Properties

Label 84.4.e.a.71.17
Level $84$
Weight $4$
Character 84.71
Analytic conductor $4.956$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,4,Mod(71,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.71");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 84.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95616044048\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.17
Character \(\chi\) \(=\) 84.71
Dual form 84.4.e.a.71.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0878767 - 2.82706i) q^{2} +(-0.849945 + 5.12617i) q^{3} +(-7.98456 + 0.496866i) q^{4} -11.8826i q^{5} +(14.5667 + 1.95238i) q^{6} -7.00000i q^{7} +(2.10633 + 22.5292i) q^{8} +(-25.5552 - 8.71392i) q^{9} +(-33.5929 + 1.04421i) q^{10} -57.5490 q^{11} +(4.23942 - 41.3525i) q^{12} -59.9367 q^{13} +(-19.7894 + 0.615137i) q^{14} +(60.9123 + 10.0996i) q^{15} +(63.5062 - 7.93450i) q^{16} -51.9634i q^{17} +(-22.3891 + 73.0118i) q^{18} -20.5454i q^{19} +(5.90407 + 94.8774i) q^{20} +(35.8832 + 5.94962i) q^{21} +(5.05721 + 162.694i) q^{22} +53.7192 q^{23} +(-117.279 - 8.35118i) q^{24} -16.1967 q^{25} +(5.26704 + 169.445i) q^{26} +(66.3895 - 123.594i) q^{27} +(3.47806 + 55.8919i) q^{28} -158.741i q^{29} +(23.1994 - 173.090i) q^{30} +302.431i q^{31} +(-28.0120 - 178.839i) q^{32} +(48.9135 - 295.006i) q^{33} +(-146.904 + 4.56637i) q^{34} -83.1783 q^{35} +(208.376 + 56.8793i) q^{36} +284.534 q^{37} +(-58.0830 + 1.80546i) q^{38} +(50.9429 - 307.245i) q^{39} +(267.706 - 25.0287i) q^{40} -157.215i q^{41} +(13.6666 - 101.967i) q^{42} -83.6549i q^{43} +(459.503 - 28.5941i) q^{44} +(-103.544 + 303.663i) q^{45} +(-4.72067 - 151.868i) q^{46} -479.631 q^{47} +(-13.3032 + 332.288i) q^{48} -49.0000 q^{49} +(1.42331 + 45.7890i) q^{50} +(266.373 + 44.1660i) q^{51} +(478.568 - 29.7805i) q^{52} +265.944i q^{53} +(-355.241 - 176.826i) q^{54} +683.832i q^{55} +(157.704 - 14.7443i) q^{56} +(105.319 + 17.4624i) q^{57} +(-448.770 + 13.9496i) q^{58} -148.259 q^{59} +(-491.376 - 50.3754i) q^{60} -476.710 q^{61} +(854.991 - 26.5766i) q^{62} +(-60.9975 + 178.886i) q^{63} +(-503.127 + 94.9075i) q^{64} +712.205i q^{65} +(-838.297 - 112.357i) q^{66} -779.619i q^{67} +(25.8188 + 414.905i) q^{68} +(-45.6584 + 275.374i) q^{69} +(7.30944 + 235.150i) q^{70} +615.023 q^{71} +(142.490 - 594.091i) q^{72} +327.327 q^{73} +(-25.0039 - 804.395i) q^{74} +(13.7663 - 83.0269i) q^{75} +(10.2083 + 164.046i) q^{76} +402.843i q^{77} +(-873.079 - 117.019i) q^{78} -448.606i q^{79} +(-94.2827 - 754.621i) q^{80} +(577.135 + 445.372i) q^{81} +(-444.456 + 13.8155i) q^{82} -680.159 q^{83} +(-289.467 - 29.6759i) q^{84} -617.461 q^{85} +(-236.498 + 7.35132i) q^{86} +(813.732 + 134.921i) q^{87} +(-121.217 - 1296.53i) q^{88} -413.171i q^{89} +(867.572 + 266.041i) q^{90} +419.557i q^{91} +(-428.924 + 26.6912i) q^{92} +(-1550.31 - 257.050i) q^{93} +(42.1483 + 1355.95i) q^{94} -244.133 q^{95} +(940.566 + 8.40876i) q^{96} +552.922 q^{97} +(4.30596 + 138.526i) q^{98} +(1470.67 + 501.477i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 12 q^{4} + 30 q^{6} + 20 q^{9} - 132 q^{10} - 78 q^{12} + 324 q^{16} + 424 q^{18} - 240 q^{22} - 382 q^{24} - 900 q^{25} + 168 q^{28} + 476 q^{30} + 848 q^{33} - 576 q^{34} + 412 q^{36} + 528 q^{37}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0878767 2.82706i −0.0310691 0.999517i
\(3\) −0.849945 + 5.12617i −0.163572 + 0.986531i
\(4\) −7.98456 + 0.496866i −0.998069 + 0.0621082i
\(5\) 11.8826i 1.06281i −0.847117 0.531407i \(-0.821664\pi\)
0.847117 0.531407i \(-0.178336\pi\)
\(6\) 14.5667 + 1.95238i 0.991137 + 0.132842i
\(7\) 7.00000i 0.377964i
\(8\) 2.10633 + 22.5292i 0.0930873 + 0.995658i
\(9\) −25.5552 8.71392i −0.946488 0.322738i
\(10\) −33.5929 + 1.04421i −1.06230 + 0.0330207i
\(11\) −57.5490 −1.57742 −0.788712 0.614763i \(-0.789252\pi\)
−0.788712 + 0.614763i \(0.789252\pi\)
\(12\) 4.23942 41.3525i 0.101985 0.994786i
\(13\) −59.9367 −1.27873 −0.639363 0.768905i \(-0.720802\pi\)
−0.639363 + 0.768905i \(0.720802\pi\)
\(14\) −19.7894 + 0.615137i −0.377782 + 0.0117430i
\(15\) 60.9123 + 10.0996i 1.04850 + 0.173847i
\(16\) 63.5062 7.93450i 0.992285 0.123977i
\(17\) 51.9634i 0.741351i −0.928762 0.370676i \(-0.879126\pi\)
0.928762 0.370676i \(-0.120874\pi\)
\(18\) −22.3891 + 73.0118i −0.293175 + 0.956059i
\(19\) 20.5454i 0.248075i −0.992278 0.124038i \(-0.960416\pi\)
0.992278 0.124038i \(-0.0395843\pi\)
\(20\) 5.90407 + 94.8774i 0.0660095 + 1.06076i
\(21\) 35.8832 + 5.94962i 0.372874 + 0.0618244i
\(22\) 5.05721 + 162.694i 0.0490091 + 1.57666i
\(23\) 53.7192 0.487010 0.243505 0.969900i \(-0.421703\pi\)
0.243505 + 0.969900i \(0.421703\pi\)
\(24\) −117.279 8.35118i −0.997474 0.0710282i
\(25\) −16.1967 −0.129573
\(26\) 5.26704 + 169.445i 0.0397289 + 1.27811i
\(27\) 66.3895 123.594i 0.473210 0.880950i
\(28\) 3.47806 + 55.8919i 0.0234747 + 0.377235i
\(29\) 158.741i 1.01646i −0.861220 0.508232i \(-0.830299\pi\)
0.861220 0.508232i \(-0.169701\pi\)
\(30\) 23.1994 173.090i 0.141187 1.05339i
\(31\) 302.431i 1.75220i 0.482129 + 0.876100i \(0.339864\pi\)
−0.482129 + 0.876100i \(0.660136\pi\)
\(32\) −28.0120 178.839i −0.154746 0.987954i
\(33\) 48.9135 295.006i 0.258022 1.55618i
\(34\) −146.904 + 4.56637i −0.740993 + 0.0230331i
\(35\) −83.1783 −0.401706
\(36\) 208.376 + 56.8793i 0.964706 + 0.263330i
\(37\) 284.534 1.26425 0.632123 0.774868i \(-0.282184\pi\)
0.632123 + 0.774868i \(0.282184\pi\)
\(38\) −58.0830 + 1.80546i −0.247955 + 0.00770747i
\(39\) 50.9429 307.245i 0.209164 1.26150i
\(40\) 267.706 25.0287i 1.05820 0.0989345i
\(41\) 157.215i 0.598849i −0.954120 0.299425i \(-0.903205\pi\)
0.954120 0.299425i \(-0.0967947\pi\)
\(42\) 13.6666 101.967i 0.0502097 0.374615i
\(43\) 83.6549i 0.296680i −0.988936 0.148340i \(-0.952607\pi\)
0.988936 0.148340i \(-0.0473931\pi\)
\(44\) 459.503 28.5941i 1.57438 0.0979710i
\(45\) −103.544 + 303.663i −0.343010 + 1.00594i
\(46\) −4.72067 151.868i −0.0151310 0.486775i
\(47\) −479.631 −1.48854 −0.744269 0.667880i \(-0.767202\pi\)
−0.744269 + 0.667880i \(0.767202\pi\)
\(48\) −13.3032 + 332.288i −0.0400033 + 0.999200i
\(49\) −49.0000 −0.142857
\(50\) 1.42331 + 45.7890i 0.00402573 + 0.129511i
\(51\) 266.373 + 44.1660i 0.731366 + 0.121264i
\(52\) 478.568 29.7805i 1.27626 0.0794194i
\(53\) 265.944i 0.689251i 0.938740 + 0.344625i \(0.111994\pi\)
−0.938740 + 0.344625i \(0.888006\pi\)
\(54\) −355.241 176.826i −0.895227 0.445611i
\(55\) 683.832i 1.67651i
\(56\) 157.704 14.7443i 0.376323 0.0351837i
\(57\) 105.319 + 17.4624i 0.244734 + 0.0405782i
\(58\) −448.770 + 13.9496i −1.01597 + 0.0315806i
\(59\) −148.259 −0.327148 −0.163574 0.986531i \(-0.552302\pi\)
−0.163574 + 0.986531i \(0.552302\pi\)
\(60\) −491.376 50.3754i −1.05727 0.108391i
\(61\) −476.710 −1.00060 −0.500299 0.865853i \(-0.666776\pi\)
−0.500299 + 0.865853i \(0.666776\pi\)
\(62\) 854.991 26.5766i 1.75136 0.0544393i
\(63\) −60.9975 + 178.886i −0.121983 + 0.357739i
\(64\) −503.127 + 94.9075i −0.982670 + 0.185366i
\(65\) 712.205i 1.35905i
\(66\) −838.297 112.357i −1.56344 0.209549i
\(67\) 779.619i 1.42158i −0.703406 0.710788i \(-0.748338\pi\)
0.703406 0.710788i \(-0.251662\pi\)
\(68\) 25.8188 + 414.905i 0.0460440 + 0.739920i
\(69\) −45.6584 + 275.374i −0.0796613 + 0.480451i
\(70\) 7.30944 + 235.150i 0.0124806 + 0.401512i
\(71\) 615.023 1.02803 0.514013 0.857782i \(-0.328158\pi\)
0.514013 + 0.857782i \(0.328158\pi\)
\(72\) 142.490 594.091i 0.233230 0.972421i
\(73\) 327.327 0.524805 0.262403 0.964958i \(-0.415485\pi\)
0.262403 + 0.964958i \(0.415485\pi\)
\(74\) −25.0039 804.395i −0.0392790 1.26364i
\(75\) 13.7663 83.0269i 0.0211946 0.127828i
\(76\) 10.2083 + 164.046i 0.0154075 + 0.247596i
\(77\) 402.843i 0.596210i
\(78\) −873.079 117.019i −1.26739 0.169869i
\(79\) 448.606i 0.638887i −0.947605 0.319444i \(-0.896504\pi\)
0.947605 0.319444i \(-0.103496\pi\)
\(80\) −94.2827 754.621i −0.131764 1.05461i
\(81\) 577.135 + 445.372i 0.791681 + 0.610935i
\(82\) −444.456 + 13.8155i −0.598560 + 0.0186057i
\(83\) −680.159 −0.899484 −0.449742 0.893159i \(-0.648484\pi\)
−0.449742 + 0.893159i \(0.648484\pi\)
\(84\) −289.467 29.6759i −0.375994 0.0385465i
\(85\) −617.461 −0.787919
\(86\) −236.498 + 7.35132i −0.296537 + 0.00921759i
\(87\) 813.732 + 134.921i 1.00277 + 0.166265i
\(88\) −121.217 1296.53i −0.146838 1.57057i
\(89\) 413.171i 0.492090i −0.969258 0.246045i \(-0.920869\pi\)
0.969258 0.246045i \(-0.0791312\pi\)
\(90\) 867.572 + 266.041i 1.01611 + 0.311591i
\(91\) 419.557i 0.483313i
\(92\) −428.924 + 26.6912i −0.486070 + 0.0302473i
\(93\) −1550.31 257.050i −1.72860 0.286611i
\(94\) 42.1483 + 1355.95i 0.0462476 + 1.48782i
\(95\) −244.133 −0.263658
\(96\) 940.566 + 8.40876i 0.999960 + 0.00893975i
\(97\) 552.922 0.578771 0.289385 0.957213i \(-0.406549\pi\)
0.289385 + 0.957213i \(0.406549\pi\)
\(98\) 4.30596 + 138.526i 0.00443844 + 0.142788i
\(99\) 1470.67 + 501.477i 1.49301 + 0.509094i
\(100\) 129.323 8.04757i 0.129323 0.00804757i
\(101\) 81.5446i 0.0803366i −0.999193 0.0401683i \(-0.987211\pi\)
0.999193 0.0401683i \(-0.0127894\pi\)
\(102\) 101.452 756.934i 0.0984829 0.734781i
\(103\) 1015.94i 0.971881i −0.873992 0.485940i \(-0.838477\pi\)
0.873992 0.485940i \(-0.161523\pi\)
\(104\) −126.246 1350.32i −0.119033 1.27317i
\(105\) 70.6970 426.386i 0.0657078 0.396295i
\(106\) 751.841 23.3703i 0.688918 0.0214144i
\(107\) −2141.69 −1.93500 −0.967499 0.252874i \(-0.918624\pi\)
−0.967499 + 0.252874i \(0.918624\pi\)
\(108\) −468.681 + 1019.83i −0.417582 + 0.908639i
\(109\) 67.7332 0.0595199 0.0297599 0.999557i \(-0.490526\pi\)
0.0297599 + 0.999557i \(0.490526\pi\)
\(110\) 1933.24 60.0929i 1.67570 0.0520876i
\(111\) −241.838 + 1458.57i −0.206795 + 1.24722i
\(112\) −55.5415 444.544i −0.0468587 0.375049i
\(113\) 1228.08i 1.02237i 0.859471 + 0.511185i \(0.170793\pi\)
−0.859471 + 0.511185i \(0.829207\pi\)
\(114\) 40.1123 299.278i 0.0329549 0.245877i
\(115\) 638.325i 0.517601i
\(116\) 78.8729 + 1267.48i 0.0631307 + 1.01450i
\(117\) 1531.69 + 522.284i 1.21030 + 0.412693i
\(118\) 13.0285 + 419.138i 0.0101642 + 0.326990i
\(119\) −363.744 −0.280204
\(120\) −99.2339 + 1393.58i −0.0754898 + 1.06013i
\(121\) 1980.88 1.48827
\(122\) 41.8917 + 1347.69i 0.0310877 + 1.00011i
\(123\) 805.909 + 133.624i 0.590784 + 0.0979550i
\(124\) −150.268 2414.78i −0.108826 1.74882i
\(125\) 1292.87i 0.925101i
\(126\) 511.083 + 156.724i 0.361356 + 0.110810i
\(127\) 1138.85i 0.795724i 0.917445 + 0.397862i \(0.130248\pi\)
−0.917445 + 0.397862i \(0.869752\pi\)
\(128\) 312.523 + 1414.03i 0.215807 + 0.976436i
\(129\) 428.829 + 71.1021i 0.292684 + 0.0485286i
\(130\) 2013.45 62.5862i 1.35839 0.0422244i
\(131\) −1538.22 −1.02591 −0.512956 0.858415i \(-0.671450\pi\)
−0.512956 + 0.858415i \(0.671450\pi\)
\(132\) −243.974 + 2379.79i −0.160873 + 1.56920i
\(133\) −143.817 −0.0937636
\(134\) −2204.03 + 68.5103i −1.42089 + 0.0441671i
\(135\) −1468.62 788.882i −0.936286 0.502934i
\(136\) 1170.69 109.452i 0.738132 0.0690104i
\(137\) 1885.75i 1.17599i −0.808866 0.587993i \(-0.799918\pi\)
0.808866 0.587993i \(-0.200082\pi\)
\(138\) 782.511 + 104.880i 0.482694 + 0.0646956i
\(139\) 704.823i 0.430089i −0.976604 0.215044i \(-0.931010\pi\)
0.976604 0.215044i \(-0.0689896\pi\)
\(140\) 664.142 41.3285i 0.400930 0.0249492i
\(141\) 407.660 2458.67i 0.243483 1.46849i
\(142\) −54.0462 1738.71i −0.0319398 1.02753i
\(143\) 3449.29 2.01709
\(144\) −1692.05 350.621i −0.979198 0.202906i
\(145\) −1886.26 −1.08031
\(146\) −28.7644 925.375i −0.0163052 0.524552i
\(147\) 41.6473 251.182i 0.0233674 0.140933i
\(148\) −2271.88 + 141.375i −1.26181 + 0.0785201i
\(149\) 2025.45i 1.11363i −0.830636 0.556816i \(-0.812023\pi\)
0.830636 0.556816i \(-0.187977\pi\)
\(150\) −235.932 31.6220i −0.128425 0.0172129i
\(151\) 1333.21i 0.718513i −0.933239 0.359256i \(-0.883030\pi\)
0.933239 0.359256i \(-0.116970\pi\)
\(152\) 462.870 43.2752i 0.246998 0.0230927i
\(153\) −452.805 + 1327.93i −0.239262 + 0.701680i
\(154\) 1138.86 35.4005i 0.595922 0.0185237i
\(155\) 3593.67 1.86226
\(156\) −254.097 + 2478.53i −0.130410 + 1.27206i
\(157\) −1977.17 −1.00506 −0.502532 0.864558i \(-0.667598\pi\)
−0.502532 + 0.864558i \(0.667598\pi\)
\(158\) −1268.24 + 39.4220i −0.638579 + 0.0198497i
\(159\) −1363.28 226.038i −0.679967 0.112742i
\(160\) −2125.07 + 332.856i −1.05001 + 0.164466i
\(161\) 376.035i 0.184073i
\(162\) 1208.38 1670.73i 0.586044 0.810280i
\(163\) 1678.40i 0.806516i 0.915086 + 0.403258i \(0.132122\pi\)
−0.915086 + 0.403258i \(0.867878\pi\)
\(164\) 78.1146 + 1255.29i 0.0371935 + 0.597693i
\(165\) −3505.44 581.220i −1.65393 0.274230i
\(166\) 59.7701 + 1922.85i 0.0279462 + 0.899050i
\(167\) −2933.39 −1.35924 −0.679619 0.733565i \(-0.737855\pi\)
−0.679619 + 0.733565i \(0.737855\pi\)
\(168\) −58.4582 + 820.950i −0.0268461 + 0.377010i
\(169\) 1395.41 0.635141
\(170\) 54.2604 + 1745.60i 0.0244799 + 0.787538i
\(171\) −179.031 + 525.040i −0.0800632 + 0.234800i
\(172\) 41.5652 + 667.947i 0.0184263 + 0.296108i
\(173\) 2035.22i 0.894420i 0.894429 + 0.447210i \(0.147582\pi\)
−0.894429 + 0.447210i \(0.852418\pi\)
\(174\) 309.922 2312.33i 0.135029 1.00745i
\(175\) 113.377i 0.0489742i
\(176\) −3654.72 + 456.622i −1.56525 + 0.195564i
\(177\) 126.012 760.002i 0.0535122 0.322742i
\(178\) −1168.06 + 36.3081i −0.491853 + 0.0152888i
\(179\) 3632.86 1.51694 0.758472 0.651706i \(-0.225946\pi\)
0.758472 + 0.651706i \(0.225946\pi\)
\(180\) 675.875 2476.06i 0.279871 1.02530i
\(181\) −2086.31 −0.856762 −0.428381 0.903598i \(-0.640916\pi\)
−0.428381 + 0.903598i \(0.640916\pi\)
\(182\) 1186.11 36.8693i 0.483080 0.0150161i
\(183\) 405.177 2443.69i 0.163670 0.987121i
\(184\) 113.150 + 1210.25i 0.0453345 + 0.484896i
\(185\) 3381.01i 1.34366i
\(186\) −590.459 + 4405.42i −0.232767 + 1.73667i
\(187\) 2990.44i 1.16943i
\(188\) 3829.64 238.312i 1.48567 0.0924505i
\(189\) −865.157 464.727i −0.332968 0.178857i
\(190\) 21.4536 + 690.178i 0.00819161 + 0.263530i
\(191\) 1170.52 0.443433 0.221716 0.975111i \(-0.428834\pi\)
0.221716 + 0.975111i \(0.428834\pi\)
\(192\) −58.8818 2659.78i −0.0221324 0.999755i
\(193\) 2386.62 0.890116 0.445058 0.895502i \(-0.353183\pi\)
0.445058 + 0.895502i \(0.353183\pi\)
\(194\) −48.5890 1563.15i −0.0179819 0.578491i
\(195\) −3650.88 605.335i −1.34074 0.222302i
\(196\) 391.243 24.3464i 0.142581 0.00887260i
\(197\) 4598.82i 1.66321i 0.555369 + 0.831604i \(0.312577\pi\)
−0.555369 + 0.831604i \(0.687423\pi\)
\(198\) 1288.47 4201.76i 0.462462 1.50811i
\(199\) 1007.78i 0.358992i 0.983759 + 0.179496i \(0.0574467\pi\)
−0.983759 + 0.179496i \(0.942553\pi\)
\(200\) −34.1155 364.898i −0.0120616 0.129011i
\(201\) 3996.46 + 662.633i 1.40243 + 0.232530i
\(202\) −230.532 + 7.16587i −0.0802978 + 0.00249598i
\(203\) −1111.19 −0.384187
\(204\) −2148.81 220.294i −0.737486 0.0756064i
\(205\) −1868.12 −0.636466
\(206\) −2872.13 + 89.2776i −0.971411 + 0.0301955i
\(207\) −1372.81 468.105i −0.460950 0.157177i
\(208\) −3806.35 + 475.568i −1.26886 + 0.158532i
\(209\) 1182.36i 0.391320i
\(210\) −1211.63 162.395i −0.398146 0.0533636i
\(211\) 4982.89i 1.62576i −0.582429 0.812881i \(-0.697898\pi\)
0.582429 0.812881i \(-0.302102\pi\)
\(212\) −132.139 2123.45i −0.0428081 0.687920i
\(213\) −522.736 + 3152.71i −0.168156 + 1.01418i
\(214\) 188.204 + 6054.69i 0.0601187 + 1.93406i
\(215\) −994.040 −0.315316
\(216\) 2924.30 + 1235.37i 0.921174 + 0.389150i
\(217\) 2117.02 0.662270
\(218\) −5.95217 191.486i −0.00184923 0.0594911i
\(219\) −278.210 + 1677.94i −0.0858434 + 0.517737i
\(220\) −339.773 5460.10i −0.104125 1.67327i
\(221\) 3114.51i 0.947986i
\(222\) 4144.72 + 555.518i 1.25304 + 0.167946i
\(223\) 341.997i 0.102699i −0.998681 0.0513493i \(-0.983648\pi\)
0.998681 0.0513493i \(-0.0163522\pi\)
\(224\) −1251.87 + 196.084i −0.373412 + 0.0584885i
\(225\) 413.909 + 141.137i 0.122640 + 0.0418183i
\(226\) 3471.85 107.919i 1.02188 0.0317641i
\(227\) −1179.18 −0.344779 −0.172389 0.985029i \(-0.555149\pi\)
−0.172389 + 0.985029i \(0.555149\pi\)
\(228\) −849.601 87.1003i −0.246782 0.0252998i
\(229\) −1424.43 −0.411043 −0.205522 0.978653i \(-0.565889\pi\)
−0.205522 + 0.978653i \(0.565889\pi\)
\(230\) −1804.59 + 56.0939i −0.517351 + 0.0160814i
\(231\) −2065.04 342.394i −0.588180 0.0975233i
\(232\) 3576.30 334.360i 1.01205 0.0946199i
\(233\) 573.154i 0.161153i 0.996748 + 0.0805763i \(0.0256761\pi\)
−0.996748 + 0.0805763i \(0.974324\pi\)
\(234\) 1341.93 4376.09i 0.374891 1.22254i
\(235\) 5699.27i 1.58204i
\(236\) 1183.78 73.6650i 0.326516 0.0203186i
\(237\) 2299.63 + 381.290i 0.630283 + 0.104504i
\(238\) 31.9646 + 1028.33i 0.00870570 + 0.280069i
\(239\) 5563.85 1.50584 0.752920 0.658112i \(-0.228645\pi\)
0.752920 + 0.658112i \(0.228645\pi\)
\(240\) 3948.45 + 158.077i 1.06196 + 0.0425161i
\(241\) 4691.92 1.25408 0.627039 0.778988i \(-0.284267\pi\)
0.627039 + 0.778988i \(0.284267\pi\)
\(242\) −174.073 5600.08i −0.0462391 1.48755i
\(243\) −2773.58 + 2579.95i −0.732204 + 0.681086i
\(244\) 3806.32 236.861i 0.998666 0.0621453i
\(245\) 582.248i 0.151831i
\(246\) 306.943 2290.10i 0.0795526 0.593542i
\(247\) 1231.42i 0.317220i
\(248\) −6813.52 + 637.018i −1.74459 + 0.163108i
\(249\) 578.098 3486.61i 0.147130 0.887369i
\(250\) −3655.02 + 113.613i −0.924655 + 0.0287421i
\(251\) 4505.81 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(252\) 398.155 1458.64i 0.0995294 0.364625i
\(253\) −3091.49 −0.768222
\(254\) 3219.61 100.079i 0.795339 0.0247224i
\(255\) 524.808 3165.21i 0.128881 0.777306i
\(256\) 3970.09 1007.78i 0.969260 0.246040i
\(257\) 1625.67i 0.394578i 0.980345 + 0.197289i \(0.0632137\pi\)
−0.980345 + 0.197289i \(0.936786\pi\)
\(258\) 163.326 1218.57i 0.0394117 0.294051i
\(259\) 1991.74i 0.477840i
\(260\) −353.870 5686.64i −0.0844080 1.35642i
\(261\) −1383.26 + 4056.65i −0.328051 + 0.962071i
\(262\) 135.173 + 4348.63i 0.0318742 + 1.02542i
\(263\) −2356.53 −0.552509 −0.276254 0.961085i \(-0.589093\pi\)
−0.276254 + 0.961085i \(0.589093\pi\)
\(264\) 6749.26 + 480.602i 1.57344 + 0.112042i
\(265\) 3160.12 0.732545
\(266\) 12.6382 + 406.581i 0.00291315 + 0.0937183i
\(267\) 2117.98 + 351.173i 0.485463 + 0.0804922i
\(268\) 387.366 + 6224.91i 0.0882916 + 1.41883i
\(269\) 2337.79i 0.529880i −0.964265 0.264940i \(-0.914648\pi\)
0.964265 0.264940i \(-0.0853521\pi\)
\(270\) −2101.16 + 4221.20i −0.473602 + 0.951459i
\(271\) 1373.37i 0.307846i 0.988083 + 0.153923i \(0.0491908\pi\)
−0.988083 + 0.153923i \(0.950809\pi\)
\(272\) −412.304 3300.00i −0.0919102 0.735632i
\(273\) −2150.72 356.600i −0.476804 0.0790565i
\(274\) −5331.12 + 165.713i −1.17542 + 0.0365368i
\(275\) 932.102 0.204392
\(276\) 227.738 2221.42i 0.0496675 0.484471i
\(277\) 1893.14 0.410642 0.205321 0.978695i \(-0.434176\pi\)
0.205321 + 0.978695i \(0.434176\pi\)
\(278\) −1992.58 + 61.9375i −0.429881 + 0.0133625i
\(279\) 2635.36 7728.68i 0.565502 1.65844i
\(280\) −175.201 1873.94i −0.0373937 0.399962i
\(281\) 3960.77i 0.840852i −0.907327 0.420426i \(-0.861881\pi\)
0.907327 0.420426i \(-0.138119\pi\)
\(282\) −6986.63 936.420i −1.47535 0.197741i
\(283\) 3479.48i 0.730860i −0.930839 0.365430i \(-0.880922\pi\)
0.930839 0.365430i \(-0.119078\pi\)
\(284\) −4910.69 + 305.584i −1.02604 + 0.0638488i
\(285\) 207.499 1251.47i 0.0431270 0.260107i
\(286\) −303.112 9751.37i −0.0626693 2.01612i
\(287\) −1100.50 −0.226344
\(288\) −842.535 + 4814.35i −0.172385 + 0.985030i
\(289\) 2212.81 0.450398
\(290\) 165.758 + 5332.57i 0.0335643 + 1.07979i
\(291\) −469.954 + 2834.37i −0.0946707 + 0.570975i
\(292\) −2613.56 + 162.638i −0.523792 + 0.0325947i
\(293\) 1778.78i 0.354667i 0.984151 + 0.177334i \(0.0567471\pi\)
−0.984151 + 0.177334i \(0.943253\pi\)
\(294\) −713.767 95.6665i −0.141591 0.0189775i
\(295\) 1761.71i 0.347697i
\(296\) 599.322 + 6410.32i 0.117685 + 1.25876i
\(297\) −3820.65 + 7112.69i −0.746453 + 1.38963i
\(298\) −5726.07 + 177.990i −1.11309 + 0.0345995i
\(299\) −3219.75 −0.622753
\(300\) −68.6645 + 669.773i −0.0132145 + 0.128898i
\(301\) −585.584 −0.112135
\(302\) −3769.08 + 117.158i −0.718166 + 0.0223235i
\(303\) 418.011 + 69.3084i 0.0792545 + 0.0131408i
\(304\) −163.017 1304.76i −0.0307555 0.246161i
\(305\) 5664.56i 1.06345i
\(306\) 3793.94 + 1163.41i 0.708775 + 0.217346i
\(307\) 25.4001i 0.00472203i −0.999997 0.00236101i \(-0.999248\pi\)
0.999997 0.00236101i \(-0.000751534\pi\)
\(308\) −200.159 3216.52i −0.0370295 0.595059i
\(309\) 5207.89 + 863.495i 0.958791 + 0.158972i
\(310\) −315.800 10159.5i −0.0578588 1.86136i
\(311\) 3038.33 0.553981 0.276991 0.960873i \(-0.410663\pi\)
0.276991 + 0.960873i \(0.410663\pi\)
\(312\) 7029.29 + 500.542i 1.27550 + 0.0908256i
\(313\) −8947.92 −1.61587 −0.807934 0.589274i \(-0.799414\pi\)
−0.807934 + 0.589274i \(0.799414\pi\)
\(314\) 173.747 + 5589.58i 0.0312265 + 1.00458i
\(315\) 2125.64 + 724.810i 0.380210 + 0.129646i
\(316\) 222.897 + 3581.92i 0.0396801 + 0.637654i
\(317\) 10.5693i 0.00187266i 1.00000 0.000936328i \(0.000298043\pi\)
−1.00000 0.000936328i \(0.999702\pi\)
\(318\) −519.224 + 3873.93i −0.0915617 + 0.683142i
\(319\) 9135.37i 1.60339i
\(320\) 1127.75 + 5978.46i 0.197010 + 1.04439i
\(321\) 1820.32 10978.7i 0.316512 1.90894i
\(322\) −1063.07 + 33.0447i −0.183984 + 0.00571897i
\(323\) −1067.61 −0.183911
\(324\) −4829.46 3269.34i −0.828096 0.560586i
\(325\) 970.775 0.165689
\(326\) 4744.93 147.492i 0.806127 0.0250577i
\(327\) −57.5695 + 347.212i −0.00973579 + 0.0587182i
\(328\) 3541.92 331.146i 0.596249 0.0557453i
\(329\) 3357.41i 0.562615i
\(330\) −1335.10 + 9961.17i −0.222711 + 1.66165i
\(331\) 7153.70i 1.18792i −0.804493 0.593962i \(-0.797563\pi\)
0.804493 0.593962i \(-0.202437\pi\)
\(332\) 5430.77 337.948i 0.897747 0.0558653i
\(333\) −7271.32 2479.41i −1.19659 0.408020i
\(334\) 257.777 + 8292.89i 0.0422303 + 1.35858i
\(335\) −9263.92 −1.51087
\(336\) 2326.01 + 93.1227i 0.377662 + 0.0151198i
\(337\) −8329.05 −1.34633 −0.673163 0.739494i \(-0.735065\pi\)
−0.673163 + 0.739494i \(0.735065\pi\)
\(338\) −122.624 3944.90i −0.0197333 0.634835i
\(339\) −6295.33 1043.80i −1.00860 0.167231i
\(340\) 4930.15 306.795i 0.786397 0.0489362i
\(341\) 17404.6i 2.76396i
\(342\) 1500.05 + 459.992i 0.237174 + 0.0727296i
\(343\) 343.000i 0.0539949i
\(344\) 1884.68 176.205i 0.295392 0.0276172i
\(345\) 3272.16 + 542.542i 0.510630 + 0.0846651i
\(346\) 5753.68 178.848i 0.893988 0.0277888i
\(347\) 4245.62 0.656821 0.328411 0.944535i \(-0.393487\pi\)
0.328411 + 0.944535i \(0.393487\pi\)
\(348\) −6564.33 672.969i −1.01116 0.103664i
\(349\) −6998.42 −1.07340 −0.536700 0.843773i \(-0.680329\pi\)
−0.536700 + 0.843773i \(0.680329\pi\)
\(350\) 320.523 9.96317i 0.0489505 0.00152158i
\(351\) −3979.17 + 7407.80i −0.605106 + 1.12649i
\(352\) 1612.06 + 10292.0i 0.244100 + 1.55842i
\(353\) 6706.36i 1.01117i −0.862776 0.505586i \(-0.831276\pi\)
0.862776 0.505586i \(-0.168724\pi\)
\(354\) −2159.65 289.458i −0.324248 0.0434591i
\(355\) 7308.09i 1.09260i
\(356\) 205.290 + 3298.99i 0.0305628 + 0.491140i
\(357\) 309.162 1864.61i 0.0458336 0.276431i
\(358\) −319.244 10270.3i −0.0471301 1.51621i
\(359\) 2823.78 0.415135 0.207567 0.978221i \(-0.433445\pi\)
0.207567 + 0.978221i \(0.433445\pi\)
\(360\) −7059.36 1693.15i −1.03350 0.247881i
\(361\) 6436.89 0.938459
\(362\) 183.338 + 5898.12i 0.0266188 + 0.856348i
\(363\) −1683.64 + 10154.3i −0.243439 + 1.46822i
\(364\) −208.463 3349.97i −0.0300177 0.482380i
\(365\) 3889.51i 0.557770i
\(366\) −6944.08 930.717i −0.991729 0.132922i
\(367\) 4911.38i 0.698561i −0.937018 0.349280i \(-0.886426\pi\)
0.937018 0.349280i \(-0.113574\pi\)
\(368\) 3411.51 426.235i 0.483253 0.0603779i
\(369\) −1369.96 + 4017.65i −0.193271 + 0.566804i
\(370\) −9558.33 + 297.112i −1.34301 + 0.0417463i
\(371\) 1861.61 0.260512
\(372\) 12506.3 + 1282.13i 1.74306 + 0.178697i
\(373\) −1837.65 −0.255094 −0.127547 0.991833i \(-0.540710\pi\)
−0.127547 + 0.991833i \(0.540710\pi\)
\(374\) 8454.15 262.790i 1.16886 0.0363330i
\(375\) 6627.46 + 1098.87i 0.912642 + 0.151321i
\(376\) −1010.26 10805.7i −0.138564 1.48208i
\(377\) 9514.40i 1.29978i
\(378\) −1237.78 + 2486.69i −0.168425 + 0.338364i
\(379\) 2325.05i 0.315118i −0.987510 0.157559i \(-0.949638\pi\)
0.987510 0.157559i \(-0.0503624\pi\)
\(380\) 1949.29 121.301i 0.263149 0.0163753i
\(381\) −5837.95 967.963i −0.785006 0.130158i
\(382\) −102.861 3309.12i −0.0137770 0.443218i
\(383\) 9467.13 1.26305 0.631525 0.775356i \(-0.282429\pi\)
0.631525 + 0.775356i \(0.282429\pi\)
\(384\) −7514.18 + 400.195i −0.998585 + 0.0531832i
\(385\) 4786.83 0.633661
\(386\) −209.728 6747.11i −0.0276551 0.889686i
\(387\) −728.962 + 2137.82i −0.0957500 + 0.280805i
\(388\) −4414.84 + 274.728i −0.577653 + 0.0359464i
\(389\) 3593.30i 0.468348i 0.972195 + 0.234174i \(0.0752386\pi\)
−0.972195 + 0.234174i \(0.924761\pi\)
\(390\) −1390.49 + 10374.5i −0.180539 + 1.34700i
\(391\) 2791.43i 0.361046i
\(392\) −103.210 1103.93i −0.0132982 0.142237i
\(393\) 1307.40 7885.15i 0.167811 1.01210i
\(394\) 13001.1 404.129i 1.66241 0.0516744i
\(395\) −5330.61 −0.679019
\(396\) −11991.8 3273.34i −1.52175 0.415383i
\(397\) 12570.5 1.58916 0.794578 0.607163i \(-0.207692\pi\)
0.794578 + 0.607163i \(0.207692\pi\)
\(398\) 2849.05 88.5600i 0.358819 0.0111536i
\(399\) 122.237 737.233i 0.0153371 0.0925007i
\(400\) −1028.59 + 128.513i −0.128574 + 0.0160641i
\(401\) 12634.4i 1.57340i −0.617338 0.786698i \(-0.711789\pi\)
0.617338 0.786698i \(-0.288211\pi\)
\(402\) 1522.11 11356.5i 0.188846 1.40898i
\(403\) 18126.7i 2.24059i
\(404\) 40.5167 + 651.097i 0.00498956 + 0.0801815i
\(405\) 5292.18 6857.88i 0.649310 0.841409i
\(406\) 97.6474 + 3141.39i 0.0119363 + 0.384002i
\(407\) −16374.6 −1.99425
\(408\) −433.955 + 6094.19i −0.0526569 + 0.739479i
\(409\) 12338.3 1.49167 0.745834 0.666132i \(-0.232051\pi\)
0.745834 + 0.666132i \(0.232051\pi\)
\(410\) 164.165 + 5281.30i 0.0197744 + 0.636158i
\(411\) 9666.65 + 1602.78i 1.16015 + 0.192359i
\(412\) 504.786 + 8111.84i 0.0603618 + 0.970004i
\(413\) 1037.82i 0.123650i
\(414\) −1202.73 + 3922.14i −0.142779 + 0.465610i
\(415\) 8082.07i 0.955984i
\(416\) 1678.95 + 10719.0i 0.197878 + 1.26332i
\(417\) 3613.04 + 599.061i 0.424296 + 0.0703505i
\(418\) 3342.62 103.902i 0.391131 0.0121579i
\(419\) 10572.5 1.23270 0.616348 0.787474i \(-0.288611\pi\)
0.616348 + 0.787474i \(0.288611\pi\)
\(420\) −352.628 + 3439.63i −0.0409678 + 0.399611i
\(421\) 6245.67 0.723030 0.361515 0.932366i \(-0.382260\pi\)
0.361515 + 0.932366i \(0.382260\pi\)
\(422\) −14086.9 + 437.879i −1.62498 + 0.0505110i
\(423\) 12257.1 + 4179.46i 1.40888 + 0.480408i
\(424\) −5991.51 + 560.166i −0.686258 + 0.0641605i
\(425\) 841.635i 0.0960595i
\(426\) 8958.85 + 1200.76i 1.01891 + 0.136565i
\(427\) 3336.97i 0.378190i
\(428\) 17100.4 1064.13i 1.93126 0.120179i
\(429\) −2931.71 + 17681.7i −0.329940 + 1.98993i
\(430\) 87.3529 + 2810.21i 0.00979658 + 0.315164i
\(431\) −9318.09 −1.04138 −0.520692 0.853745i \(-0.674326\pi\)
−0.520692 + 0.853745i \(0.674326\pi\)
\(432\) 3235.49 8375.75i 0.360342 0.932820i
\(433\) −13699.1 −1.52041 −0.760204 0.649685i \(-0.774901\pi\)
−0.760204 + 0.649685i \(0.774901\pi\)
\(434\) −186.036 5984.94i −0.0205761 0.661950i
\(435\) 1603.22 9669.27i 0.176709 1.06576i
\(436\) −540.820 + 33.6543i −0.0594050 + 0.00369667i
\(437\) 1103.68i 0.120815i
\(438\) 4768.07 + 639.066i 0.520154 + 0.0697164i
\(439\) 7199.35i 0.782702i 0.920242 + 0.391351i \(0.127992\pi\)
−0.920242 + 0.391351i \(0.872008\pi\)
\(440\) −15406.2 + 1440.37i −1.66923 + 0.156062i
\(441\) 1252.20 + 426.982i 0.135213 + 0.0461054i
\(442\) 8804.92 273.693i 0.947528 0.0294531i
\(443\) −15697.3 −1.68353 −0.841763 0.539847i \(-0.818482\pi\)
−0.841763 + 0.539847i \(0.818482\pi\)
\(444\) 1206.26 11766.2i 0.128934 1.25765i
\(445\) −4909.55 −0.523000
\(446\) −966.846 + 30.0535i −0.102649 + 0.00319075i
\(447\) 10382.8 + 1721.52i 1.09863 + 0.182159i
\(448\) 664.353 + 3521.89i 0.0700619 + 0.371414i
\(449\) 16461.7i 1.73024i 0.501567 + 0.865119i \(0.332757\pi\)
−0.501567 + 0.865119i \(0.667243\pi\)
\(450\) 362.629 1182.55i 0.0379878 0.123880i
\(451\) 9047.55i 0.944639i
\(452\) −610.189 9805.65i −0.0634975 1.02040i
\(453\) 6834.28 + 1133.16i 0.708836 + 0.117529i
\(454\) 103.622 + 3333.61i 0.0107120 + 0.344612i
\(455\) 4985.43 0.513672
\(456\) −171.578 + 2409.53i −0.0176203 + 0.247449i
\(457\) 4880.98 0.499612 0.249806 0.968296i \(-0.419633\pi\)
0.249806 + 0.968296i \(0.419633\pi\)
\(458\) 125.174 + 4026.95i 0.0127707 + 0.410845i
\(459\) −6422.35 3449.82i −0.653093 0.350815i
\(460\) 317.162 + 5096.75i 0.0321473 + 0.516602i
\(461\) 10228.4i 1.03337i 0.856176 + 0.516685i \(0.172834\pi\)
−0.856176 + 0.516685i \(0.827166\pi\)
\(462\) −786.501 + 5868.08i −0.0792020 + 0.590926i
\(463\) 10248.4i 1.02869i 0.857584 + 0.514345i \(0.171965\pi\)
−0.857584 + 0.514345i \(0.828035\pi\)
\(464\) −1259.53 10081.0i −0.126018 1.00862i
\(465\) −3054.43 + 18421.8i −0.304614 + 1.83718i
\(466\) 1620.34 50.3669i 0.161075 0.00500687i
\(467\) 4813.88 0.477002 0.238501 0.971142i \(-0.423344\pi\)
0.238501 + 0.971142i \(0.423344\pi\)
\(468\) −12489.4 3409.16i −1.23359 0.336727i
\(469\) −5457.33 −0.537305
\(470\) 16112.2 500.833i 1.58128 0.0491525i
\(471\) 1680.48 10135.3i 0.164400 0.991528i
\(472\) −312.282 3340.16i −0.0304533 0.325727i
\(473\) 4814.25i 0.467991i
\(474\) 875.848 6534.70i 0.0848714 0.633225i
\(475\) 332.767i 0.0321440i
\(476\) 2904.33 180.732i 0.279664 0.0174030i
\(477\) 2317.42 6796.26i 0.222447 0.652368i
\(478\) −488.933 15729.4i −0.0467851 1.50511i
\(479\) −11369.2 −1.08450 −0.542249 0.840218i \(-0.682427\pi\)
−0.542249 + 0.840218i \(0.682427\pi\)
\(480\) 99.9182 11176.4i 0.00950129 1.06277i
\(481\) −17054.0 −1.61663
\(482\) −412.310 13264.3i −0.0389631 1.25347i
\(483\) 1927.62 + 319.609i 0.181593 + 0.0301091i
\(484\) −15816.5 + 984.232i −1.48539 + 0.0924335i
\(485\) 6570.17i 0.615125i
\(486\) 7537.41 + 7614.37i 0.703506 + 0.710689i
\(487\) 4160.42i 0.387118i −0.981089 0.193559i \(-0.937997\pi\)
0.981089 0.193559i \(-0.0620031\pi\)
\(488\) −1004.11 10739.9i −0.0931429 0.996253i
\(489\) −8603.74 1426.54i −0.795653 0.131923i
\(490\) 1646.05 51.1661i 0.151757 0.00471724i
\(491\) −15620.4 −1.43572 −0.717862 0.696185i \(-0.754879\pi\)
−0.717862 + 0.696185i \(0.754879\pi\)
\(492\) −6501.22 666.499i −0.595727 0.0610734i
\(493\) −8248.72 −0.753557
\(494\) 3481.30 108.213i 0.317067 0.00985575i
\(495\) 5958.86 17475.5i 0.541073 1.58680i
\(496\) 2399.64 + 19206.3i 0.217232 + 1.73868i
\(497\) 4305.16i 0.388557i
\(498\) −9907.66 1327.93i −0.891512 0.119490i
\(499\) 4722.33i 0.423648i 0.977308 + 0.211824i \(0.0679404\pi\)
−0.977308 + 0.211824i \(0.932060\pi\)
\(500\) 642.382 + 10323.0i 0.0574564 + 0.923315i
\(501\) 2493.22 15037.1i 0.222333 1.34093i
\(502\) −395.956 12738.2i −0.0352039 1.13254i
\(503\) −647.849 −0.0574278 −0.0287139 0.999588i \(-0.509141\pi\)
−0.0287139 + 0.999588i \(0.509141\pi\)
\(504\) −4158.64 997.429i −0.367541 0.0881528i
\(505\) −968.964 −0.0853828
\(506\) 271.670 + 8739.82i 0.0238680 + 0.767851i
\(507\) −1186.02 + 7153.08i −0.103891 + 0.626587i
\(508\) −565.857 9093.24i −0.0494210 0.794187i
\(509\) 17395.7i 1.51483i 0.652932 + 0.757417i \(0.273539\pi\)
−0.652932 + 0.757417i \(0.726461\pi\)
\(510\) −8994.36 1205.52i −0.780935 0.104669i
\(511\) 2291.29i 0.198358i
\(512\) −3197.94 11135.1i −0.276035 0.961147i
\(513\) −2539.28 1364.00i −0.218542 0.117392i
\(514\) 4595.87 142.858i 0.394387 0.0122592i
\(515\) −12072.1 −1.03293
\(516\) −3459.34 354.648i −0.295133 0.0302568i
\(517\) 27602.2 2.34806
\(518\) −5630.77 + 175.027i −0.477610 + 0.0148461i
\(519\) −10432.9 1729.82i −0.882373 0.146302i
\(520\) −16045.4 + 1500.14i −1.35315 + 0.126510i
\(521\) 15959.1i 1.34200i −0.741458 0.670999i \(-0.765866\pi\)
0.741458 0.670999i \(-0.234134\pi\)
\(522\) 11590.0 + 3554.06i 0.971799 + 0.298002i
\(523\) 5571.06i 0.465784i −0.972503 0.232892i \(-0.925181\pi\)
0.972503 0.232892i \(-0.0748189\pi\)
\(524\) 12282.0 764.287i 1.02393 0.0637176i
\(525\) −581.188 96.3640i −0.0483146 0.00801080i
\(526\) 207.084 + 6662.05i 0.0171659 + 0.552242i
\(527\) 15715.3 1.29900
\(528\) 765.588 19122.8i 0.0631021 1.57616i
\(529\) −9281.24 −0.762821
\(530\) −277.701 8933.85i −0.0227595 0.732192i
\(531\) 3788.80 + 1291.92i 0.309642 + 0.105583i
\(532\) 1148.32 71.4580i 0.0935826 0.00582349i
\(533\) 9422.93i 0.765765i
\(534\) 806.665 6018.53i 0.0653705 0.487729i
\(535\) 25448.9i 2.05654i
\(536\) 17564.2 1642.13i 1.41540 0.132331i
\(537\) −3087.73 + 18622.7i −0.248130 + 1.49651i
\(538\) −6609.08 + 205.437i −0.529624 + 0.0164629i
\(539\) 2819.90 0.225346
\(540\) 12118.2 + 5569.16i 0.965714 + 0.443812i
\(541\) 4627.15 0.367721 0.183860 0.982952i \(-0.441141\pi\)
0.183860 + 0.982952i \(0.441141\pi\)
\(542\) 3882.60 120.687i 0.307698 0.00956450i
\(543\) 1773.25 10694.8i 0.140142 0.845223i
\(544\) −9293.07 + 1455.60i −0.732421 + 0.114721i
\(545\) 804.848i 0.0632586i
\(546\) −819.133 + 6111.55i −0.0642045 + 0.479030i
\(547\) 4288.22i 0.335194i 0.985856 + 0.167597i \(0.0536007\pi\)
−0.985856 + 0.167597i \(0.946399\pi\)
\(548\) 936.962 + 15056.8i 0.0730384 + 1.17372i
\(549\) 12182.4 + 4154.01i 0.947054 + 0.322931i
\(550\) −81.9100 2635.11i −0.00635028 0.204294i
\(551\) −3261.39 −0.252159
\(552\) −6300.12 448.619i −0.485780 0.0345915i
\(553\) −3140.24 −0.241477
\(554\) −166.363 5352.02i −0.0127583 0.410443i
\(555\) 17331.6 + 2873.67i 1.32556 + 0.219785i
\(556\) 350.202 + 5627.70i 0.0267120 + 0.429258i
\(557\) 13183.7i 1.00289i 0.865189 + 0.501446i \(0.167199\pi\)
−0.865189 + 0.501446i \(0.832801\pi\)
\(558\) −22081.1 6771.16i −1.67521 0.513702i
\(559\) 5014.00i 0.379373i
\(560\) −5282.34 + 659.979i −0.398607 + 0.0498021i
\(561\) −15329.5 2541.71i −1.15367 0.191285i
\(562\) −11197.3 + 348.059i −0.840446 + 0.0261245i
\(563\) 5054.25 0.378350 0.189175 0.981943i \(-0.439419\pi\)
0.189175 + 0.981943i \(0.439419\pi\)
\(564\) −2033.35 + 19833.9i −0.151808 + 1.48078i
\(565\) 14592.8 1.08659
\(566\) −9836.70 + 305.765i −0.730508 + 0.0227072i
\(567\) 3117.60 4039.95i 0.230912 0.299227i
\(568\) 1295.44 + 13856.0i 0.0956962 + 1.02356i
\(569\) 1790.71i 0.131934i −0.997822 0.0659671i \(-0.978987\pi\)
0.997822 0.0659671i \(-0.0210132\pi\)
\(570\) −3556.20 476.639i −0.261321 0.0350249i
\(571\) 10998.7i 0.806099i −0.915178 0.403049i \(-0.867950\pi\)
0.915178 0.403049i \(-0.132050\pi\)
\(572\) −27541.1 + 1713.84i −2.01320 + 0.125278i
\(573\) −994.875 + 6000.26i −0.0725332 + 0.437460i
\(574\) 96.7086 + 3111.19i 0.00703230 + 0.226235i
\(575\) −870.074 −0.0631036
\(576\) 13684.5 + 1958.83i 0.989910 + 0.141698i
\(577\) −25965.2 −1.87339 −0.936695 0.350147i \(-0.886132\pi\)
−0.936695 + 0.350147i \(0.886132\pi\)
\(578\) −194.454 6255.74i −0.0139935 0.450181i
\(579\) −2028.49 + 12234.2i −0.145598 + 0.878127i
\(580\) 15060.9 937.217i 1.07823 0.0670962i
\(581\) 4761.11i 0.339973i
\(582\) 8054.24 + 1079.51i 0.573641 + 0.0768853i
\(583\) 15304.8i 1.08724i
\(584\) 689.458 + 7374.41i 0.0488527 + 0.522526i
\(585\) 6206.10 18200.5i 0.438616 1.28632i
\(586\) 5028.72 156.313i 0.354496 0.0110192i
\(587\) 11193.8 0.787084 0.393542 0.919307i \(-0.371250\pi\)
0.393542 + 0.919307i \(0.371250\pi\)
\(588\) −207.731 + 2026.27i −0.0145692 + 0.142112i
\(589\) 6213.55 0.434678
\(590\) 4980.46 154.813i 0.347529 0.0108026i
\(591\) −23574.3 3908.74i −1.64081 0.272054i
\(592\) 18069.7 2257.64i 1.25449 0.156737i
\(593\) 14750.7i 1.02148i −0.859735 0.510740i \(-0.829371\pi\)
0.859735 0.510740i \(-0.170629\pi\)
\(594\) 20443.8 + 10176.2i 1.41215 + 0.702918i
\(595\) 4322.23i 0.297805i
\(596\) 1006.38 + 16172.3i 0.0691657 + 1.11148i
\(597\) −5166.03 856.555i −0.354157 0.0587210i
\(598\) 282.941 + 9102.44i 0.0193484 + 0.622452i
\(599\) 5736.96 0.391329 0.195664 0.980671i \(-0.437314\pi\)
0.195664 + 0.980671i \(0.437314\pi\)
\(600\) 1899.52 + 135.261i 0.129246 + 0.00920337i
\(601\) 11522.6 0.782054 0.391027 0.920379i \(-0.372120\pi\)
0.391027 + 0.920379i \(0.372120\pi\)
\(602\) 51.4592 + 1655.48i 0.00348392 + 0.112081i
\(603\) −6793.54 + 19923.3i −0.458797 + 1.34551i
\(604\) 662.428 + 10645.1i 0.0446255 + 0.717126i
\(605\) 23538.1i 1.58175i
\(606\) 159.206 1187.83i 0.0106721 0.0796245i
\(607\) 18497.3i 1.23687i −0.785835 0.618436i \(-0.787766\pi\)
0.785835 0.618436i \(-0.212234\pi\)
\(608\) −3674.31 + 575.517i −0.245087 + 0.0383887i
\(609\) 944.447 5696.13i 0.0628423 0.379013i
\(610\) 16014.1 497.783i 1.06294 0.0330404i
\(611\) 28747.5 1.90343
\(612\) 2955.64 10827.9i 0.195220 0.715186i
\(613\) 8751.26 0.576607 0.288304 0.957539i \(-0.406909\pi\)
0.288304 + 0.957539i \(0.406909\pi\)
\(614\) −71.8077 + 2.23208i −0.00471975 + 0.000146709i
\(615\) 1587.80 9576.32i 0.104108 0.627893i
\(616\) −9075.71 + 848.518i −0.593621 + 0.0554996i
\(617\) 14023.7i 0.915030i 0.889202 + 0.457515i \(0.151260\pi\)
−0.889202 + 0.457515i \(0.848740\pi\)
\(618\) 1983.50 14798.9i 0.129107 0.963267i
\(619\) 20122.5i 1.30661i −0.757096 0.653304i \(-0.773382\pi\)
0.757096 0.653304i \(-0.226618\pi\)
\(620\) −28693.9 + 1785.57i −1.85867 + 0.115662i
\(621\) 3566.40 6639.37i 0.230458 0.429032i
\(622\) −266.999 8589.56i −0.0172117 0.553714i
\(623\) −2892.20 −0.185993
\(624\) 797.352 19916.2i 0.0511533 1.27770i
\(625\) −17387.3 −1.11278
\(626\) 786.314 + 25296.3i 0.0502035 + 1.61509i
\(627\) −6060.99 1004.94i −0.386049 0.0640089i
\(628\) 15786.8 982.387i 1.00312 0.0624228i
\(629\) 14785.4i 0.937251i
\(630\) 1862.29 6073.00i 0.117770 0.384054i
\(631\) 15050.4i 0.949523i 0.880115 + 0.474761i \(0.157466\pi\)
−0.880115 + 0.474761i \(0.842534\pi\)
\(632\) 10106.7 944.910i 0.636113 0.0594723i
\(633\) 25543.1 + 4235.18i 1.60387 + 0.265929i
\(634\) 29.8801 0.928797i 0.00187175 5.81817e-5i
\(635\) 13532.6 0.845706
\(636\) 10997.5 + 1127.45i 0.685657 + 0.0702929i
\(637\) 2936.90 0.182675
\(638\) 25826.3 802.786i 1.60262 0.0498160i
\(639\) −15717.0 5359.27i −0.973015 0.331783i
\(640\) 16802.4 3713.59i 1.03777 0.229363i
\(641\) 12990.3i 0.800444i −0.916418 0.400222i \(-0.868933\pi\)
0.916418 0.400222i \(-0.131067\pi\)
\(642\) −31197.3 4181.38i −1.91785 0.257050i
\(643\) 13304.0i 0.815956i 0.912992 + 0.407978i \(0.133766\pi\)
−0.912992 + 0.407978i \(0.866234\pi\)
\(644\) 186.839 + 3002.47i 0.0114324 + 0.183717i
\(645\) 844.879 5095.61i 0.0515769 0.311069i
\(646\) 93.8177 + 3018.19i 0.00571394 + 0.183822i
\(647\) −11304.7 −0.686912 −0.343456 0.939169i \(-0.611598\pi\)
−0.343456 + 0.939169i \(0.611598\pi\)
\(648\) −8818.22 + 13940.5i −0.534587 + 0.845113i
\(649\) 8532.17 0.516051
\(650\) −85.3085 2744.44i −0.00514781 0.165609i
\(651\) −1799.35 + 10852.2i −0.108329 + 0.653350i
\(652\) −833.937 13401.2i −0.0500912 0.804959i
\(653\) 19130.0i 1.14643i −0.819407 0.573213i \(-0.805697\pi\)
0.819407 0.573213i \(-0.194303\pi\)
\(654\) 986.648 + 132.241i 0.0589924 + 0.00790676i
\(655\) 18278.0i 1.09035i
\(656\) −1247.42 9984.12i −0.0742433 0.594229i
\(657\) −8364.91 2852.31i −0.496722 0.169374i
\(658\) 9491.62 295.038i 0.562343 0.0174799i
\(659\) −23752.1 −1.40402 −0.702011 0.712166i \(-0.747714\pi\)
−0.702011 + 0.712166i \(0.747714\pi\)
\(660\) 28278.2 + 2899.05i 1.66777 + 0.170978i
\(661\) 7980.69 0.469611 0.234805 0.972042i \(-0.424555\pi\)
0.234805 + 0.972042i \(0.424555\pi\)
\(662\) −20224.0 + 628.643i −1.18735 + 0.0369077i
\(663\) −15965.5 2647.16i −0.935218 0.155064i
\(664\) −1432.64 15323.4i −0.0837306 0.895578i
\(665\) 1708.93i 0.0996533i
\(666\) −6370.46 + 20774.4i −0.370646 + 1.20869i
\(667\) 8527.44i 0.495028i
\(668\) 23421.8 1457.50i 1.35661 0.0844199i
\(669\) 1753.13 + 290.678i 0.101315 + 0.0167986i
\(670\) 814.082 + 26189.7i 0.0469414 + 1.51014i
\(671\) 27434.2 1.57837
\(672\) 58.8614 6583.97i 0.00337891 0.377949i
\(673\) 8141.43 0.466313 0.233157 0.972439i \(-0.425094\pi\)
0.233157 + 0.972439i \(0.425094\pi\)
\(674\) 731.929 + 23546.7i 0.0418292 + 1.34568i
\(675\) −1075.29 + 2001.81i −0.0613155 + 0.114148i
\(676\) −11141.7 + 693.329i −0.633915 + 0.0394475i
\(677\) 8089.20i 0.459222i 0.973283 + 0.229611i \(0.0737454\pi\)
−0.973283 + 0.229611i \(0.926255\pi\)
\(678\) −2397.67 + 17889.0i −0.135814 + 1.01331i
\(679\) 3870.46i 0.218755i
\(680\) −1300.57 13910.9i −0.0733452 0.784497i
\(681\) 1002.24 6044.66i 0.0563961 0.340135i
\(682\) −49203.9 + 1529.46i −2.76263 + 0.0858739i
\(683\) −1228.57 −0.0688287 −0.0344143 0.999408i \(-0.510957\pi\)
−0.0344143 + 0.999408i \(0.510957\pi\)
\(684\) 1168.61 4281.17i 0.0653257 0.239320i
\(685\) −22407.6 −1.24986
\(686\) 969.682 30.1417i 0.0539689 0.00167757i
\(687\) 1210.69 7301.86i 0.0672351 0.405507i
\(688\) −663.760 5312.61i −0.0367814 0.294392i
\(689\) 15939.8i 0.881363i
\(690\) 1246.25 9298.28i 0.0687594 0.513014i
\(691\) 16599.3i 0.913844i 0.889507 + 0.456922i \(0.151048\pi\)
−0.889507 + 0.456922i \(0.848952\pi\)
\(692\) −1011.23 16250.3i −0.0555508 0.892693i
\(693\) 3510.34 10294.7i 0.192420 0.564306i
\(694\) −373.091 12002.6i −0.0204068 0.656504i
\(695\) −8375.15 −0.457104
\(696\) −1325.67 + 18616.9i −0.0721976 + 1.01390i
\(697\) −8169.41 −0.443958
\(698\) 614.998 + 19785.0i 0.0333496 + 1.07288i
\(699\) −2938.08 487.150i −0.158982 0.0263601i
\(700\) −56.3330 905.263i −0.00304170 0.0488796i
\(701\) 23398.3i 1.26069i −0.776316 0.630344i \(-0.782914\pi\)
0.776316 0.630344i \(-0.217086\pi\)
\(702\) 21292.0 + 10598.4i 1.14475 + 0.569815i
\(703\) 5845.85i 0.313628i
\(704\) 28954.4 5461.83i 1.55009 0.292401i
\(705\) −29215.4 4844.07i −1.56073 0.258777i
\(706\) −18959.3 + 589.333i −1.01068 + 0.0314162i
\(707\) −570.812 −0.0303644
\(708\) −628.533 + 6130.89i −0.0333640 + 0.325442i
\(709\) 4729.80 0.250538 0.125269 0.992123i \(-0.460021\pi\)
0.125269 + 0.992123i \(0.460021\pi\)
\(710\) −20660.4 + 642.211i −1.09207 + 0.0339461i
\(711\) −3909.12 + 11464.2i −0.206193 + 0.604700i
\(712\) 9308.40 870.273i 0.489954 0.0458074i
\(713\) 16246.4i 0.853340i
\(714\) −5298.54 710.165i −0.277721 0.0372230i
\(715\) 40986.6i 2.14380i
\(716\) −29006.8 + 1805.04i −1.51402 + 0.0942147i
\(717\) −4728.97 + 28521.2i −0.246313 + 1.48556i
\(718\) −248.144 7983.00i −0.0128979 0.414934i
\(719\) 17392.3 0.902120 0.451060 0.892494i \(-0.351046\pi\)
0.451060 + 0.892494i \(0.351046\pi\)
\(720\) −4166.29 + 20106.0i −0.215651 + 1.04071i
\(721\) −7111.59 −0.367336
\(722\) −565.652 18197.5i −0.0291571 0.938006i
\(723\) −3987.87 + 24051.5i −0.205132 + 1.23719i
\(724\) 16658.2 1036.61i 0.855108 0.0532119i
\(725\) 2571.08i 0.131707i
\(726\) 28854.9 + 3867.43i 1.47508 + 0.197705i
\(727\) 2259.30i 0.115258i 0.998338 + 0.0576292i \(0.0183541\pi\)
−0.998338 + 0.0576292i \(0.981646\pi\)
\(728\) −9452.26 + 883.723i −0.481215 + 0.0449903i
\(729\) −10867.9 16410.7i −0.552145 0.833748i
\(730\) −10995.9 + 341.797i −0.557501 + 0.0173294i
\(731\) −4346.99 −0.219944
\(732\) −2020.97 + 19713.1i −0.102045 + 0.995380i
\(733\) 9477.23 0.477557 0.238779 0.971074i \(-0.423253\pi\)
0.238779 + 0.971074i \(0.423253\pi\)
\(734\) −13884.8 + 431.595i −0.698223 + 0.0217036i
\(735\) −2984.70 494.879i −0.149786 0.0248352i
\(736\) −1504.79 9607.09i −0.0753630 0.481144i
\(737\) 44866.3i 2.24243i
\(738\) 11478.5 + 3519.90i 0.572535 + 0.175568i
\(739\) 11228.4i 0.558922i 0.960157 + 0.279461i \(0.0901558\pi\)
−0.960157 + 0.279461i \(0.909844\pi\)
\(740\) 1679.91 + 26995.9i 0.0834522 + 1.34106i
\(741\) −6312.47 1046.64i −0.312948 0.0518884i
\(742\) −163.592 5262.89i −0.00809388 0.260386i
\(743\) 32368.4 1.59822 0.799112 0.601182i \(-0.205303\pi\)
0.799112 + 0.601182i \(0.205303\pi\)
\(744\) 2525.66 35468.7i 0.124456 1.74778i
\(745\) −24067.6 −1.18358
\(746\) 161.487 + 5195.16i 0.00792554 + 0.254971i
\(747\) 17381.6 + 5926.85i 0.851351 + 0.290298i
\(748\) −1485.85 23877.3i −0.0726309 1.16717i
\(749\) 14991.8i 0.731361i
\(750\) 2524.17 18832.8i 0.122893 0.916902i
\(751\) 6776.22i 0.329251i −0.986356 0.164626i \(-0.947358\pi\)
0.986356 0.164626i \(-0.0526416\pi\)
\(752\) −30459.5 + 3805.63i −1.47705 + 0.184544i
\(753\) −3829.69 + 23097.5i −0.185341 + 1.11782i
\(754\) 26897.8 836.094i 1.29915 0.0403830i
\(755\) −15842.1 −0.763646
\(756\) 7138.80 + 3280.77i 0.343433 + 0.157831i
\(757\) 16374.4 0.786180 0.393090 0.919500i \(-0.371406\pi\)
0.393090 + 0.919500i \(0.371406\pi\)
\(758\) −6573.05 + 204.317i −0.314966 + 0.00979042i
\(759\) 2627.59 15847.5i 0.125660 0.757875i
\(760\) −514.223 5500.11i −0.0245432 0.262513i
\(761\) 6365.36i 0.303212i −0.988441 0.151606i \(-0.951556\pi\)
0.988441 0.151606i \(-0.0484445\pi\)
\(762\) −2223.47 + 16589.3i −0.105706 + 0.788671i
\(763\) 474.133i 0.0224964i
\(764\) −9346.06 + 581.589i −0.442576 + 0.0275408i
\(765\) 15779.3 + 5380.51i 0.745756 + 0.254291i
\(766\) −831.940 26764.2i −0.0392418 1.26244i
\(767\) 8886.17 0.418333
\(768\) 1791.70 + 21207.9i 0.0841827 + 0.996450i
\(769\) −540.012 −0.0253229 −0.0126615 0.999920i \(-0.504030\pi\)
−0.0126615 + 0.999920i \(0.504030\pi\)
\(770\) −420.650 13532.7i −0.0196873 0.633355i
\(771\) −8333.45 1381.73i −0.389263 0.0645418i
\(772\) −19056.1 + 1185.83i −0.888398 + 0.0552835i
\(773\) 20167.6i 0.938394i 0.883094 + 0.469197i \(0.155457\pi\)
−0.883094 + 0.469197i \(0.844543\pi\)
\(774\) 6107.80 + 1872.96i 0.283644 + 0.0869794i
\(775\) 4898.38i 0.227039i
\(776\) 1164.63 + 12456.9i 0.0538762 + 0.576258i
\(777\) 10210.0 + 1692.87i 0.471404 + 0.0781613i
\(778\) 10158.5 315.767i 0.468122 0.0145512i
\(779\) −3230.03 −0.148560
\(780\) 29451.4 + 3019.33i 1.35196 + 0.138602i
\(781\) −35394.0 −1.62163
\(782\) −7891.56 + 245.302i −0.360871 + 0.0112174i
\(783\) −19619.4 10538.7i −0.895453 0.481001i
\(784\) −3111.81 + 388.791i −0.141755 + 0.0177109i
\(785\) 23493.9i 1.06820i
\(786\) −22406.7 3003.18i −1.01682 0.136285i
\(787\) 39007.0i 1.76677i −0.468646 0.883386i \(-0.655258\pi\)
0.468646 0.883386i \(-0.344742\pi\)
\(788\) −2284.99 36719.5i −0.103299 1.66000i
\(789\) 2002.92 12080.0i 0.0903750 0.545067i
\(790\) 468.437 + 15070.0i 0.0210965 + 0.678691i
\(791\) 8596.54 0.386419
\(792\) −8200.14 + 34189.3i −0.367903 + 1.53392i
\(793\) 28572.4 1.27949
\(794\) −1104.65 35537.5i −0.0493736 1.58839i
\(795\) −2685.93 + 16199.3i −0.119824 + 0.722679i
\(796\) −500.729 8046.65i −0.0222963 0.358299i
\(797\) 9334.99i 0.414884i −0.978247 0.207442i \(-0.933486\pi\)
0.978247 0.207442i \(-0.0665138\pi\)
\(798\) −2094.94 280.786i −0.0929326 0.0124558i
\(799\) 24923.2i 1.10353i
\(800\) 453.702 + 2896.60i 0.0200510 + 0.128013i
\(801\) −3600.34 + 10558.7i −0.158816 + 0.465758i
\(802\) −35718.2 + 1110.27i −1.57264 + 0.0488840i
\(803\) −18837.3 −0.827840
\(804\) −32239.2 3305.13i −1.41416 0.144979i
\(805\) −4468.28 −0.195635
\(806\) −51245.3 + 1592.92i −2.23950 + 0.0696130i
\(807\) 11983.9 + 1986.99i 0.522743 + 0.0866735i
\(808\) 1837.13 171.760i 0.0799877 0.00747831i
\(809\) 11699.2i 0.508433i 0.967147 + 0.254217i \(0.0818176\pi\)
−0.967147 + 0.254217i \(0.918182\pi\)
\(810\) −19852.7 14358.7i −0.861176 0.622855i
\(811\) 27172.5i 1.17652i −0.808673 0.588258i \(-0.799814\pi\)
0.808673 0.588258i \(-0.200186\pi\)
\(812\) 8872.33 552.110i 0.383445 0.0238612i
\(813\) −7040.13 1167.29i −0.303700 0.0503550i
\(814\) 1438.95 + 46292.1i 0.0619596 + 1.99329i
\(815\) 19943.7 0.857176
\(816\) 17266.8 + 691.282i 0.740758 + 0.0296565i
\(817\) −1718.72 −0.0735990
\(818\) −1084.25 34881.3i −0.0463448 1.49095i
\(819\) 3655.98 10721.9i 0.155983 0.457450i
\(820\) 14916.1 928.206i 0.635237 0.0395297i
\(821\) 25582.6i 1.08750i −0.839247 0.543751i \(-0.817004\pi\)
0.839247 0.543751i \(-0.182996\pi\)
\(822\) 3681.69 27469.1i 0.156221 1.16556i
\(823\) 14407.8i 0.610237i 0.952314 + 0.305119i \(0.0986961\pi\)
−0.952314 + 0.305119i \(0.901304\pi\)
\(824\) 22888.3 2139.90i 0.967661 0.0904698i
\(825\) −792.236 + 4778.11i −0.0334329 + 0.201639i
\(826\) 2933.97 91.1998i 0.123591 0.00384170i
\(827\) 15273.7 0.642225 0.321113 0.947041i \(-0.395943\pi\)
0.321113 + 0.947041i \(0.395943\pi\)
\(828\) 11193.8 + 3055.51i 0.469822 + 0.128244i
\(829\) 13333.4 0.558610 0.279305 0.960202i \(-0.409896\pi\)
0.279305 + 0.960202i \(0.409896\pi\)
\(830\) 22848.5 710.226i 0.955523 0.0297016i
\(831\) −1609.06 + 9704.55i −0.0671695 + 0.405111i
\(832\) 30155.7 5688.44i 1.25657 0.237033i
\(833\) 2546.21i 0.105907i
\(834\) 1376.08 10266.9i 0.0571340 0.426277i
\(835\) 34856.4i 1.44462i
\(836\) −587.476 9440.65i −0.0243042 0.390564i
\(837\) 37378.6 + 20078.3i 1.54360 + 0.829159i
\(838\) −929.075 29889.1i −0.0382988 1.23210i
\(839\) −18346.1 −0.754919 −0.377460 0.926026i \(-0.623202\pi\)
−0.377460 + 0.926026i \(0.623202\pi\)
\(840\) 9755.04 + 694.637i 0.400691 + 0.0285324i
\(841\) −809.675 −0.0331984
\(842\) −548.849 17656.9i −0.0224639 0.722681i
\(843\) 20303.6 + 3366.43i 0.829527 + 0.137540i
\(844\) 2475.82 + 39786.1i 0.100973 + 1.62262i
\(845\) 16581.1i 0.675037i
\(846\) 10738.5 35018.7i 0.436403 1.42313i
\(847\) 13866.2i 0.562512i
\(848\) 2110.14 + 16889.1i 0.0854509 + 0.683933i
\(849\) 17836.4 + 2957.37i 0.721017 + 0.119548i
\(850\) 2379.35 73.9600i 0.0960131 0.00298448i
\(851\) 15285.0 0.615701
\(852\) 2607.34 25432.7i 0.104843 1.02267i
\(853\) 35153.2 1.41105 0.705524 0.708686i \(-0.250712\pi\)
0.705524 + 0.708686i \(0.250712\pi\)
\(854\) 9433.82 293.242i 0.378008 0.0117500i
\(855\) 6238.86 + 2127.35i 0.249549 + 0.0850923i
\(856\) −4511.09 48250.5i −0.180124 1.92660i
\(857\) 15229.6i 0.607041i −0.952825 0.303521i \(-0.901838\pi\)
0.952825 0.303521i \(-0.0981621\pi\)
\(858\) 50244.8 + 6734.32i 1.99922 + 0.267956i
\(859\) 33945.5i 1.34832i 0.738585 + 0.674160i \(0.235494\pi\)
−0.738585 + 0.674160i \(0.764506\pi\)
\(860\) 7936.97 493.904i 0.314707 0.0195837i
\(861\) 935.368 5641.37i 0.0370235 0.223295i
\(862\) 818.842 + 26342.8i 0.0323549 + 1.04088i
\(863\) −43822.0 −1.72853 −0.864264 0.503039i \(-0.832215\pi\)
−0.864264 + 0.503039i \(0.832215\pi\)
\(864\) −23963.1 8410.91i −0.943565 0.331186i
\(865\) 24183.7 0.950602
\(866\) 1203.83 + 38728.2i 0.0472377 + 1.51967i
\(867\) −1880.76 + 11343.2i −0.0736725 + 0.444332i
\(868\) −16903.4 + 1051.87i −0.660991 + 0.0411324i
\(869\) 25816.8i 1.00780i
\(870\) −27476.5 3682.69i −1.07074 0.143511i
\(871\) 46727.8i 1.81781i
\(872\) 142.668 + 1525.97i 0.00554055 + 0.0592614i
\(873\) −14130.0 4818.12i −0.547800 0.186791i
\(874\) −3120.17 + 96.9878i −0.120757 + 0.00375362i
\(875\) −9050.08 −0.349655
\(876\) 1387.68 13535.8i 0.0535220 0.522069i
\(877\) −37852.1 −1.45744 −0.728719 0.684813i \(-0.759884\pi\)
−0.728719 + 0.684813i \(0.759884\pi\)
\(878\) 20353.0 632.655i 0.782324 0.0243178i
\(879\) −9118.33 1511.87i −0.349890 0.0580136i
\(880\) 5425.87 + 43427.6i 0.207848 + 1.66357i
\(881\) 3600.18i 0.137677i 0.997628 + 0.0688384i \(0.0219293\pi\)
−0.997628 + 0.0688384i \(0.978071\pi\)
\(882\) 1097.07 3577.58i 0.0418822 0.136580i
\(883\) 43272.5i 1.64919i −0.565722 0.824596i \(-0.691403\pi\)
0.565722 0.824596i \(-0.308597\pi\)
\(884\) −1547.49 24868.0i −0.0588777 0.946155i
\(885\) −9030.82 1497.36i −0.343014 0.0568735i
\(886\) 1379.43 + 44377.3i 0.0523057 + 1.68271i
\(887\) −24028.0 −0.909562 −0.454781 0.890603i \(-0.650283\pi\)
−0.454781 + 0.890603i \(0.650283\pi\)
\(888\) −33369.7 2376.19i −1.26105 0.0897972i
\(889\) 7971.97 0.300755
\(890\) 431.435 + 13879.6i 0.0162492 + 0.522748i
\(891\) −33213.5 25630.7i −1.24882 0.963704i
\(892\) 169.926 + 2730.69i 0.00637843 + 0.102500i
\(893\) 9854.18i 0.369269i
\(894\) 3954.44 29504.1i 0.147938 1.10376i
\(895\) 43167.9i 1.61223i
\(896\) 9898.21 2187.66i 0.369058 0.0815675i
\(897\) 2736.61 16505.0i 0.101865 0.614365i
\(898\) 46538.3 1446.60i 1.72940 0.0537569i
\(899\) 48008.2 1.78105
\(900\) −3375.01 921.256i −0.125000 0.0341206i
\(901\) 13819.4 0.510977
\(902\) 25578.0 795.068i 0.944183 0.0293491i
\(903\) 497.715 3001.80i 0.0183421 0.110624i
\(904\) −27667.5 + 2586.73i −1.01793 + 0.0951696i
\(905\) 24790.8i 0.910579i
\(906\) 2602.94 19420.5i 0.0954490 0.712145i
\(907\) 3259.12i 0.119313i 0.998219 + 0.0596567i \(0.0190006\pi\)
−0.998219 + 0.0596567i \(0.980999\pi\)
\(908\) 9415.21 585.893i 0.344113 0.0214136i
\(909\) −710.573 + 2083.89i −0.0259276 + 0.0760376i
\(910\) −438.103 14094.1i −0.0159593 0.513424i
\(911\) 4957.30 0.180288 0.0901441 0.995929i \(-0.471267\pi\)
0.0901441 + 0.995929i \(0.471267\pi\)
\(912\) 6826.97 + 273.320i 0.247877 + 0.00992382i
\(913\) 39142.5 1.41887
\(914\) −428.924 13798.8i −0.0155225 0.499371i
\(915\) −29037.5 4814.57i −1.04913 0.173950i
\(916\) 11373.4 707.749i 0.410250 0.0255291i
\(917\) 10767.5i 0.387759i
\(918\) −9188.49 + 18459.5i −0.330355 + 0.663677i
\(919\) 14412.7i 0.517334i 0.965967 + 0.258667i \(0.0832832\pi\)
−0.965967 + 0.258667i \(0.916717\pi\)
\(920\) 14380.9 1344.52i 0.515354 0.0481821i
\(921\) 130.205 + 21.5887i 0.00465843 + 0.000772391i
\(922\) 28916.3 898.837i 1.03287 0.0321059i
\(923\) −36862.5 −1.31456
\(924\) 16658.5 + 1707.82i 0.593102 + 0.0608042i
\(925\) −4608.51 −0.163813
\(926\) 28972.8 900.595i 1.02819 0.0319604i
\(927\) −8852.84 + 25962.6i −0.313663 + 0.919874i
\(928\) −28389.0 + 4446.66i −1.00422 + 0.157294i
\(929\) 3928.90i 0.138755i 0.997590 + 0.0693774i \(0.0221013\pi\)
−0.997590 + 0.0693774i \(0.977899\pi\)
\(930\) 52347.9 + 7016.21i 1.84576 + 0.247388i
\(931\) 1006.72i 0.0354393i
\(932\) −284.781 4576.38i −0.0100089 0.160842i
\(933\) −2582.42 + 15575.0i −0.0906158 + 0.546520i
\(934\) −423.028 13609.1i −0.0148200 0.476771i
\(935\) 35534.2 1.24288
\(936\) −8540.37 + 35607.9i −0.298238 + 1.24346i
\(937\) −22929.1 −0.799426 −0.399713 0.916640i \(-0.630890\pi\)
−0.399713 + 0.916640i \(0.630890\pi\)
\(938\) 479.572 + 15428.2i 0.0166936 + 0.537046i
\(939\) 7605.24 45868.5i 0.264311 1.59410i
\(940\) −2831.77 45506.1i −0.0982576 1.57899i
\(941\) 5458.91i 0.189113i 0.995519 + 0.0945565i \(0.0301433\pi\)
−0.995519 + 0.0945565i \(0.969857\pi\)
\(942\) −28800.8 3860.18i −0.996157 0.133515i
\(943\) 8445.46i 0.291646i
\(944\) −9415.39 + 1176.36i −0.324624 + 0.0405587i
\(945\) −5522.17 + 10280.3i −0.190091 + 0.353883i
\(946\) 13610.2 423.061i 0.467765 0.0145400i
\(947\) 9864.40 0.338490 0.169245 0.985574i \(-0.445867\pi\)
0.169245 + 0.985574i \(0.445867\pi\)
\(948\) −18551.0 1901.83i −0.635556 0.0651566i
\(949\) −19618.9 −0.671082
\(950\) 940.752 29.2424i 0.0321284 0.000998684i
\(951\) −54.1801 8.98334i −0.00184743 0.000306314i
\(952\) −766.163 8194.84i −0.0260835 0.278988i
\(953\) 39622.9i 1.34681i −0.739273 0.673406i \(-0.764831\pi\)
0.739273 0.673406i \(-0.235169\pi\)
\(954\) −19417.1 5954.25i −0.658964 0.202071i
\(955\) 13908.8i 0.471286i
\(956\) −44424.9 + 2764.49i −1.50293 + 0.0935250i
\(957\) −46829.5 7764.57i −1.58180 0.262270i
\(958\) 999.092 + 32141.6i 0.0336943 + 1.08397i
\(959\) −13200.2 −0.444481
\(960\) −31605.1 + 699.670i −1.06255 + 0.0235226i
\(961\) −61673.6 −2.07021
\(962\) 1498.65 + 48212.8i 0.0502271 + 1.61585i
\(963\) 54731.2 + 18662.5i 1.83145 + 0.624497i
\(964\) −37462.9 + 2331.25i −1.25166 + 0.0778885i
\(965\) 28359.3i 0.946028i
\(966\) 734.161 5477.58i 0.0244526 0.182441i
\(967\) 58502.3i 1.94551i 0.231838 + 0.972754i \(0.425526\pi\)
−0.231838 + 0.972754i \(0.574474\pi\)
\(968\) 4172.38 + 44627.6i 0.138539 + 1.48180i
\(969\) 907.407 5472.73i 0.0300827 0.181434i
\(970\) −18574.3 + 577.364i −0.614828 + 0.0191114i
\(971\) 23211.9 0.767154 0.383577 0.923509i \(-0.374692\pi\)
0.383577 + 0.923509i \(0.374692\pi\)
\(972\) 20863.9 21977.9i 0.688489 0.725247i
\(973\) −4933.76 −0.162558
\(974\) −11761.8 + 365.604i −0.386931 + 0.0120274i
\(975\) −825.106 + 4976.36i −0.0271021 + 0.163457i
\(976\) −30274.1 + 3782.46i −0.992878 + 0.124051i
\(977\) 29085.1i 0.952421i −0.879331 0.476210i \(-0.842010\pi\)
0.879331 0.476210i \(-0.157990\pi\)
\(978\) −3276.86 + 24448.7i −0.107140 + 0.799368i
\(979\) 23777.6i 0.776235i
\(980\) −289.299 4648.99i −0.00942992 0.151537i
\(981\) −1730.94 590.222i −0.0563349 0.0192093i
\(982\) 1372.67 + 44160.0i 0.0446067 + 1.43503i
\(983\) −13441.3 −0.436125 −0.218063 0.975935i \(-0.569974\pi\)
−0.218063 + 0.975935i \(0.569974\pi\)
\(984\) −1312.93 + 18437.9i −0.0425352 + 0.597337i
\(985\) 54646.0 1.76768
\(986\) 724.870 + 23319.6i 0.0234123 + 0.753193i
\(987\) −17210.7 2853.62i −0.555037 0.0920280i
\(988\) −611.850 9832.34i −0.0197020 0.316608i
\(989\) 4493.88i 0.144486i
\(990\) −49927.9 15310.4i −1.60284 0.491511i
\(991\) 18843.6i 0.604022i −0.953304 0.302011i \(-0.902342\pi\)
0.953304 0.302011i \(-0.0976580\pi\)
\(992\) 54086.4 8471.71i 1.73109 0.271146i
\(993\) 36671.1 + 6080.25i 1.17192 + 0.194311i
\(994\) −12171.0 + 378.324i −0.388370 + 0.0120721i
\(995\) 11975.0 0.381542
\(996\) −2883.48 + 28126.3i −0.0917335 + 0.894794i
\(997\) 3446.16 0.109469 0.0547346 0.998501i \(-0.482569\pi\)
0.0547346 + 0.998501i \(0.482569\pi\)
\(998\) 13350.3 414.982i 0.423443 0.0131624i
\(999\) 18890.1 35166.7i 0.598254 1.11374i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.4.e.a.71.17 36
3.2 odd 2 inner 84.4.e.a.71.20 yes 36
4.3 odd 2 inner 84.4.e.a.71.19 yes 36
12.11 even 2 inner 84.4.e.a.71.18 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.4.e.a.71.17 36 1.1 even 1 trivial
84.4.e.a.71.18 yes 36 12.11 even 2 inner
84.4.e.a.71.19 yes 36 4.3 odd 2 inner
84.4.e.a.71.20 yes 36 3.2 odd 2 inner