 0.845941i \(-0.320960\pi\)
\(138\) 266.555 1541.85i 0.164425 0.951093i
\(139\) 389.470i 0.237658i −0.992915 0.118829i \(-0.962086\pi\)
0.992915 0.118829i \(-0.0379140\pi\)
\(140\) 98.6789 + 332.454i 0.0595707 + 0.200696i
\(141\) −1646.59 + 836.293i −0.983462 + 0.499493i
\(142\) 586.753 786.215i 0.346755 0.464632i
\(143\) 1446.83 0.846083
\(144\) −92.9895 + 1725.50i −0.0538134 + 0.998551i
\(145\) −89.1770 −0.0510741
\(146\) 1720.70 2305.64i 0.975386 1.30696i
\(147\) −227.010 + 115.297i −0.127371 + 0.0646906i
\(148\) 762.918 + 2570.31i 0.423726 + 1.42755i
\(149\) 1762.16i 0.968874i 0.874826 + 0.484437i \(0.160975\pi\)
−0.874826 + 0.484437i \(0.839025\pi\)
\(150\) −216.945 + 1254.89i −0.118090 + 0.683074i
\(151\) 3600.16i 1.94025i −0.242615 0.970123i \(-0.578005\pi\)
0.242615 0.970123i \(-0.421995\pi\)
\(152\) 451.586 1227.23i 0.240977 0.654881i
\(153\) 2458.68 + 1796.10i 1.29917 + 0.949060i
\(154\) −1091.07 814.268i −0.570916 0.426075i
\(155\) 729.669 0.378119
\(156\) −601.607 634.901i −0.308763 0.325851i
\(157\) 135.955 0.0691107 0.0345554 0.999403i \(-0.488998\pi\)
0.0345554 + 0.999403i \(0.488998\pi\)
\(158\) 372.624 + 278.090i 0.187623 + 0.140023i
\(159\) −579.603 1141.19i −0.289091 0.569198i
\(160\) 1118.70 + 71.7580i 0.552754 + 0.0354561i
\(161\) 745.259i 0.364812i
\(162\) 1949.22 + 672.361i 0.945341 + 0.326085i
\(163\) 209.411i 0.100628i 0.998733 + 0.0503139i \(0.0160222\pi\)
−0.998733 + 0.0503139i \(0.983978\pi\)
\(164\) 811.569 240.890i 0.386420 0.114697i
\(165\) 1001.96 + 1972.77i 0.472741 + 0.930790i
\(166\) 901.907 1208.50i 0.421696 0.565048i
\(167\) 3285.32 1.52231 0.761155 0.648570i \(-0.224633\pi\)
0.761155 + 0.648570i \(0.224633\pi\)
\(168\) 96.3597 + 817.368i 0.0442519 + 0.375365i
\(169\) −1754.27 −0.798486
\(170\) 1181.41 1583.02i 0.532999 0.714188i
\(171\) −1259.99 920.442i −0.563474 0.411625i
\(172\) −2205.13 + 654.525i −0.977554 + 0.290157i
\(173\) 3187.70i 1.40091i 0.713699 + 0.700453i \(0.247019\pi\)
−0.713699 + 0.700453i \(0.752981\pi\)
\(174\) −208.548 36.0538i −0.0908621 0.0157082i
\(175\) 606.555i 0.262007i
\(176\) −3688.13 + 2400.95i −1.57956 + 1.02829i
\(177\) 23.1633 11.7645i 0.00983651 0.00499589i
\(178\) 1147.78 + 856.591i 0.483314 + 0.360698i
\(179\) 514.995 0.215042 0.107521 0.994203i \(-0.465709\pi\)
0.107521 + 0.994203i \(0.465709\pi\)
\(180\) 449.073 1259.98i 0.185955 0.521742i
\(181\) −564.937 −0.231997 −0.115998 0.993249i \(-0.537007\pi\)
−0.115998 + 0.993249i \(0.537007\pi\)
\(182\) −333.865 249.164i −0.135976 0.101479i
\(183\) 2205.92 1120.37i 0.891071 0.452569i
\(184\) −2260.84 831.921i −0.905822 0.333315i
\(185\) 2075.43i 0.824803i
\(186\) 1706.39 + 295.002i 0.672682 + 0.116293i
\(187\) 7754.47i 3.03242i
\(188\) 809.068 + 2725.79i 0.313869 + 1.05744i
\(189\) 969.377 + 157.403i 0.373078 + 0.0605788i
\(190\) −605.432 + 811.244i −0.231172 + 0.309757i
\(191\) −1865.70 −0.706793 −0.353396 0.935474i \(-0.614973\pi\)
−0.353396 + 0.935474i \(0.614973\pi\)
\(192\) 2587.15 + 620.095i 0.972457 + 0.233081i
\(193\) −1068.54 −0.398524 −0.199262 0.979946i \(-0.563855\pi\)
−0.199262 + 0.979946i \(0.563855\pi\)
\(194\) −1103.77 + 1478.99i −0.408486 + 0.547347i
\(195\) 306.596 + 603.664i 0.112594 + 0.221689i
\(196\) 111.543 + 375.795i 0.0406499 + 0.136952i
\(197\) 4223.90i 1.52761i −0.645444 0.763807i \(-0.723328\pi\)
0.645444 0.763807i \(-0.276672\pi\)
\(198\) 1545.58 + 5018.59i 0.554747 + 1.80129i
\(199\) 4084.37i 1.45494i −0.686138 0.727471i \(-0.740696\pi\)
0.686138 0.727471i \(-0.259304\pi\)
\(200\) 1840.06 + 677.088i 0.650560 + 0.239387i
\(201\) 922.617 + 1816.56i 0.323763 + 0.637463i
\(202\) −2151.18 1605.43i −0.749288 0.559195i
\(203\) −100.803 −0.0348521
\(204\) 3402.83 3224.39i 1.16787 1.10663i
\(205\) −655.312 −0.223263
\(206\) −3586.22 2676.40i −1.21293 0.905212i
\(207\) −1695.66 + 2321.19i −0.569355 + 0.779390i
\(208\) −1128.56 + 734.684i −0.376209 + 0.244909i
\(209\) 3973.90i 1.31522i
\(210\) 108.531 627.781i 0.0356635 0.206291i
\(211\) 1912.31i 0.623927i −0.950094 0.311964i \(-0.899013\pi\)
0.950094 0.311964i \(-0.100987\pi\)
\(212\) −1889.14 + 560.735i −0.612013 + 0.181658i
\(213\) −1606.89 + 816.126i −0.516911 + 0.262535i
\(214\) 851.618 1141.12i 0.272035 0.364510i
\(215\) 1780.56 0.564805
\(216\) 1559.60 2765.02i 0.491285 0.870999i
\(217\) 824.794 0.258021
\(218\) −452.865 + 606.812i −0.140697 + 0.188525i
\(219\) −4712.32 + 2393.36i −1.45402 + 0.738484i
\(220\) 3265.75 969.340i 1.00080 0.297059i
\(221\) 2372.85i 0.722239i
\(222\) 839.086 4853.57i 0.253675 1.46734i
\(223\) 5284.04i 1.58675i 0.608732 + 0.793376i \(0.291678\pi\)
−0.608732 + 0.793376i \(0.708322\pi\)
\(224\) 1264.54 + 81.1130i 0.377189 + 0.0241946i
\(225\) 1380.07 1889.18i 0.408910 0.559757i
\(226\) −787.062 587.385i −0.231657 0.172886i
\(227\) 2286.43 0.668527 0.334264 0.942480i \(-0.391512\pi\)
0.334264 + 0.942480i \(0.391512\pi\)
\(228\) −1743.84 + 1652.39i −0.506529 + 0.479966i
\(229\) −3378.21 −0.974841 −0.487420 0.873167i \(-0.662062\pi\)
−0.487420 + 0.873167i \(0.662062\pi\)
\(230\) 1494.49 + 1115.34i 0.428451 + 0.319754i
\(231\) 1132.58 + 2229.96i 0.322590 + 0.635154i
\(232\) −112.525 + 305.798i −0.0318431 + 0.0865372i
\(233\) 3279.45i 0.922077i −0.887380 0.461038i \(-0.847477\pi\)
0.887380 0.461038i \(-0.152523\pi\)
\(234\) 472.944 + 1535.68i 0.132125 + 0.429018i
\(235\) 2200.98i 0.610961i
\(236\) −11.3815 38.3448i −0.00313929 0.0105764i
\(237\) −386.801 761.580i −0.106014 0.208734i
\(238\) 1335.43 1789.39i 0.363709 0.487349i
\(239\) 540.789 0.146363 0.0731814 0.997319i \(-0.476685\pi\)
0.0731814 + 0.997319i \(0.476685\pi\)
\(240\) −1783.30 1030.02i −0.479632 0.277032i
\(241\) 2219.30 0.593186 0.296593 0.955004i \(-0.404150\pi\)
0.296593 + 0.955004i \(0.404150\pi\)
\(242\) −5747.07 + 7700.73i −1.52659 + 2.04554i
\(243\) −2661.09 2695.83i −0.702506 0.711678i
\(244\) −1083.90 3651.70i −0.284383 0.958099i
\(245\) 303.441i 0.0791271i
\(246\) −1532.51 264.940i −0.397191 0.0686664i
\(247\) 1216.00i 0.313249i
\(248\) 920.704 2502.12i 0.235745 0.640663i
\(249\) −2469.97 + 1254.48i −0.628626 + 0.319275i
\(250\) −2971.01 2217.27i −0.751612 0.560929i
\(251\) −5036.94 −1.26665 −0.633325 0.773886i \(-0.718310\pi\)
−0.633325 + 0.773886i \(0.718310\pi\)
\(252\) 507.618 1424.24i 0.126893 0.356027i
\(253\) −7320.81 −1.81919
\(254\) 2543.49 + 1898.21i 0.628319 + 0.468915i
\(255\) −3235.41 + 1643.24i −0.794547 + 0.403545i
\(256\) 1657.65 3745.59i 0.404699 0.914450i
\(257\) 2752.40i 0.668054i 0.942563 + 0.334027i \(0.108408\pi\)
−0.942563 + 0.334027i \(0.891592\pi\)
\(258\) 4164.00 + 719.872i 1.00480 + 0.173710i
\(259\) 2346.00i 0.562831i
\(260\) 999.312 296.615i 0.238364 0.0707512i
\(261\) 313.961 + 229.352i 0.0744585 + 0.0543930i
\(262\) 1303.89 1747.14i 0.307461 0.411979i
\(263\) −1457.14 −0.341640 −0.170820 0.985302i \(-0.554642\pi\)
−0.170820 + 0.985302i \(0.554642\pi\)
\(264\) 8029.15 946.558i 1.87182 0.220669i
\(265\) 1525.41 0.353605
\(266\) −684.361 + 917.003i −0.157748 + 0.211372i
\(267\) −1191.45 2345.86i −0.273091 0.537695i
\(268\) 3007.15 892.582i 0.685414 0.203444i
\(269\) 1797.48i 0.407415i 0.979032 + 0.203707i \(0.0652991\pi\)
−0.979032 + 0.203707i \(0.934701\pi\)
\(270\) −1766.40 + 1708.35i −0.398146 + 0.385063i
\(271\) 2553.52i 0.572381i −0.958173 0.286191i \(-0.907611\pi\)
0.958173 0.286191i \(-0.0923891\pi\)
\(272\) −3937.63 6048.65i −0.877772 1.34836i
\(273\) 346.567 + 682.362i 0.0768321 + 0.151276i
\(274\) 6149.73 + 4589.56i 1.35591 + 1.01192i
\(275\) 5958.30 1.30654
\(276\) 3044.07 + 3212.54i 0.663882 + 0.700623i
\(277\) −1669.52 −0.362136 −0.181068 0.983471i \(-0.557955\pi\)
−0.181068 + 0.983471i \(0.557955\pi\)
\(278\) 882.835 + 658.861i 0.190464 + 0.142143i
\(279\) −2568.90 1876.62i −0.551241 0.402689i
\(280\) −920.527 338.726i −0.196471 0.0722956i
\(281\) 3317.21i 0.704229i −0.935957 0.352114i \(-0.885463\pi\)
0.935957 0.352114i \(-0.114537\pi\)
\(282\) 889.844 5147.17i 0.187906 1.08691i
\(283\) 3255.20i 0.683751i 0.939745 + 0.341876i \(0.111062\pi\)
−0.939745 + 0.341876i \(0.888938\pi\)
\(284\) 789.558 + 2660.06i 0.164971 + 0.555794i
\(285\) 1658.04 842.107i 0.344610 0.175025i
\(286\) −2447.58 + 3279.61i −0.506044 + 0.678069i
\(287\) −740.744 −0.152351
\(288\) −3753.98 3129.78i −0.768073 0.640362i
\(289\) −7804.57 −1.58855
\(290\) 150.860 202.143i 0.0305475 0.0409319i
\(291\) 3022.80 1535.26i 0.608933 0.309273i
\(292\) 2315.44 + 7800.83i 0.464044 + 1.56339i
\(293\) 3355.38i 0.669021i −0.942392 0.334510i \(-0.891429\pi\)
0.942392 0.334510i \(-0.108571\pi\)
\(294\) 122.680 709.624i 0.0243362 0.140769i
\(295\) 30.9621i 0.00611079i
\(296\) −7116.88 2618.80i −1.39750 0.514239i
\(297\) 1546.20 9522.36i 0.302086 1.86041i
\(298\) −3994.40 2981.03i −0.776475 0.579485i
\(299\) −2240.15 −0.433281
\(300\) −2477.52 2614.64i −0.476799 0.503187i
\(301\) 2012.69 0.385413
\(302\) 8160.70 + 6090.34i 1.55495 + 1.16046i
\(303\) 2233.02 + 4396.63i 0.423378 + 0.833596i
\(304\) 2017.90 + 3099.73i 0.380706 + 0.584809i
\(305\) 2948.62i 0.553565i
\(306\) −8230.65 + 2534.81i −1.53763 + 0.473546i
\(307\) 5173.42i 0.961768i 0.876784 + 0.480884i \(0.159684\pi\)
−0.876784 + 0.480884i \(0.840316\pi\)
\(308\) 3691.50 1095.71i 0.682931 0.202707i
\(309\) 3722.65 + 7329.60i 0.685354 + 1.34941i
\(310\) −1234.37 + 1653.98i −0.226153 + 0.303032i
\(311\) 6703.69 1.22229 0.611144 0.791520i \(-0.290710\pi\)
0.611144 + 0.791520i \(0.290710\pi\)
\(312\) 2456.90 289.644i 0.445816 0.0525573i
\(313\) 10677.3 1.92817 0.964085 0.265594i \(-0.0855680\pi\)
0.964085 + 0.265594i \(0.0855680\pi\)
\(314\) −229.993 + 308.177i −0.0413352 + 0.0553867i
\(315\) −690.407 + 945.098i −0.123492 + 0.169048i
\(316\) −1260.73 + 374.209i −0.224435 + 0.0666167i
\(317\) 10683.1i 1.89282i 0.322969 + 0.946410i \(0.395319\pi\)
−0.322969 + 0.946410i \(0.604681\pi\)
\(318\) 3567.31 + 616.718i 0.629072 + 0.108754i
\(319\) 990.203i 0.173795i
\(320\) −2055.14 + 2414.42i −0.359018 + 0.421782i
\(321\) −2332.25 + 1184.53i −0.405524 + 0.205963i
\(322\) 1689.32 + 1260.75i 0.292368 + 0.218194i
\(323\) 6517.33 1.12271
\(324\) −4821.55 + 3280.99i −0.826740 + 0.562584i
\(325\) 1823.22 0.311182
\(326\) −474.684 354.257i −0.0806451 0.0601856i
\(327\) 1240.22 629.898i 0.209738 0.106524i
\(328\) −826.880 + 2247.14i −0.139198 + 0.378285i
\(329\) 2487.91i 0.416909i
\(330\) −6166.80 1066.12i −1.02870 0.177842i
\(331\) 1250.05i 0.207579i −0.994599 0.103790i \(-0.966903\pi\)
0.994599 0.103790i \(-0.0330969\pi\)
\(332\) 1213.64 + 4088.81i 0.200624 + 0.675912i
\(333\) −5337.75 + 7306.85i −0.878400 + 1.20244i
\(334\) −5557.73 + 7447.03i −0.910495 + 1.22001i
\(335\) −2428.17 −0.396015
\(336\) −2015.79 1164.31i −0.327292 0.189042i
\(337\) 7570.90 1.22378 0.611889 0.790944i \(-0.290410\pi\)
0.611889 + 0.790944i \(0.290410\pi\)
\(338\) 2967.68 3976.52i 0.477576 0.639923i
\(339\) 817.005 + 1608.62i 0.130896 + 0.257723i
\(340\) 1589.75 + 5355.94i 0.253577 + 0.854313i
\(341\) 8102.09i 1.28667i
\(342\) 4217.93 1299.00i 0.666900 0.205386i
\(343\) 343.000i 0.0539949i
\(344\) 2246.73 6105.74i 0.352138 0.956975i
\(345\) −1551.35 3054.48i −0.242092 0.476660i
\(346\) −7225.76 5392.59i −1.12271 0.837883i
\(347\) −5145.12 −0.795979 −0.397989 0.917390i \(-0.630292\pi\)
−0.397989 + 0.917390i \(0.630292\pi\)
\(348\) 434.524 411.737i 0.0669336 0.0634236i
\(349\) 6454.15 0.989923 0.494961 0.868915i \(-0.335182\pi\)
0.494961 + 0.868915i \(0.335182\pi\)
\(350\) −1374.92 1026.10i −0.209978 0.156707i
\(351\) 473.133 2913.82i 0.0719486 0.443100i
\(352\) 796.787 12421.8i 0.120650 1.88092i
\(353\) 10310.8i 1.55464i 0.629106 + 0.777319i \(0.283421\pi\)
−0.629106 + 0.777319i \(0.716579\pi\)
\(354\) −12.5178 + 72.4075i −0.00187942 + 0.0108712i
\(355\) 2147.90i 0.321123i
\(356\) −3883.37 + 1152.66i −0.578141 + 0.171604i
\(357\) −3657.21 + 1857.47i −0.542184 + 0.275372i
\(358\) −871.210 + 1167.37i −0.128617 + 0.172339i
\(359\) 953.991 0.140250 0.0701250 0.997538i \(-0.477660\pi\)
0.0701250 + 0.997538i \(0.477660\pi\)
\(360\) 2096.39 + 3149.44i 0.306915 + 0.461083i
\(361\) 3519.09 0.513062
\(362\) 955.696 1280.58i 0.138758 0.185927i
\(363\) 15739.0 7993.70i 2.27570 1.15581i
\(364\) 1129.59 335.285i 0.162655 0.0482793i
\(365\) 6298.89i 0.903285i
\(366\) −1192.11 + 6895.60i −0.170253 + 0.984805i
\(367\) 6462.48i 0.919179i −0.888132 0.459589i \(-0.847997\pi\)
0.888132 0.459589i \(-0.152003\pi\)
\(368\) 5710.39 3717.43i 0.808899 0.526588i
\(369\) 2307.12 + 1685.38i 0.325485 + 0.237771i
\(370\) 4704.50 + 3510.98i 0.661014 + 0.493316i
\(371\) 1724.28 0.241294
\(372\) −3555.38 + 3368.93i −0.495532 + 0.469546i
\(373\) 10213.6 1.41781 0.708904 0.705305i \(-0.249190\pi\)
0.708904 + 0.705305i \(0.249190\pi\)
\(374\) −17577.5 13118.1i −2.43024 1.81369i
\(375\) 3084.04 + 6072.22i 0.424691 + 0.836182i
\(376\) −7547.39 2777.22i −1.03518 0.380915i
\(377\) 303.000i 0.0413933i
\(378\) −1996.68 + 1931.07i −0.271688 + 0.262760i
\(379\) 7942.35i 1.07644i 0.842804 + 0.538220i \(0.180903\pi\)
−0.842804 + 0.538220i \(0.819097\pi\)
\(380\) −814.693 2744.74i −0.109981 0.370532i
\(381\) −2640.26 5198.46i −0.355025 0.699016i
\(382\) 3156.18 4229.10i 0.422734 0.566438i
\(383\) −781.367 −0.104245 −0.0521227 0.998641i \(-0.516599\pi\)
−0.0521227 + 0.998641i \(0.516599\pi\)
\(384\) −5782.26 + 4815.45i −0.768424 + 0.639941i
\(385\) −2980.75 −0.394580
\(386\) 1807.63 2422.12i 0.238358 0.319386i
\(387\) −6268.72 4579.38i −0.823403 0.601507i
\(388\) −1485.28 5003.97i −0.194339 0.654738i
\(389\) 885.114i 0.115365i −0.998335 0.0576826i \(-0.981629\pi\)
0.998335 0.0576826i \(-0.0183711\pi\)
\(390\) −1887.03 326.229i −0.245008 0.0423571i
\(391\) 12006.4i 1.55291i
\(392\) −1040.53 382.885i −0.134069 0.0493332i
\(393\) −3570.85 + 1813.61i −0.458334 + 0.232785i
\(394\) 9574.56 + 7145.51i 1.22426 + 0.913669i
\(395\) 1017.99 0.129673
\(396\) −13990.6 4986.42i −1.77539 0.632770i
\(397\) −11540.6 −1.45895 −0.729476 0.684006i \(-0.760236\pi\)
−0.729476 + 0.684006i \(0.760236\pi\)
\(398\) 9258.29 + 6909.47i 1.16602 + 0.870203i
\(399\) 1874.20 951.890i 0.235156 0.119434i
\(400\) −4647.60 + 3025.56i −0.580950 + 0.378195i
\(401\) 3491.51i 0.434807i −0.976082 0.217403i \(-0.930241\pi\)
0.976082 0.217403i \(-0.0697587\pi\)
\(402\) −5678.48 981.696i −0.704519 0.121797i
\(403\) 2479.22i 0.306448i
\(404\) 7278.23 2160.32i 0.896300 0.266040i
\(405\) 4300.69 1372.75i 0.527661 0.168426i
\(406\) 170.527 228.496i 0.0208451 0.0279312i
\(407\) −23045.1 −2.80665
\(408\) 1552.39 + 13168.1i 0.188369 + 1.59783i
\(409\) −5670.80 −0.685582 −0.342791 0.939412i \(-0.611372\pi\)
−0.342791 + 0.939412i \(0.611372\pi\)
\(410\) 1108.58 1485.44i 0.133534 0.178928i
\(411\) −6383.70 12569.0i −0.766142 1.50847i
\(412\) 12133.5 3601.47i 1.45091 0.430659i
\(413\) 34.9985i 0.00416989i
\(414\) −2393.05 7770.37i −0.284087 0.922446i
\(415\) 3301.57i 0.390525i
\(416\) 243.815 3801.03i 0.0287356 0.447982i
\(417\) −916.422 1804.36i −0.107620 0.211894i
\(418\) 9007.88 + 6722.60i 1.05404 + 0.786634i
\(419\) −8420.94 −0.981838 −0.490919 0.871205i \(-0.663339\pi\)
−0.490919 + 0.871205i \(0.663339\pi\)
\(420\) 1239.43 + 1308.02i 0.143995 + 0.151964i
\(421\) 15207.5 1.76050 0.880249 0.474513i \(-0.157376\pi\)
0.880249 + 0.474513i \(0.157376\pi\)
\(422\) 4334.74 + 3235.02i 0.500028 + 0.373172i
\(423\) −5660.64 + 7748.86i −0.650662 + 0.890691i
\(424\) 1924.78 5230.82i 0.220462 0.599130i
\(425\) 9771.80i 1.11530i
\(426\) 868.386 5023.05i 0.0987639 0.571286i
\(427\) 3333.02i 0.377743i
\(428\) 1145.97 + 3860.83i 0.129422 + 0.436028i
\(429\) 6702.96 3404.38i 0.754363 0.383136i
\(430\) −3012.15 + 4036.10i −0.337811 + 0.452647i
\(431\) −4941.26 −0.552232 −0.276116 0.961124i \(-0.589047\pi\)
−0.276116 + 0.961124i \(0.589047\pi\)
\(432\) 3629.28 + 8212.79i 0.404199 + 0.914671i
\(433\) −9130.50 −1.01336 −0.506679 0.862135i \(-0.669127\pi\)
−0.506679 + 0.862135i \(0.669127\pi\)
\(434\) −1395.29 + 1869.61i −0.154323 + 0.206784i
\(435\) −413.145 + 209.833i −0.0455374 + 0.0231281i
\(436\) −609.392 2053.07i −0.0669371 0.225514i
\(437\) 6152.86i 0.673527i
\(438\) 2546.61 14730.5i 0.277812 1.60697i
\(439\) 9920.43i 1.07853i 0.842135 + 0.539267i \(0.181299\pi\)
−0.842135 + 0.539267i \(0.818701\pi\)
\(440\) −3327.37 + 9042.50i −0.360514 + 0.979737i
\(441\) −780.414 + 1068.31i −0.0842688 + 0.115356i
\(442\) −5378.67 4014.11i −0.578817 0.431972i
\(443\) 3266.60 0.350341 0.175170 0.984538i \(-0.443952\pi\)
0.175170 + 0.984538i \(0.443952\pi\)
\(444\) 9582.41 + 10112.7i 1.02424 + 1.08092i
\(445\) 3135.68 0.334035
\(446\) −11977.7 8938.94i −1.27166 0.949038i
\(447\) 4146.37 + 8163.86i 0.438739 + 0.863842i
\(448\) −2323.06 + 2729.18i −0.244987 + 0.287816i
\(449\) 10028.7i 1.05408i 0.849839 + 0.527042i \(0.176699\pi\)
−0.849839 + 0.527042i \(0.823301\pi\)
\(450\) 1947.67 + 6324.18i 0.204031 + 0.662500i
\(451\) 7276.46i 0.759723i
\(452\) 2662.92 790.408i 0.277109 0.0822515i
\(453\) −8471.17 16679.1i −0.878610 1.72991i
\(454\) −3867.92 + 5182.79i −0.399847 + 0.535772i
\(455\) −912.103 −0.0939781
\(456\) −795.546 6748.19i −0.0816992 0.693011i
\(457\) −8195.67 −0.838900 −0.419450 0.907778i \(-0.637777\pi\)
−0.419450 + 0.907778i \(0.637777\pi\)
\(458\) 5714.87 7657.59i 0.583054 0.781257i
\(459\) 15617.0 + 2535.81i 1.58810 + 0.257869i
\(460\) −5056.42 + 1500.84i −0.512515 + 0.152124i
\(461\) 10349.1i 1.04557i 0.852465 + 0.522784i \(0.175106\pi\)
−0.852465 + 0.522784i \(0.824894\pi\)
\(462\) −6970.76 1205.10i −0.701967 0.121356i
\(463\) 8166.03i 0.819671i 0.912159 + 0.409836i \(0.134414\pi\)
−0.912159 + 0.409836i \(0.865586\pi\)
\(464\) −502.815 772.380i −0.0503073 0.0772777i
\(465\) 3380.45 1716.91i 0.337129 0.171225i
\(466\) 7433.72 + 5547.80i 0.738971 + 0.551495i
\(467\) 14477.3 1.43454 0.717268 0.696797i \(-0.245392\pi\)
0.717268 + 0.696797i \(0.245392\pi\)
\(468\) −4281.08 1525.83i −0.422848 0.150708i
\(469\) −2744.72 −0.270233
\(470\) 4989.08 + 3723.36i 0.489637 + 0.365417i
\(471\) 629.860 319.901i 0.0616187 0.0312957i
\(472\) 106.172 + 39.0683i 0.0103538 + 0.00380988i
\(473\) 19771.0i 1.92192i
\(474\) 2380.66 + 411.569i 0.230691 + 0.0398819i
\(475\) 5007.72i 0.483726i
\(476\) 1797.00 + 6054.18i 0.173036 + 0.582968i
\(477\) −5370.44 3923.18i −0.515505 0.376583i
\(478\) −914.845 + 1225.84i −0.0875398 + 0.117298i
\(479\) −9837.43 −0.938379 −0.469190 0.883097i \(-0.655454\pi\)
−0.469190 + 0.883097i \(0.655454\pi\)
\(480\) 5351.61 2299.84i 0.508888 0.218694i
\(481\) −7051.75 −0.668466
\(482\) −3754.36 + 5030.62i −0.354785 + 0.475391i
\(483\) −1753.59 3452.68i −0.165199 0.325264i
\(484\) −7733.47 26054.4i −0.726284 2.44689i
\(485\) 4040.53i 0.378291i
\(486\) 10612.5 1471.55i 0.990523 0.137348i
\(487\) 2247.96i 0.209168i 0.994516 + 0.104584i \(0.0333510\pi\)
−0.994516 + 0.104584i \(0.966649\pi\)
\(488\) 10111.1 + 3720.60i 0.937930 + 0.345130i
\(489\) 492.743 + 970.171i 0.0455677 + 0.0897191i
\(490\) 687.828 + 513.327i 0.0634141 + 0.0473260i
\(491\) 2477.43 0.227708 0.113854 0.993497i \(-0.463680\pi\)
0.113854 + 0.993497i \(0.463680\pi\)
\(492\) 3193.07 3025.63i 0.292591 0.277248i
\(493\) −1623.96 −0.148356
\(494\) 2756.39 + 2057.10i 0.251044 + 0.187355i
\(495\) 9283.87 + 6781.99i 0.842987 + 0.615814i
\(496\) 4114.15 + 6319.81i 0.372441 + 0.572113i
\(497\) 2427.92i 0.219129i
\(498\) 1334.81 7721.01i 0.120109 0.694753i
\(499\) 4193.13i 0.376173i 0.982152 + 0.188087i \(0.0602285\pi\)
−0.982152 + 0.188087i \(0.939771\pi\)
\(500\) 10052.0 2983.64i 0.899080 0.266865i
\(501\) 15220.4 7730.35i 1.35728 0.689354i
\(502\) 8520.93 11417.5i 0.757585 1.01512i
\(503\) 6856.04 0.607745 0.303872 0.952713i \(-0.401720\pi\)
0.303872 + 0.952713i \(0.401720\pi\)
\(504\) 2369.69 + 3560.02i 0.209433 + 0.314635i
\(505\) −5876.91 −0.517859
\(506\) 12384.5 16594.5i 1.08806 1.45794i
\(507\) −8127.31 + 4127.80i −0.711926 + 0.361582i
\(508\) −8605.59 + 2554.31i −0.751597 + 0.223089i
\(509\) 13595.9i 1.18395i −0.805958 0.591973i \(-0.798349\pi\)
0.805958 0.591973i \(-0.201651\pi\)
\(510\) 1748.47 10113.8i 0.151811 0.878126i
\(511\) 7120.06i 0.616386i
\(512\) 5686.12 + 10093.8i 0.490808 + 0.871268i
\(513\) −8003.17 1299.52i −0.688789 0.111842i
\(514\) −6239.03 4656.20i −0.535393 0.399564i
\(515\) −9797.37 −0.838299
\(516\) −8675.95 + 8220.98i −0.740189 + 0.701373i
\(517\) −24439.2 −2.07898
\(518\) 5317.81 + 3968.69i 0.451064 + 0.336630i
\(519\) 7500.66 + 14768.2i 0.634378 + 1.24904i
\(520\) −1018.17 + 2766.98i −0.0858645 + 0.233346i
\(521\) 18084.7i 1.52074i 0.649491 + 0.760369i \(0.274982\pi\)
−0.649491 + 0.760369i \(0.725018\pi\)
\(522\) −1051.01 + 323.681i −0.0881254 + 0.0271401i
\(523\) 11204.7i 0.936799i −0.883517 0.468400i \(-0.844831\pi\)
0.883517 0.468400i \(-0.155169\pi\)
\(524\) 1754.57 + 5911.22i 0.146276 + 0.492811i
\(525\) 1427.22 + 2810.09i 0.118646 + 0.233604i
\(526\) 2465.03 3302.99i 0.204335 0.273797i
\(527\) 13287.7 1.09833
\(528\) −11437.2 + 19801.4i −0.942688 + 1.63210i
\(529\) −832.068 −0.0683873
\(530\) −2580.52 + 3457.75i −0.211492 + 0.283387i
\(531\) 79.6307 109.007i 0.00650787 0.00890862i
\(532\) −920.902 3102.56i −0.0750492 0.252844i
\(533\) 2226.58i 0.180945i
\(534\) 7333.07 + 1267.74i 0.594256 + 0.102735i
\(535\) 3117.48i 0.251926i
\(536\) −3063.89 + 8326.45i −0.246902 + 0.670985i
\(537\) 2385.90 1211.78i 0.191730 0.0973785i
\(538\) −4074.46 3040.78i −0.326510 0.243675i
\(539\) −3369.35 −0.269254
\(540\) −884.240 6893.99i −0.0704660 0.549389i
\(541\) 5192.99 0.412688 0.206344 0.978480i \(-0.433843\pi\)
0.206344 + 0.978480i \(0.433843\pi\)
\(542\) 5788.22 + 4319.76i 0.458718 + 0.342342i
\(543\) −2617.27 + 1329.29i −0.206847 + 0.105056i
\(544\) 20372.1 + 1306.75i 1.60560 + 0.102990i
\(545\) 1657.78i 0.130296i
\(546\) −2133.03 368.759i −0.167189 0.0289037i
\(547\) 21828.6i 1.70626i 0.521700 + 0.853129i \(0.325298\pi\)
−0.521700 + 0.853129i \(0.674702\pi\)
\(548\) −20806.8 + 6175.88i −1.62194 + 0.481424i
\(549\) 7583.48 10381.0i 0.589536 0.807016i
\(550\) −10079.6 + 13506.0i −0.781444 + 1.04709i
\(551\) 832.227 0.0643450
\(552\) −12431.7 + 1465.57i −0.958563 + 0.113005i
\(553\) 1150.70 0.0884864
\(554\) 2824.30 3784.40i 0.216594 0.290223i
\(555\) −4883.48 9615.18i −0.373499 0.735390i
\(556\) −2986.96 + 886.589i −0.227833 + 0.0676254i
\(557\) 14606.0i 1.11109i −0.831486 0.555545i \(-0.812510\pi\)
0.831486 0.555545i \(-0.187490\pi\)
\(558\) 8599.62 2648.44i 0.652421 0.200927i
\(559\) 6049.86i 0.457750i
\(560\) 2325.05 1513.59i 0.175449 0.114216i
\(561\) 18246.2 + 35925.4i 1.37318 + 2.70369i
\(562\) 7519.32 + 5611.68i 0.564383 + 0.421200i
\(563\) 3200.54 0.239585 0.119793 0.992799i \(-0.461777\pi\)
0.119793 + 0.992799i \(0.461777\pi\)
\(564\) 10162.1 + 10724.5i 0.758689 + 0.800676i
\(565\) −2150.21 −0.160107
\(566\) −7378.76 5506.78i −0.547972 0.408953i
\(567\) 4861.36 1551.71i 0.360067 0.114931i
\(568\) −7365.40 2710.25i −0.544094 0.200210i
\(569\) 5357.36i 0.394714i −0.980332 0.197357i \(-0.936764\pi\)
0.980332 0.197357i \(-0.0632358\pi\)
\(570\) −896.030 + 5182.96i −0.0658431 + 0.380860i
\(571\) 13530.9i 0.991684i 0.868413 + 0.495842i \(0.165141\pi\)
−0.868413 + 0.495842i \(0.834859\pi\)
\(572\) −3293.56 11096.2i −0.240753 0.811107i
\(573\) −8643.54 + 4389.99i −0.630173 + 0.320060i
\(574\) 1253.11 1679.09i 0.0911213 0.122097i
\(575\) −9225.33 −0.669083
\(576\) 13445.0 3214.75i 0.972585 0.232549i
\(577\) 3337.75 0.240818 0.120409 0.992724i \(-0.461579\pi\)
0.120409 + 0.992724i \(0.461579\pi\)
\(578\) 13202.9 17691.1i 0.950116 1.27310i
\(579\) −4950.40 + 2514.27i −0.355322 + 0.180466i
\(580\) 203.002 + 683.924i 0.0145331 + 0.0489628i
\(581\) 3731.99i 0.266487i
\(582\) −1633.57 + 9449.13i −0.116346 + 0.672988i
\(583\) 16937.9i 1.20325i
\(584\) −21599.6 7948.01i −1.53048 0.563170i
\(585\) 2840.84 + 2075.27i 0.200776 + 0.146670i
\(586\) 7605.83 + 5676.24i 0.536167 + 0.400142i
\(587\) −21998.8 −1.54683 −0.773414 0.633901i \(-0.781453\pi\)
−0.773414 + 0.633901i \(0.781453\pi\)
\(588\) 1401.01 + 1478.55i 0.0982597 + 0.103698i
\(589\) −6809.49 −0.476367
\(590\) −70.1836 52.3781i −0.00489731 0.00365487i
\(591\) −9938.81 19568.7i −0.691757 1.36201i
\(592\) 17975.7 11702.1i 1.24797 0.812419i
\(593\) 19174.5i 1.32783i 0.747808 + 0.663915i \(0.231106\pi\)
−0.747808 + 0.663915i \(0.768894\pi\)
\(594\) 18969.2 + 19613.7i 1.31030 + 1.35481i
\(595\) 4888.53i 0.336824i
\(596\) 13514.6 4011.39i 0.928822 0.275693i
\(597\) −9610.51 18922.3i −0.658848 1.29722i
\(598\) 3789.63 5077.88i 0.259146 0.347241i
\(599\) 8533.09 0.582058 0.291029 0.956714i \(-0.406002\pi\)
0.291029 + 0.956714i \(0.406002\pi\)
\(600\) 10117.9 1192.81i 0.688439 0.0811602i
\(601\) 10157.4 0.689396 0.344698 0.938714i \(-0.387981\pi\)
0.344698 + 0.938714i \(0.387981\pi\)
\(602\) −3404.83 + 4562.28i −0.230516 + 0.308878i
\(603\) 8548.71 + 6244.95i 0.577331 + 0.421748i
\(604\) −27610.7 + 8195.40i −1.86004 + 0.552096i
\(605\) 21038.0i 1.41375i
\(606\) −13743.7 2376.00i −0.921284 0.159272i
\(607\) 21312.8i 1.42514i −0.701602 0.712569i \(-0.747532\pi\)
0.701602 0.712569i \(-0.252468\pi\)
\(608\) −10440.0 669.668i −0.696379 0.0446688i
\(609\) −467.005 + 237.189i −0.0310739 + 0.0157822i
\(610\) −6683.80 4988.13i −0.443638 0.331088i
\(611\) −7478.32 −0.495157
\(612\) 8177.88 22945.0i 0.540149 1.51552i
\(613\) 19403.1 1.27844 0.639221 0.769023i \(-0.279257\pi\)
0.639221 + 0.769023i \(0.279257\pi\)
\(614\) −11726.9 8751.81i −0.770781 0.575235i
\(615\) −3035.97 + 1541.95i −0.199060 + 0.101101i
\(616\) −3761.15 + 10221.3i −0.246008 + 0.668555i
\(617\) 9621.86i 0.627814i −0.949454 0.313907i \(-0.898362\pi\)
0.949454 0.313907i \(-0.101638\pi\)
\(618\) −22912.0 3961.03i −1.49135 0.257825i
\(619\) 20617.5i 1.33875i 0.742924 + 0.669376i \(0.233439\pi\)
−0.742924 + 0.669376i \(0.766561\pi\)
\(620\) −1661.02 5596.04i −0.107594 0.362488i
\(621\) −2394.00 + 14743.6i −0.154699 + 0.952723i
\(622\) −11340.5 + 15195.7i −0.731052 + 0.979566i
\(623\) 3544.47 0.227939
\(624\) −3499.75 + 6059.18i −0.224522 + 0.388720i
\(625\) 2714.70 0.173741
\(626\) −18062.7 + 24202.9i −1.15324 + 1.54528i
\(627\) −9350.58 18410.5i −0.595576 1.17264i
\(628\) −309.487 1042.68i −0.0196654 0.0662538i
\(629\) 37794.8i 2.39583i
\(630\) −974.359 3163.80i −0.0616181 0.200077i
\(631\) 23614.1i 1.48980i −0.667178 0.744898i \(-0.732498\pi\)
0.667178 0.744898i \(-0.267502\pi\)
\(632\) 1284.51 3490.81i 0.0808468 0.219710i
\(633\) −4499.65 8859.46i −0.282536 0.556290i
\(634\) −24216.1 18072.5i −1.51694 1.13210i
\(635\) 6948.70 0.434253
\(636\) −7432.73 + 7042.95i −0.463407 + 0.439106i
\(637\) −1031.01 −0.0641290
\(638\) −2244.55 1675.11i −0.139283 0.103947i
\(639\) −5524.14 + 7562.00i −0.341990 + 0.468150i
\(640\) −1996.26 8742.95i −0.123296 0.539993i
\(641\) 8435.00i 0.519754i 0.965642 + 0.259877i \(0.0836821\pi\)
−0.965642 + 0.259877i \(0.916318\pi\)
\(642\) 1260.38 7290.50i 0.0774818 0.448182i
\(643\) 360.416i 0.0221048i 0.999939 + 0.0110524i \(0.00351816\pi\)
−0.999939 + 0.0110524i \(0.996482\pi\)
\(644\) −5715.61 + 1696.51i −0.349731 + 0.103807i
\(645\) 8249.09 4189.65i 0.503578 0.255763i
\(646\) −11025.3 + 14773.2i −0.671491 + 0.899759i
\(647\) 16899.2 1.02685 0.513427 0.858133i \(-0.328376\pi\)
0.513427 + 0.858133i \(0.328376\pi\)
\(648\) 719.335 16479.7i 0.0436083 0.999049i
\(649\) 343.797 0.0207938
\(650\) −3084.32 + 4132.81i −0.186119 + 0.249388i
\(651\) 3821.16 1940.74i 0.230051 0.116841i
\(652\) 1606.03 476.702i 0.0964679 0.0286336i
\(653\) 6321.58i 0.378840i −0.981896 0.189420i \(-0.939339\pi\)
0.981896 0.189420i \(-0.0606608\pi\)
\(654\) −670.233 + 3876.87i −0.0400737 + 0.231800i
\(655\) 4773.09i 0.284733i
\(656\) −3694.90 5675.79i −0.219911 0.337809i
\(657\) −16200.0 + 22176.2i −0.961981 + 1.31686i
\(658\) 5639.50 + 4208.77i 0.334119 + 0.249354i
\(659\) −3683.45 −0.217734 −0.108867 0.994056i \(-0.534722\pi\)
−0.108867 + 0.994056i \(0.534722\pi\)
\(660\) 12848.9 12175.1i 0.757794 0.718055i
\(661\) 32127.2 1.89047 0.945236 0.326388i \(-0.105832\pi\)
0.945236 + 0.326388i \(0.105832\pi\)
\(662\) 2833.56 + 2114.69i 0.166358 + 0.124154i
\(663\) 5583.30 + 10993.1i 0.327055 + 0.643945i
\(664\) −11321.5 4165.96i −0.661683 0.243480i
\(665\) 2505.21i 0.146087i
\(666\) −7533.07 24460.3i −0.438289 1.42315i
\(667\) 1533.15i 0.0890011i
\(668\) −7478.69 25196.1i −0.433173 1.45938i
\(669\) 12433.3 + 24480.2i 0.718536 + 1.41474i
\(670\) 4107.69 5504.07i 0.236857 0.317374i
\(671\) 32740.8 1.88367
\(672\) 6049.28 2599.67i 0.347256 0.149233i
\(673\) 8788.04 0.503349 0.251675 0.967812i \(-0.419019\pi\)
0.251675 + 0.967812i \(0.419019\pi\)
\(674\) −12807.6 + 17161.4i −0.731943 + 0.980761i
\(675\) 1948.44 11999.6i 0.111105 0.684244i
\(676\) 3993.42 + 13454.0i 0.227209 + 0.765478i
\(677\) 10657.5i 0.605024i −0.953146 0.302512i \(-0.902175\pi\)
0.953146 0.302512i \(-0.0978252\pi\)
\(678\) −5028.46 869.321i −0.284833 0.0492420i
\(679\) 4567.28i 0.258139i
\(680\) −14830.0 5456.99i −0.836329 0.307744i
\(681\) 10592.7 5379.96i 0.596055 0.302732i
\(682\) 18365.5 + 13706.2i 1.03116 + 0.769556i
\(683\) −5438.86 −0.304703 −0.152352 0.988326i \(-0.548685\pi\)
−0.152352 + 0.988326i \(0.548685\pi\)
\(684\) −4190.89 + 11758.5i −0.234273 + 0.657309i
\(685\) 16800.8 0.937116
\(686\) 777.499 + 580.248i 0.0432726 + 0.0322944i
\(687\) −15650.8 + 7948.92i −0.869163 + 0.441441i
\(688\) 10039.5 + 15421.8i 0.556325 + 0.854579i
\(689\) 5182.95i 0.286581i
\(690\) 9548.16 + 1650.69i 0.526800 + 0.0910733i
\(691\) 5741.11i 0.316067i −0.987434 0.158033i \(-0.949485\pi\)
0.987434 0.158033i \(-0.0505154\pi\)
\(692\) 24447.4 7256.48i 1.34299 0.398627i
\(693\) 10494.2 + 7666.14i 0.575239 + 0.420220i
\(694\) 8703.93 11662.8i 0.476076 0.637914i
\(695\) 2411.86 0.131636
\(696\) 198.231 + 1681.49i 0.0107959 + 0.0915757i
\(697\) −11933.6 −0.648519
\(698\) −10918.4 + 14630.0i −0.592074 + 0.793344i
\(699\) −7716.53 15193.2i −0.417548 0.822119i
\(700\) 4651.85 1380.76i 0.251176 0.0745541i
\(701\) 9324.02i 0.502373i −0.967939 0.251187i \(-0.919179\pi\)
0.967939 0.251187i \(-0.0808207\pi\)
\(702\) 5804.53 + 6001.74i 0.312077 + 0.322679i
\(703\) 19368.6i 1.03912i
\(704\) 26809.2 + 22819.8i 1.43524 + 1.22167i
\(705\) −5178.89 10196.8i −0.276664 0.544730i
\(706\) −23372.1 17442.6i −1.24592 0.929832i
\(707\) −6643.06 −0.353378
\(708\) −142.954 150.866i −0.00758835 0.00800830i
\(709\) −17467.3 −0.925246 −0.462623 0.886555i \(-0.653092\pi\)
−0.462623 + 0.886555i \(0.653092\pi\)
\(710\) 4868.78 + 3633.57i 0.257355 + 0.192064i
\(711\) −3583.99 2618.15i −0.189044 0.138099i
\(712\) 3956.64 10752.6i 0.208260 0.565970i
\(713\) 12544.6i 0.658905i
\(714\) 1976.41 11432.3i 0.103593 0.599218i
\(715\) 8959.74i 0.468637i
\(716\) −1172.33 3949.65i −0.0611902 0.206153i
\(717\) 2505.40 1272.47i 0.130496 0.0662781i
\(718\) −1613.85 + 2162.47i −0.0838837 + 0.112399i
\(719\) 27087.0 1.40497 0.702487 0.711697i \(-0.252073\pi\)
0.702487 + 0.711697i \(0.252073\pi\)
\(720\) −10685.4 575.854i −0.553087 0.0298067i
\(721\) −11074.6 −0.572040
\(722\) −5953.19 + 7976.93i −0.306863 + 0.411178i
\(723\) 10281.7 5222.01i 0.528881 0.268615i
\(724\) 1286.02 + 4332.66i 0.0660146 + 0.222406i
\(725\) 1247.81i 0.0639205i
\(726\) −8505.57 + 49199.2i −0.434809 + 2.51509i
\(727\) 2617.94i 0.133554i −0.997768 0.0667771i \(-0.978728\pi\)
0.997768 0.0667771i \(-0.0212716\pi\)
\(728\) −1150.90 + 3127.70i −0.0585924 + 0.159231i
\(729\) −18671.7 6227.88i −0.948623 0.316409i
\(730\) 14278.1 + 10655.7i 0.723911 + 0.540256i
\(731\) 32425.0 1.64061
\(732\) −13614.0 14367.4i −0.687414 0.725457i
\(733\) 18373.1 0.925820 0.462910 0.886405i \(-0.346805\pi\)
0.462910 + 0.886405i \(0.346805\pi\)
\(734\) 14648.9 + 10932.5i 0.736649 + 0.549762i
\(735\) −713.996 1405.80i −0.0358315 0.0705493i
\(736\) −1233.68 + 19232.8i −0.0617853 + 0.963221i
\(737\) 26961.9i 1.34756i
\(738\) −7723.29 + 2378.55i −0.385228 + 0.118639i
\(739\) 15553.3i 0.774204i 0.922037 + 0.387102i \(0.126524\pi\)
−0.922037 + 0.387102i \(0.873476\pi\)
\(740\) −15917.1 + 4724.50i −0.790707 + 0.234698i
\(741\) −2861.25 5633.58i −0.141850 0.279291i
\(742\) −2916.94 + 3908.52i −0.144318 + 0.193378i
\(743\) −23983.4 −1.18421 −0.592104 0.805862i \(-0.701703\pi\)
−0.592104 + 0.805862i \(0.701703\pi\)
\(744\) −1621.98 13758.4i −0.0799255 0.677966i
\(745\) −10912.5 −0.536649
\(746\) −17278.3 + 23151.9i −0.847992 + 1.13626i
\(747\) −8491.24 + 11623.7i −0.415901 + 0.569327i
\(748\) 59471.2 17652.2i 2.90706 0.862874i
\(749\) 3523.90i 0.171910i
\(750\) −18981.5 3281.52i −0.924141 0.159766i
\(751\) 27368.4i 1.32981i 0.746928 + 0.664905i \(0.231528\pi\)
−0.746928 + 0.664905i \(0.768472\pi\)
\(752\) 19063.1 12410.0i 0.924415 0.601788i
\(753\) −23335.5 + 11851.9i −1.12934 + 0.573583i
\(754\) −686.827 512.580i −0.0331734 0.0247574i
\(755\) 22294.6 1.07468
\(756\) −999.516 7792.74i −0.0480847 0.374893i
\(757\) 9225.71 0.442951 0.221476 0.975166i \(-0.428913\pi\)
0.221476 + 0.975166i \(0.428913\pi\)
\(758\) −18003.4 13436.0i −0.862682 0.643821i
\(759\) −33916.3 + 17225.8i −1.62198 + 0.823793i
\(760\) 7599.87 + 2796.52i 0.362732 + 0.133474i
\(761\) 373.231i 0.0177787i −0.999960 0.00888936i \(-0.997170\pi\)
0.999960 0.00888936i \(-0.00282961\pi\)
\(762\) 16250.1 + 2809.33i 0.772547 + 0.133558i
\(763\) 1873.90i 0.0889119i
\(764\) 4247.08 + 14308.6i 0.201118 + 0.677575i
\(765\) −11122.7 + 15225.8i −0.525675 + 0.719596i
\(766\) 1321.83 1771.17i 0.0623493 0.0835444i
\(767\) 105.201 0.00495252
\(768\) −1133.70 21253.2i −0.0532667 0.998580i
\(769\) 665.625 0.0312133 0.0156067 0.999878i \(-0.495032\pi\)
0.0156067 + 0.999878i \(0.495032\pi\)
\(770\) 5042.50 6756.65i 0.235999 0.316225i
\(771\) 6476.39 + 12751.5i 0.302518 + 0.595634i
\(772\) 2432.42 + 8194.94i 0.113400 + 0.382050i
\(773\) 17982.1i 0.836705i −0.908285 0.418352i \(-0.862608\pi\)
0.908285 0.418352i \(-0.137392\pi\)
\(774\) 20985.1 6462.80i 0.974538 0.300130i
\(775\) 10209.9i 0.473224i
\(776\) 13855.4 + 5098.38i 0.640955 + 0.235852i
\(777\) −5520.13 10868.7i −0.254869 0.501817i
\(778\) 2006.34 + 1497.33i 0.0924560 + 0.0690000i
\(779\) 6115.58 0.281275
\(780\) 3931.74 3725.56i 0.180486 0.171021i
\(781\) −23849.9 −1.09272
\(782\) 27215.5 + 20311.0i 1.24453 + 0.928798i
\(783\) 1994.20 + 323.810i 0.0910178 + 0.0147791i
\(784\) 2628.17 1710.92i 0.119723 0.0779391i
\(785\) 841.925i 0.0382797i
\(786\) 1929.74 11162.3i 0.0875719 0.506547i
\(787\) 21745.1i 0.984916i −0.870336 0.492458i \(-0.836099\pi\)
0.870336 0.492458i \(-0.163901\pi\)
\(788\) −32394.3 + 9615.27i −1.46447 + 0.434682i
\(789\) −6750.74 + 3428.65i −0.304604 + 0.154706i
\(790\) −1722.12 + 2307.54i −0.0775574 + 0.103922i
\(791\) −2430.53 −0.109254
\(792\) 34970.7 23277.8i 1.56898 1.04437i
\(793\) 10018.6 0.448639
\(794\) 19523.0 26159.7i 0.872601 1.16923i
\(795\) 7067.03 3589.29i 0.315273 0.160125i
\(796\) −31324.2 + 9297.65i −1.39480 + 0.414003i
\(797\) 2949.59i 0.131091i −0.997850 0.0655457i \(-0.979121\pi\)
0.997850 0.0655457i \(-0.0208788\pi\)
\(798\) −1012.84 + 5858.65i −0.0449302 + 0.259892i
\(799\) 40081.0i 1.77467i
\(800\) 1004.07 15653.3i 0.0443741 0.691784i
\(801\) −11039.6 8064.59i −0.486974 0.355741i
\(802\) 7914.41 + 5906.53i 0.348463 + 0.260059i
\(803\) −69941.6 −3.07371
\(804\) 11831.5 11211.0i 0.518985 0.491769i
\(805\) 4615.15 0.202065
\(806\) 5619.79 + 4194.06i 0.245594 + 0.183287i
\(807\) 4229.47 + 8327.49i 0.184491 + 0.363249i
\(808\) −7415.55 + 20152.6i −0.322869 + 0.877432i
\(809\) 40.7406i 0.00177054i −1.00000 0.000885269i \(-0.999718\pi\)
1.00000 0.000885269i \(-0.000281790\pi\)
\(810\) −4163.72 + 12070.9i −0.180615 + 0.523615i
\(811\) 8505.84i 0.368287i 0.982899 + 0.184143i \(0.0589511\pi\)
−0.982899 + 0.184143i \(0.941049\pi\)
\(812\) 229.467 + 773.086i 0.00991714 + 0.0334113i
\(813\) −6008.43 11830.1i −0.259194 0.510332i
\(814\) 38985.2 52237.8i 1.67866 2.24930i
\(815\) −1296.81 −0.0557367
\(816\) −32475.0 18757.3i −1.39320 0.804703i
\(817\) −16616.7 −0.711562
\(818\) 9593.22 12854.3i 0.410048 0.549440i
\(819\) 3211.19 + 2345.82i 0.137006 + 0.100085i
\(820\) 1491.75 + 5025.78i 0.0635295 + 0.214034i
\(821\) 5980.54i 0.254229i 0.991888 + 0.127115i \(0.0405716\pi\)
−0.991888 + 0.127115i \(0.959428\pi\)
\(822\) 39290.1 + 6792.47i 1.66715 + 0.288217i
\(823\) 1221.64i 0.0517418i −0.999665 0.0258709i \(-0.991764\pi\)
0.999665 0.0258709i \(-0.00823589\pi\)
\(824\) −12362.4 + 33596.3i −0.522653 + 1.42037i
\(825\) 27604.0 14019.9i 1.16491 0.591647i
\(826\) −79.3332 59.2065i −0.00334184 0.00249402i
\(827\) 27111.0 1.13995 0.569976 0.821661i \(-0.306952\pi\)
0.569976 + 0.821661i \(0.306952\pi\)
\(828\) 21661.8 + 7720.55i 0.909180 + 0.324043i
\(829\) −24655.1 −1.03294 −0.516470 0.856305i \(-0.672754\pi\)
−0.516470 + 0.856305i \(0.672754\pi\)
\(830\) 7483.87 + 5585.22i 0.312974 + 0.233573i
\(831\) −7734.65 + 3928.37i −0.322879 + 0.163988i
\(832\) 8203.55 + 6982.81i 0.341835 + 0.290968i
\(833\) 5525.84i 0.229843i
\(834\) 5640.35 + 975.104i 0.234184 + 0.0404857i
\(835\) 20344.9i 0.843192i
\(836\) −30477.0 + 9046.18i −1.26085 + 0.374245i
\(837\) −16317.1 2649.49i −0.673835 0.109414i
\(838\) 14245.6 19088.3i 0.587238 0.786865i
\(839\) −12923.5 −0.531787 −0.265894 0.964002i \(-0.585667\pi\)
−0.265894 + 0.964002i \(0.585667\pi\)
\(840\) −5061.70 + 596.725i −0.207911 + 0.0245107i
\(841\) 24181.6 0.991497
\(842\) −25726.4 + 34471.8i −1.05296 + 1.41090i
\(843\) −7805.39 15368.2i −0.318899 0.627887i
\(844\) −14666.0 + 4353.17i −0.598135 + 0.177538i
\(845\) 10863.7i 0.442273i
\(846\) −7988.76 25939.9i −0.324656 1.05418i
\(847\) 23780.7i 0.964716i
\(848\) 8600.87 + 13211.9i 0.348296 + 0.535023i
\(849\) 7659.48 + 15080.9i 0.309626 + 0.609629i
\(850\) −22150.3 16530.8i −0.893823 0.667061i
\(851\) 35681.2 1.43729
\(852\) 9917.02 + 10465.9i 0.398769 + 0.420838i
\(853\) 6459.47 0.259283 0.129641 0.991561i \(-0.458617\pi\)
0.129641 + 0.991561i \(0.458617\pi\)
\(854\) −7555.15 5638.42i −0.302731 0.225928i
\(855\) 5700.00 7802.73i 0.227995 0.312103i
\(856\) −10690.2 3933.67i −0.426849 0.157068i
\(857\) 15756.3i 0.628034i −0.949417 0.314017i \(-0.898325\pi\)
0.949417 0.314017i \(-0.101675\pi\)
\(858\) −3622.38 + 20953.1i −0.144133 + 0.833716i
\(859\) 6531.69i 0.259439i −0.991551 0.129720i \(-0.958592\pi\)
0.991551 0.129720i \(-0.0414077\pi\)
\(860\) −4053.26 13655.6i −0.160715 0.541457i
\(861\) −3431.76 + 1742.97i −0.135835 + 0.0689898i
\(862\) 8359.06 11200.6i 0.330291 0.442570i
\(863\) −11849.5 −0.467396 −0.233698 0.972309i \(-0.575083\pi\)
−0.233698 + 0.972309i \(0.575083\pi\)
\(864\) −24756.0 5666.76i −0.974788 0.223133i
\(865\) −19740.4 −0.775947
\(866\) 15445.9 20696.6i 0.606090 0.812125i
\(867\) −36157.5 + 18364.1i −1.41635 + 0.719352i
\(868\) −1877.56 6325.58i −0.0734199 0.247355i
\(869\) 11303.6i 0.441251i
\(870\) 223.270 1291.47i 0.00870064 0.0503276i
\(871\) 8250.26i 0.320952i
\(872\) 5684.72 + 2091.81i 0.220767 + 0.0812357i
\(873\) 10391.7 14225.3i 0.402872 0.551492i
\(874\) −13947.0 10408.7i −0.539778 0.402837i
\(875\) −9174.79 −0.354474
\(876\) 29082.5 + 30692.0i 1.12170 + 1.18377i
\(877\) −14641.4 −0.563744 −0.281872 0.959452i \(-0.590955\pi\)
−0.281872 + 0.959452i \(0.590955\pi\)
\(878\) −22487.2 16782.3i −0.864359 0.645072i
\(879\) −7895.19 15545.0i −0.302956 0.596495i
\(880\) −14868.3 22839.4i −0.569557 0.874905i
\(881\) 33527.2i 1.28213i −0.767485 0.641066i \(-0.778492\pi\)
0.767485 0.641066i \(-0.221508\pi\)
\(882\) −1101.38 3576.25i −0.0420471 0.136529i
\(883\) 11725.5i 0.446880i 0.974718 + 0.223440i \(0.0717286\pi\)
−0.974718 + 0.223440i \(0.928271\pi\)
\(884\) 18198.0 5401.54i 0.692383 0.205513i
\(885\) 72.8537 + 143.443i 0.00276717 + 0.00544834i
\(886\) −5526.07 + 7404.60i −0.209539 + 0.280770i
\(887\) −1850.93 −0.0700655 −0.0350327 0.999386i \(-0.511154\pi\)
−0.0350327 + 0.999386i \(0.511154\pi\)
\(888\) −39133.6 + 4613.47i −1.47887 + 0.174344i
\(889\) 7854.59 0.296327
\(890\) −5304.59 + 7107.84i −0.199787 + 0.267702i
\(891\) −15242.7 47754.0i −0.573122 1.79553i
\(892\) 40524.8 12028.6i 1.52116 0.451510i
\(893\) 20540.2i 0.769710i
\(894\) −25519.9 4411.88i −0.954712 0.165051i
\(895\) 3189.20i 0.119110i
\(896\) −2256.51 9882.74i −0.0841347 0.368481i
\(897\) −10378.3 + 5271.06i −0.386311 + 0.196205i
\(898\) −22732.7 16965.4i −0.844765 0.630449i
\(899\) 1696.77 0.0629481
\(900\) −17630.2 6283.64i −0.652972 0.232727i
\(901\) 27778.7 1.02713
\(902\) −16494.0 12309.5i −0.608857 0.454391i
\(903\) 9324.50 4735.85i 0.343632 0.174528i
\(904\) −2713.16 + 7373.33i −0.0998213 + 0.271276i
\(905\) 3498.47i 0.128501i
\(906\) 52138.0 + 9013.61i 1.91188 + 0.330527i
\(907\) 33119.9i 1.21249i 0.795278 + 0.606245i \(0.207325\pi\)
−0.795278 + 0.606245i \(0.792675\pi\)
\(908\) −5204.82 17535.3i −0.190229 0.640891i
\(909\) 20690.5 + 15114.7i 0.754962 + 0.551510i
\(910\) 1542.99 2067.52i 0.0562084 0.0753160i
\(911\) 2299.09 0.0836139 0.0418069 0.999126i \(-0.486689\pi\)
0.0418069 + 0.999126i \(0.486689\pi\)
\(912\) 16642.3 + 9612.50i 0.604257 + 0.349015i
\(913\) −36660.0 −1.32888
\(914\) 13864.5 18577.6i 0.501747 0.672312i
\(915\) 6938.08 + 13660.5i 0.250673 + 0.493555i
\(916\) 7690.15 + 25908.5i 0.277391 + 0.934542i
\(917\) 5395.35i 0.194297i
\(918\) −32167.1 + 31110.1i −1.15651 + 1.11850i
\(919\) 2936.36i 0.105399i −0.998610 0.0526994i \(-0.983217\pi\)
0.998610 0.0526994i \(-0.0167825\pi\)
\(920\) 5151.82 14000.6i 0.184620 0.501726i
\(921\) 12173.1 + 23967.8i 0.435522 + 0.857508i
\(922\) −23459.0 17507.5i −0.837939 0.625355i
\(923\) −7297.99 −0.260256
\(924\) 14524.0 13762.4i 0.517105 0.489988i
\(925\) −29040.4 −1.03226
\(926\) −18510.4 13814.4i −0.656901 0.490246i
\(927\) 34493.1 + 25197.7i 1.22212 + 0.892772i
\(928\) 2601.40 + 166.866i 0.0920208 + 0.00590262i
\(929\) 39893.8i 1.40891i 0.709751 + 0.704453i \(0.248808\pi\)
−0.709751 + 0.704453i \(0.751192\pi\)
\(930\) −1826.85 + 10567.1i −0.0644137 + 0.372592i
\(931\) 2831.81i 0.0996871i
\(932\) −25151.1 + 7465.33i −0.883959 + 0.262377i
\(933\) 31057.3 15773.8i 1.08978 0.553494i
\(934\) −24491.0 + 32816.5i −0.857998 + 1.14967i
\(935\) −48020.9 −1.67963
\(936\) 10700.9 7122.96i 0.373687 0.248740i
\(937\) 21761.5 0.758715 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(938\) 4643.20 6221.62i 0.161627 0.216570i
\(939\) 49466.5 25123.7i 1.71915 0.873142i
\(940\) −16879.9 + 5010.29i −0.585705 + 0.173849i
\(941\) 27826.5i 0.963995i 0.876173 + 0.481997i \(0.160088\pi\)
−0.876173 + 0.481997i \(0.839912\pi\)
\(942\) −340.386 + 1968.91i −0.0117732 + 0.0681005i
\(943\) 11266.3i 0.389056i
\(944\) −268.169 + 174.576i −0.00924593 + 0.00601904i
\(945\) −974.747 + 6003.04i −0.0335540 + 0.206644i
\(946\) 44816.0 + 33446.3i 1.54027 + 1.14951i
\(947\) −22725.4 −0.779806 −0.389903 0.920856i \(-0.627492\pi\)
−0.389903 + 0.920856i \(0.627492\pi\)
\(948\) −4960.26 + 4700.14i −0.169939 + 0.161027i
\(949\) −21401.9 −0.732072
\(950\) 11351.3 + 8471.49i 0.387668 + 0.289317i
\(951\) 25137.3 + 49493.4i 0.857134 + 1.68763i
\(952\) −16763.3 6168.40i −0.570696 0.209999i
\(953\) 52835.7i 1.79592i −0.440073 0.897962i \(-0.645048\pi\)
0.440073 0.897962i \(-0.354952\pi\)
\(954\) 17978.0 5536.71i 0.610125 0.187901i
\(955\) 11553.7i 0.391485i
\(956\) −1231.05 4147.47i −0.0416475 0.140312i
\(957\) 2329.95 + 4587.48i 0.0787006 + 0.154955i
\(958\) 16641.8 22299.1i 0.561246 0.752036i
\(959\) 18991.0 0.639471
\(960\) −3840.05 + 16021.4i −0.129101 + 0.538634i
\(961\) 15907.6 0.533975
\(962\) 11929.4 15984.6i 0.399811 0.535723i
\(963\) −8017.78 + 10975.5i −0.268296 + 0.367271i
\(964\) −5052.01 17020.5i −0.168791 0.568664i
\(965\) 6617.12i 0.220739i
\(966\) 10792.9 + 1865.88i 0.359479 + 0.0621468i
\(967\) 21593.3i 0.718090i −0.933320 0.359045i \(-0.883102\pi\)
0.933320 0.359045i \(-0.116898\pi\)
\(968\) 72141.7 + 26546.0i 2.39538 + 0.881426i
\(969\) 30193.9 15335.2i 1.00100 0.508400i
\(970\) −9158.91 6835.30i −0.303170 0.226256i
\(971\) 18183.5 0.600966 0.300483 0.953787i \(-0.402852\pi\)
0.300483 + 0.953787i \(0.402852\pi\)
\(972\) −14617.4 + 26545.5i −0.482360 + 0.875973i
\(973\) 2726.29 0.0898262
\(974\) −5095.57 3802.83i −0.167631 0.125103i
\(975\) 8446.74 4290.04i 0.277448 0.140914i
\(976\) −25538.6 + 16625.4i −0.837571 + 0.545253i
\(977\) 6264.44i 0.205135i 0.994726 + 0.102568i \(0.0327058\pi\)
−0.994726 + 0.102568i \(0.967294\pi\)
\(978\) −3032.71 524.295i −0.0991569 0.0171422i
\(979\) 34818.0i 1.13666i
\(980\) −2327.18 + 690.752i −0.0758561 + 0.0225156i
\(981\) 4263.61 5836.46i 0.138763 0.189953i
\(982\) −4191.03 + 5615.73i −0.136193 + 0.182490i
\(983\) −34226.0 −1.11052 −0.555259 0.831678i \(-0.687381\pi\)
−0.555259 + 0.831678i \(0.687381\pi\)
\(984\) 1456.69 + 12356.3i 0.0471927 + 0.400311i
\(985\) 26157.2 0.846130
\(986\) 2747.24 3681.14i 0.0887321 0.118896i
\(987\) −5854.05 11526.1i −0.188791 0.371714i
\(988\) −9325.89 + 2768.11i −0.300300 + 0.0891348i
\(989\) 30611.7i 0.984222i
\(990\) −31078.5 + 9571.30i −0.997717 + 0.307268i
\(991\) 33737.5i 1.08144i −0.841203 0.540720i \(-0.818152\pi\)
0.841203 0.540720i \(-0.181848\pi\)
\(992\) −21285.3 1365.34i −0.681260 0.0436990i
\(993\) −2941.36 5791.29i −0.0939991 0.185077i
\(994\) 5503.51 + 4107.27i 0.175614 + 0.131061i
\(995\) 25293.2 0.805877
\(996\) 15243.6 + 16087.2i 0.484952 + 0.511790i
\(997\) −5923.27 −0.188156 −0.0940782 0.995565i \(-0.529990\pi\)
−0.0940782 + 0.995565i \(0.529990\pi\)
\(998\) −9504.82 7093.46i −0.301473 0.224990i
\(999\) −7536.07 + 46411.4i −0.238669 + 1.46986i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.4.e.a.71.12 yes 36
3.2 odd 2 inner 84.4.e.a.71.25 yes 36
4.3 odd 2 inner 84.4.e.a.71.26 yes 36
12.11 even 2 inner 84.4.e.a.71.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.4.e.a.71.11 36 12.11 even 2 inner
84.4.e.a.71.12 yes 36 1.1 even 1 trivial
84.4.e.a.71.25 yes 36 3.2 odd 2 inner
84.4.e.a.71.26 yes 36 4.3 odd 2 inner