Properties

Label 84.5.m.a.73.2
Level $84$
Weight $5$
Character 84.73
Analytic conductor $8.683$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,5,Mod(61,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.61");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 84.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.68307689904\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.2
Root \(-1.63746 - 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 84.73
Dual form 84.5.m.a.61.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 2.59808i) q^{3} +(26.7371 - 15.4367i) q^{5} +(-17.5000 - 45.7684i) q^{7} +(13.5000 + 23.3827i) q^{9} +(40.3866 - 69.9517i) q^{11} +28.7961i q^{13} +160.423 q^{15} +(161.474 + 93.2272i) q^{17} +(482.804 - 278.747i) q^{19} +(40.1599 - 251.424i) q^{21} +(-54.5980 - 94.5665i) q^{23} +(164.083 - 284.199i) q^{25} +140.296i q^{27} -833.310 q^{29} +(965.768 + 557.587i) q^{31} +(363.480 - 209.855i) q^{33} +(-1174.41 - 953.575i) q^{35} +(351.732 + 609.218i) q^{37} +(-74.8144 + 129.582i) q^{39} -81.9587i q^{41} -602.062 q^{43} +(721.902 + 416.791i) q^{45} +(-2922.62 + 1687.38i) q^{47} +(-1788.50 + 1601.90i) q^{49} +(484.423 + 839.045i) q^{51} +(-2618.31 + 4535.04i) q^{53} -2493.74i q^{55} +2896.83 q^{57} +(-5342.12 - 3084.28i) q^{59} +(-3596.39 + 2076.38i) q^{61} +(833.939 - 1027.07i) q^{63} +(444.516 + 769.924i) q^{65} +(3901.99 - 6758.45i) q^{67} -567.399i q^{69} +4230.76 q^{71} +(8418.76 + 4860.57i) q^{73} +(1476.74 - 852.598i) q^{75} +(-3908.35 - 624.278i) q^{77} +(1125.02 + 1948.60i) q^{79} +(-364.500 + 631.333i) q^{81} -6950.76i q^{83} +5756.48 q^{85} +(-3749.89 - 2165.00i) q^{87} +(-7375.76 + 4258.40i) q^{89} +(1317.95 - 503.931i) q^{91} +(2897.30 + 5018.28i) q^{93} +(8605.87 - 14905.8i) q^{95} -2356.24i q^{97} +2180.88 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} + 39 q^{5} - 70 q^{7} + 54 q^{9} + 3 q^{11} + 234 q^{15} + 510 q^{17} + 459 q^{19} - 315 q^{21} + 144 q^{23} - 227 q^{25} - 570 q^{29} + 2640 q^{31} + 27 q^{33} - 2478 q^{35} + 433 q^{37}+ \cdots + 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 2.59808i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) 26.7371 15.4367i 1.06949 0.617468i 0.141444 0.989946i \(-0.454825\pi\)
0.928041 + 0.372479i \(0.121492\pi\)
\(6\) 0 0
\(7\) −17.5000 45.7684i −0.357143 0.934050i
\(8\) 0 0
\(9\) 13.5000 + 23.3827i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 40.3866 69.9517i 0.333774 0.578113i −0.649475 0.760383i \(-0.725011\pi\)
0.983249 + 0.182270i \(0.0583445\pi\)
\(12\) 0 0
\(13\) 28.7961i 0.170391i 0.996364 + 0.0851954i \(0.0271515\pi\)
−0.996364 + 0.0851954i \(0.972849\pi\)
\(14\) 0 0
\(15\) 160.423 0.712990
\(16\) 0 0
\(17\) 161.474 + 93.2272i 0.558734 + 0.322585i 0.752637 0.658435i \(-0.228781\pi\)
−0.193903 + 0.981021i \(0.562115\pi\)
\(18\) 0 0
\(19\) 482.804 278.747i 1.33741 0.772153i 0.350986 0.936381i \(-0.385846\pi\)
0.986422 + 0.164228i \(0.0525132\pi\)
\(20\) 0 0
\(21\) 40.1599 251.424i 0.0910655 0.570123i
\(22\) 0 0
\(23\) −54.5980 94.5665i −0.103210 0.178765i 0.809796 0.586712i \(-0.199578\pi\)
−0.913005 + 0.407947i \(0.866245\pi\)
\(24\) 0 0
\(25\) 164.083 284.199i 0.262532 0.454719i
\(26\) 0 0
\(27\) 140.296i 0.192450i
\(28\) 0 0
\(29\) −833.310 −0.990856 −0.495428 0.868649i \(-0.664989\pi\)
−0.495428 + 0.868649i \(0.664989\pi\)
\(30\) 0 0
\(31\) 965.768 + 557.587i 1.00496 + 0.580215i 0.909713 0.415238i \(-0.136302\pi\)
0.0952492 + 0.995453i \(0.469635\pi\)
\(32\) 0 0
\(33\) 363.480 209.855i 0.333774 0.192704i
\(34\) 0 0
\(35\) −1174.41 953.575i −0.958704 0.778428i
\(36\) 0 0
\(37\) 351.732 + 609.218i 0.256926 + 0.445009i 0.965417 0.260711i \(-0.0839569\pi\)
−0.708491 + 0.705720i \(0.750624\pi\)
\(38\) 0 0
\(39\) −74.8144 + 129.582i −0.0491876 + 0.0851954i
\(40\) 0 0
\(41\) 81.9587i 0.0487559i −0.999703 0.0243780i \(-0.992239\pi\)
0.999703 0.0243780i \(-0.00776051\pi\)
\(42\) 0 0
\(43\) −602.062 −0.325615 −0.162808 0.986658i \(-0.552055\pi\)
−0.162808 + 0.986658i \(0.552055\pi\)
\(44\) 0 0
\(45\) 721.902 + 416.791i 0.356495 + 0.205823i
\(46\) 0 0
\(47\) −2922.62 + 1687.38i −1.32305 + 0.763864i −0.984214 0.176981i \(-0.943367\pi\)
−0.338837 + 0.940845i \(0.610034\pi\)
\(48\) 0 0
\(49\) −1788.50 + 1601.90i −0.744898 + 0.667178i
\(50\) 0 0
\(51\) 484.423 + 839.045i 0.186245 + 0.322585i
\(52\) 0 0
\(53\) −2618.31 + 4535.04i −0.932113 + 1.61447i −0.152411 + 0.988317i \(0.548704\pi\)
−0.779702 + 0.626150i \(0.784630\pi\)
\(54\) 0 0
\(55\) 2493.74i 0.824378i
\(56\) 0 0
\(57\) 2896.83 0.891606
\(58\) 0 0
\(59\) −5342.12 3084.28i −1.53465 0.886031i −0.999138 0.0415046i \(-0.986785\pi\)
−0.535513 0.844527i \(-0.679882\pi\)
\(60\) 0 0
\(61\) −3596.39 + 2076.38i −0.966512 + 0.558016i −0.898171 0.439646i \(-0.855104\pi\)
−0.0683411 + 0.997662i \(0.521771\pi\)
\(62\) 0 0
\(63\) 833.939 1027.07i 0.210113 0.258773i
\(64\) 0 0
\(65\) 444.516 + 769.924i 0.105211 + 0.182231i
\(66\) 0 0
\(67\) 3901.99 6758.45i 0.869234 1.50556i 0.00645326 0.999979i \(-0.497946\pi\)
0.862781 0.505578i \(-0.168721\pi\)
\(68\) 0 0
\(69\) 567.399i 0.119176i
\(70\) 0 0
\(71\) 4230.76 0.839270 0.419635 0.907693i \(-0.362158\pi\)
0.419635 + 0.907693i \(0.362158\pi\)
\(72\) 0 0
\(73\) 8418.76 + 4860.57i 1.57980 + 0.912098i 0.994886 + 0.101003i \(0.0322052\pi\)
0.584914 + 0.811095i \(0.301128\pi\)
\(74\) 0 0
\(75\) 1476.74 852.598i 0.262532 0.151573i
\(76\) 0 0
\(77\) −3908.35 624.278i −0.659191 0.105292i
\(78\) 0 0
\(79\) 1125.02 + 1948.60i 0.180263 + 0.312225i 0.941970 0.335696i \(-0.108972\pi\)
−0.761707 + 0.647922i \(0.775638\pi\)
\(80\) 0 0
\(81\) −364.500 + 631.333i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 6950.76i 1.00896i −0.863422 0.504482i \(-0.831683\pi\)
0.863422 0.504482i \(-0.168317\pi\)
\(84\) 0 0
\(85\) 5756.48 0.796744
\(86\) 0 0
\(87\) −3749.89 2165.00i −0.495428 0.286035i
\(88\) 0 0
\(89\) −7375.76 + 4258.40i −0.931165 + 0.537609i −0.887180 0.461424i \(-0.847339\pi\)
−0.0439855 + 0.999032i \(0.514006\pi\)
\(90\) 0 0
\(91\) 1317.95 503.931i 0.159154 0.0608539i
\(92\) 0 0
\(93\) 2897.30 + 5018.28i 0.334987 + 0.580215i
\(94\) 0 0
\(95\) 8605.87 14905.8i 0.953559 1.65161i
\(96\) 0 0
\(97\) 2356.24i 0.250424i −0.992130 0.125212i \(-0.960039\pi\)
0.992130 0.125212i \(-0.0399611\pi\)
\(98\) 0 0
\(99\) 2180.88 0.222516
\(100\) 0 0
\(101\) 3848.54 + 2221.96i 0.377271 + 0.217817i 0.676630 0.736323i \(-0.263440\pi\)
−0.299359 + 0.954140i \(0.596773\pi\)
\(102\) 0 0
\(103\) −7634.42 + 4407.74i −0.719618 + 0.415471i −0.814612 0.580006i \(-0.803050\pi\)
0.0949943 + 0.995478i \(0.469717\pi\)
\(104\) 0 0
\(105\) −2807.40 7342.30i −0.254639 0.665968i
\(106\) 0 0
\(107\) 9370.54 + 16230.3i 0.818459 + 1.41761i 0.906817 + 0.421524i \(0.138505\pi\)
−0.0883577 + 0.996089i \(0.528162\pi\)
\(108\) 0 0
\(109\) 7926.20 13728.6i 0.667132 1.15551i −0.311570 0.950223i \(-0.600855\pi\)
0.978703 0.205284i \(-0.0658117\pi\)
\(110\) 0 0
\(111\) 3655.31i 0.296673i
\(112\) 0 0
\(113\) 8142.87 0.637706 0.318853 0.947804i \(-0.396702\pi\)
0.318853 + 0.947804i \(0.396702\pi\)
\(114\) 0 0
\(115\) −2919.59 1685.62i −0.220763 0.127457i
\(116\) 0 0
\(117\) −673.329 + 388.747i −0.0491876 + 0.0283985i
\(118\) 0 0
\(119\) 1441.06 9021.90i 0.101763 0.637095i
\(120\) 0 0
\(121\) 4058.34 + 7029.25i 0.277190 + 0.480107i
\(122\) 0 0
\(123\) 212.935 368.814i 0.0140746 0.0243780i
\(124\) 0 0
\(125\) 9164.29i 0.586514i
\(126\) 0 0
\(127\) −28274.4 −1.75301 −0.876507 0.481388i \(-0.840133\pi\)
−0.876507 + 0.481388i \(0.840133\pi\)
\(128\) 0 0
\(129\) −2709.28 1564.20i −0.162808 0.0939970i
\(130\) 0 0
\(131\) −5308.55 + 3064.89i −0.309338 + 0.178596i −0.646630 0.762804i \(-0.723822\pi\)
0.337292 + 0.941400i \(0.390489\pi\)
\(132\) 0 0
\(133\) −21206.9 17219.1i −1.19888 0.973437i
\(134\) 0 0
\(135\) 2165.71 + 3751.12i 0.118832 + 0.205823i
\(136\) 0 0
\(137\) 722.018 1250.57i 0.0384686 0.0666297i −0.846150 0.532945i \(-0.821085\pi\)
0.884619 + 0.466315i \(0.154419\pi\)
\(138\) 0 0
\(139\) 23411.3i 1.21170i 0.795578 + 0.605851i \(0.207167\pi\)
−0.795578 + 0.605851i \(0.792833\pi\)
\(140\) 0 0
\(141\) −17535.7 −0.882034
\(142\) 0 0
\(143\) 2014.33 + 1162.98i 0.0985052 + 0.0568720i
\(144\) 0 0
\(145\) −22280.3 + 12863.5i −1.05971 + 0.611821i
\(146\) 0 0
\(147\) −12210.1 + 2561.87i −0.565047 + 0.118556i
\(148\) 0 0
\(149\) 7864.49 + 13621.7i 0.354240 + 0.613562i 0.986988 0.160796i \(-0.0514062\pi\)
−0.632747 + 0.774358i \(0.718073\pi\)
\(150\) 0 0
\(151\) −54.8582 + 95.0172i −0.00240596 + 0.00416724i −0.867226 0.497915i \(-0.834099\pi\)
0.864820 + 0.502082i \(0.167433\pi\)
\(152\) 0 0
\(153\) 5034.27i 0.215057i
\(154\) 0 0
\(155\) 34429.2 1.43306
\(156\) 0 0
\(157\) −6418.59 3705.77i −0.260399 0.150342i 0.364117 0.931353i \(-0.381371\pi\)
−0.624517 + 0.781011i \(0.714704\pi\)
\(158\) 0 0
\(159\) −23564.8 + 13605.1i −0.932113 + 0.538156i
\(160\) 0 0
\(161\) −3372.70 + 4153.78i −0.130114 + 0.160248i
\(162\) 0 0
\(163\) 18175.0 + 31480.0i 0.684068 + 1.18484i 0.973729 + 0.227711i \(0.0731241\pi\)
−0.289661 + 0.957129i \(0.593543\pi\)
\(164\) 0 0
\(165\) 6478.93 11221.8i 0.237977 0.412189i
\(166\) 0 0
\(167\) 41582.3i 1.49099i −0.666510 0.745496i \(-0.732212\pi\)
0.666510 0.745496i \(-0.267788\pi\)
\(168\) 0 0
\(169\) 27731.8 0.970967
\(170\) 0 0
\(171\) 13035.7 + 7526.18i 0.445803 + 0.257384i
\(172\) 0 0
\(173\) −26202.2 + 15127.9i −0.875480 + 0.505459i −0.869165 0.494521i \(-0.835343\pi\)
−0.00631464 + 0.999980i \(0.502010\pi\)
\(174\) 0 0
\(175\) −15878.8 2536.32i −0.518492 0.0828185i
\(176\) 0 0
\(177\) −16026.4 27758.5i −0.511551 0.886031i
\(178\) 0 0
\(179\) 12830.4 22222.8i 0.400435 0.693575i −0.593343 0.804950i \(-0.702192\pi\)
0.993778 + 0.111375i \(0.0355255\pi\)
\(180\) 0 0
\(181\) 35378.2i 1.07989i −0.841701 0.539943i \(-0.818446\pi\)
0.841701 0.539943i \(-0.181554\pi\)
\(182\) 0 0
\(183\) −21578.4 −0.644341
\(184\) 0 0
\(185\) 18808.6 + 10859.2i 0.549558 + 0.317287i
\(186\) 0 0
\(187\) 13042.8 7530.27i 0.372982 0.215341i
\(188\) 0 0
\(189\) 6421.13 2455.18i 0.179758 0.0687322i
\(190\) 0 0
\(191\) 2521.50 + 4367.36i 0.0691181 + 0.119716i 0.898513 0.438946i \(-0.144648\pi\)
−0.829395 + 0.558662i \(0.811315\pi\)
\(192\) 0 0
\(193\) 455.204 788.436i 0.0122206 0.0211666i −0.859850 0.510546i \(-0.829443\pi\)
0.872071 + 0.489379i \(0.162777\pi\)
\(194\) 0 0
\(195\) 4619.54i 0.121487i
\(196\) 0 0
\(197\) 51842.5 1.33584 0.667918 0.744235i \(-0.267186\pi\)
0.667918 + 0.744235i \(0.267186\pi\)
\(198\) 0 0
\(199\) −14759.6 8521.47i −0.372708 0.215183i 0.301933 0.953329i \(-0.402368\pi\)
−0.674641 + 0.738146i \(0.735702\pi\)
\(200\) 0 0
\(201\) 35117.9 20275.3i 0.869234 0.501852i
\(202\) 0 0
\(203\) 14582.9 + 38139.3i 0.353877 + 0.925509i
\(204\) 0 0
\(205\) −1265.17 2191.34i −0.0301052 0.0521437i
\(206\) 0 0
\(207\) 1474.15 2553.30i 0.0344033 0.0595882i
\(208\) 0 0
\(209\) 45030.7i 1.03090i
\(210\) 0 0
\(211\) 36047.9 0.809684 0.404842 0.914387i \(-0.367327\pi\)
0.404842 + 0.914387i \(0.367327\pi\)
\(212\) 0 0
\(213\) 19038.4 + 10991.8i 0.419635 + 0.242277i
\(214\) 0 0
\(215\) −16097.4 + 9293.85i −0.348241 + 0.201057i
\(216\) 0 0
\(217\) 8618.92 53959.5i 0.183035 1.14590i
\(218\) 0 0
\(219\) 25256.3 + 43745.1i 0.526600 + 0.912098i
\(220\) 0 0
\(221\) −2684.58 + 4649.82i −0.0549656 + 0.0952033i
\(222\) 0 0
\(223\) 8665.34i 0.174251i −0.996197 0.0871256i \(-0.972232\pi\)
0.996197 0.0871256i \(-0.0277682\pi\)
\(224\) 0 0
\(225\) 8860.46 0.175022
\(226\) 0 0
\(227\) 18607.3 + 10742.9i 0.361103 + 0.208483i 0.669565 0.742754i \(-0.266481\pi\)
−0.308461 + 0.951237i \(0.599814\pi\)
\(228\) 0 0
\(229\) 33210.6 19174.1i 0.633294 0.365632i −0.148733 0.988877i \(-0.547519\pi\)
0.782027 + 0.623245i \(0.214186\pi\)
\(230\) 0 0
\(231\) −15965.6 12963.4i −0.299200 0.242938i
\(232\) 0 0
\(233\) −38291.4 66322.6i −0.705325 1.22166i −0.966574 0.256387i \(-0.917468\pi\)
0.261250 0.965271i \(-0.415865\pi\)
\(234\) 0 0
\(235\) −52095.0 + 90231.2i −0.943323 + 1.63388i
\(236\) 0 0
\(237\) 11691.6i 0.208150i
\(238\) 0 0
\(239\) −27955.3 −0.489404 −0.244702 0.969598i \(-0.578690\pi\)
−0.244702 + 0.969598i \(0.578690\pi\)
\(240\) 0 0
\(241\) −18586.6 10731.0i −0.320011 0.184759i 0.331386 0.943495i \(-0.392484\pi\)
−0.651398 + 0.758737i \(0.725817\pi\)
\(242\) 0 0
\(243\) −3280.50 + 1894.00i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) −23091.4 + 70438.6i −0.384696 + 1.17349i
\(246\) 0 0
\(247\) 8026.82 + 13902.9i 0.131568 + 0.227882i
\(248\) 0 0
\(249\) 18058.6 31278.4i 0.291263 0.504482i
\(250\) 0 0
\(251\) 75356.9i 1.19612i −0.801450 0.598061i \(-0.795938\pi\)
0.801450 0.598061i \(-0.204062\pi\)
\(252\) 0 0
\(253\) −8820.12 −0.137795
\(254\) 0 0
\(255\) 25904.1 + 14955.8i 0.398372 + 0.230000i
\(256\) 0 0
\(257\) −80929.3 + 46724.5i −1.22529 + 0.707422i −0.966041 0.258388i \(-0.916809\pi\)
−0.259250 + 0.965810i \(0.583475\pi\)
\(258\) 0 0
\(259\) 21727.6 26759.5i 0.323902 0.398914i
\(260\) 0 0
\(261\) −11249.7 19485.0i −0.165143 0.286035i
\(262\) 0 0
\(263\) −38300.6 + 66338.6i −0.553725 + 0.959080i 0.444276 + 0.895890i \(0.353461\pi\)
−0.998001 + 0.0631906i \(0.979872\pi\)
\(264\) 0 0
\(265\) 161672.i 2.30220i
\(266\) 0 0
\(267\) −44254.6 −0.620777
\(268\) 0 0
\(269\) −112153. 64751.7i −1.54991 0.894843i −0.998147 0.0608439i \(-0.980621\pi\)
−0.551766 0.833999i \(-0.686046\pi\)
\(270\) 0 0
\(271\) 86449.8 49911.8i 1.17713 0.679618i 0.221783 0.975096i \(-0.428812\pi\)
0.955349 + 0.295479i \(0.0954791\pi\)
\(272\) 0 0
\(273\) 7240.03 + 1156.45i 0.0971438 + 0.0155167i
\(274\) 0 0
\(275\) −13253.5 22955.7i −0.175253 0.303547i
\(276\) 0 0
\(277\) 51676.3 89505.9i 0.673491 1.16652i −0.303417 0.952858i \(-0.598127\pi\)
0.976908 0.213662i \(-0.0685393\pi\)
\(278\) 0 0
\(279\) 30109.7i 0.386810i
\(280\) 0 0
\(281\) −73016.5 −0.924716 −0.462358 0.886693i \(-0.652997\pi\)
−0.462358 + 0.886693i \(0.652997\pi\)
\(282\) 0 0
\(283\) 100470. + 58006.5i 1.25448 + 0.724275i 0.971996 0.234997i \(-0.0755079\pi\)
0.282485 + 0.959272i \(0.408841\pi\)
\(284\) 0 0
\(285\) 77452.8 44717.4i 0.953559 0.550537i
\(286\) 0 0
\(287\) −3751.12 + 1434.28i −0.0455405 + 0.0174128i
\(288\) 0 0
\(289\) −24377.9 42223.7i −0.291877 0.505546i
\(290\) 0 0
\(291\) 6121.69 10603.1i 0.0722912 0.125212i
\(292\) 0 0
\(293\) 133255.i 1.55221i 0.630607 + 0.776103i \(0.282806\pi\)
−0.630607 + 0.776103i \(0.717194\pi\)
\(294\) 0 0
\(295\) −190444. −2.18838
\(296\) 0 0
\(297\) 9813.95 + 5666.09i 0.111258 + 0.0642348i
\(298\) 0 0
\(299\) 2723.14 1572.21i 0.0304599 0.0175860i
\(300\) 0 0
\(301\) 10536.1 + 27555.5i 0.116291 + 0.304141i
\(302\) 0 0
\(303\) 11545.6 + 19997.6i 0.125757 + 0.217817i
\(304\) 0 0
\(305\) −64104.8 + 111033.i −0.689114 + 1.19358i
\(306\) 0 0
\(307\) 35822.8i 0.380087i 0.981776 + 0.190044i \(0.0608629\pi\)
−0.981776 + 0.190044i \(0.939137\pi\)
\(308\) 0 0
\(309\) −45806.5 −0.479745
\(310\) 0 0
\(311\) −120008. 69286.5i −1.24076 0.716354i −0.271512 0.962435i \(-0.587524\pi\)
−0.969249 + 0.246081i \(0.920857\pi\)
\(312\) 0 0
\(313\) 19645.7 11342.4i 0.200530 0.115776i −0.396373 0.918090i \(-0.629731\pi\)
0.596903 + 0.802314i \(0.296398\pi\)
\(314\) 0 0
\(315\) 6442.56 40334.2i 0.0649288 0.406492i
\(316\) 0 0
\(317\) −12162.7 21066.4i −0.121035 0.209638i 0.799141 0.601143i \(-0.205288\pi\)
−0.920176 + 0.391505i \(0.871955\pi\)
\(318\) 0 0
\(319\) −33654.6 + 58291.4i −0.330722 + 0.572827i
\(320\) 0 0
\(321\) 97381.5i 0.945075i
\(322\) 0 0
\(323\) 103947. 0.996342
\(324\) 0 0
\(325\) 8183.83 + 4724.93i 0.0774800 + 0.0447331i
\(326\) 0 0
\(327\) 71335.8 41185.7i 0.667132 0.385169i
\(328\) 0 0
\(329\) 128374. + 104235.i 1.18601 + 0.962987i
\(330\) 0 0
\(331\) −86681.1 150136.i −0.791168 1.37034i −0.925244 0.379372i \(-0.876140\pi\)
0.134077 0.990971i \(-0.457193\pi\)
\(332\) 0 0
\(333\) −9496.77 + 16448.9i −0.0856421 + 0.148336i
\(334\) 0 0
\(335\) 240935.i 2.14690i
\(336\) 0 0
\(337\) 17517.9 0.154249 0.0771245 0.997021i \(-0.475426\pi\)
0.0771245 + 0.997021i \(0.475426\pi\)
\(338\) 0 0
\(339\) 36642.9 + 21155.8i 0.318853 + 0.184090i
\(340\) 0 0
\(341\) 78008.3 45038.1i 0.670860 0.387321i
\(342\) 0 0
\(343\) 104615. + 53823.7i 0.889213 + 0.457494i
\(344\) 0 0
\(345\) −8758.76 15170.6i −0.0735876 0.127457i
\(346\) 0 0
\(347\) 7496.34 12984.0i 0.0622573 0.107833i −0.833217 0.552947i \(-0.813503\pi\)
0.895474 + 0.445114i \(0.146837\pi\)
\(348\) 0 0
\(349\) 17312.7i 0.142139i −0.997471 0.0710694i \(-0.977359\pi\)
0.997471 0.0710694i \(-0.0226412\pi\)
\(350\) 0 0
\(351\) −4039.98 −0.0327917
\(352\) 0 0
\(353\) −29232.8 16877.6i −0.234596 0.135444i 0.378094 0.925767i \(-0.376580\pi\)
−0.612691 + 0.790323i \(0.709913\pi\)
\(354\) 0 0
\(355\) 113118. 65309.0i 0.897587 0.518222i
\(356\) 0 0
\(357\) 29924.4 36854.6i 0.234795 0.289171i
\(358\) 0 0
\(359\) −51246.0 88760.6i −0.397622 0.688702i 0.595810 0.803126i \(-0.296831\pi\)
−0.993432 + 0.114424i \(0.963498\pi\)
\(360\) 0 0
\(361\) 90239.6 156300.i 0.692441 1.19934i
\(362\) 0 0
\(363\) 42175.5i 0.320072i
\(364\) 0 0
\(365\) 300124. 2.25276
\(366\) 0 0
\(367\) −65619.3 37885.3i −0.487191 0.281280i 0.236217 0.971700i \(-0.424092\pi\)
−0.723409 + 0.690420i \(0.757426\pi\)
\(368\) 0 0
\(369\) 1916.41 1106.44i 0.0140746 0.00812599i
\(370\) 0 0
\(371\) 253382. + 40472.6i 1.84089 + 0.294045i
\(372\) 0 0
\(373\) 84927.1 + 147098.i 0.610420 + 1.05728i 0.991170 + 0.132600i \(0.0423327\pi\)
−0.380749 + 0.924678i \(0.624334\pi\)
\(374\) 0 0
\(375\) −23809.5 + 41239.3i −0.169312 + 0.293257i
\(376\) 0 0
\(377\) 23996.0i 0.168833i
\(378\) 0 0
\(379\) −125458. −0.873417 −0.436708 0.899603i \(-0.643856\pi\)
−0.436708 + 0.899603i \(0.643856\pi\)
\(380\) 0 0
\(381\) −127235. 73459.0i −0.876507 0.506052i
\(382\) 0 0
\(383\) −75623.7 + 43661.4i −0.515538 + 0.297646i −0.735107 0.677951i \(-0.762868\pi\)
0.219569 + 0.975597i \(0.429535\pi\)
\(384\) 0 0
\(385\) −114135. + 43640.5i −0.770010 + 0.294421i
\(386\) 0 0
\(387\) −8127.84 14077.8i −0.0542692 0.0939970i
\(388\) 0 0
\(389\) −85004.5 + 147232.i −0.561749 + 0.972978i 0.435595 + 0.900143i \(0.356538\pi\)
−0.997344 + 0.0728354i \(0.976795\pi\)
\(390\) 0 0
\(391\) 20360.1i 0.133176i
\(392\) 0 0
\(393\) −31851.3 −0.206225
\(394\) 0 0
\(395\) 60159.8 + 34733.3i 0.385578 + 0.222614i
\(396\) 0 0
\(397\) 62056.9 35828.6i 0.393739 0.227326i −0.290040 0.957015i \(-0.593669\pi\)
0.683779 + 0.729689i \(0.260335\pi\)
\(398\) 0 0
\(399\) −50694.5 132583.i −0.318431 0.832804i
\(400\) 0 0
\(401\) −115108. 199374.i −0.715844 1.23988i −0.962633 0.270809i \(-0.912709\pi\)
0.246789 0.969069i \(-0.420625\pi\)
\(402\) 0 0
\(403\) −16056.3 + 27810.3i −0.0988633 + 0.171236i
\(404\) 0 0
\(405\) 22506.7i 0.137215i
\(406\) 0 0
\(407\) 56821.1 0.343021
\(408\) 0 0
\(409\) 138232. + 79808.1i 0.826344 + 0.477090i 0.852599 0.522565i \(-0.175025\pi\)
−0.0262553 + 0.999655i \(0.508358\pi\)
\(410\) 0 0
\(411\) 6498.16 3751.72i 0.0384686 0.0222099i
\(412\) 0 0
\(413\) −47675.3 + 298475.i −0.279508 + 1.74988i
\(414\) 0 0
\(415\) −107297. 185843.i −0.623003 1.07907i
\(416\) 0 0
\(417\) −60824.3 + 105351.i −0.349788 + 0.605851i
\(418\) 0 0
\(419\) 142239.i 0.810195i −0.914274 0.405097i \(-0.867238\pi\)
0.914274 0.405097i \(-0.132762\pi\)
\(420\) 0 0
\(421\) −204443. −1.15347 −0.576736 0.816931i \(-0.695674\pi\)
−0.576736 + 0.816931i \(0.695674\pi\)
\(422\) 0 0
\(423\) −78910.8 45559.1i −0.441017 0.254621i
\(424\) 0 0
\(425\) 52990.2 30593.9i 0.293372 0.169378i
\(426\) 0 0
\(427\) 157969. + 128265.i 0.866398 + 0.703479i
\(428\) 0 0
\(429\) 6043.00 + 10466.8i 0.0328351 + 0.0568720i
\(430\) 0 0
\(431\) 13493.7 23371.7i 0.0726399 0.125816i −0.827418 0.561587i \(-0.810191\pi\)
0.900058 + 0.435771i \(0.143524\pi\)
\(432\) 0 0
\(433\) 274334.i 1.46320i 0.681733 + 0.731601i \(0.261227\pi\)
−0.681733 + 0.731601i \(0.738773\pi\)
\(434\) 0 0
\(435\) −133682. −0.706470
\(436\) 0 0
\(437\) −52720.3 30438.1i −0.276067 0.159388i
\(438\) 0 0
\(439\) 132.549 76.5273i 0.000687778 0.000397089i −0.499656 0.866224i \(-0.666540\pi\)
0.500344 + 0.865827i \(0.333207\pi\)
\(440\) 0 0
\(441\) −61601.4 20194.3i −0.316747 0.103837i
\(442\) 0 0
\(443\) 140880. + 244011.i 0.717863 + 1.24337i 0.961845 + 0.273595i \(0.0882127\pi\)
−0.243982 + 0.969780i \(0.578454\pi\)
\(444\) 0 0
\(445\) −131471. + 227715.i −0.663912 + 1.14993i
\(446\) 0 0
\(447\) 81730.2i 0.409041i
\(448\) 0 0
\(449\) 381037. 1.89005 0.945026 0.326994i \(-0.106036\pi\)
0.945026 + 0.326994i \(0.106036\pi\)
\(450\) 0 0
\(451\) −5733.15 3310.04i −0.0281864 0.0162734i
\(452\) 0 0
\(453\) −493.724 + 285.052i −0.00240596 + 0.00138908i
\(454\) 0 0
\(455\) 27459.2 33818.5i 0.132637 0.163354i
\(456\) 0 0
\(457\) −142055. 246046.i −0.680179 1.17810i −0.974926 0.222529i \(-0.928569\pi\)
0.294747 0.955575i \(-0.404764\pi\)
\(458\) 0 0
\(459\) −13079.4 + 22654.2i −0.0620816 + 0.107528i
\(460\) 0 0
\(461\) 259491.i 1.22101i −0.792011 0.610507i \(-0.790966\pi\)
0.792011 0.610507i \(-0.209034\pi\)
\(462\) 0 0
\(463\) −337437. −1.57410 −0.787048 0.616892i \(-0.788392\pi\)
−0.787048 + 0.616892i \(0.788392\pi\)
\(464\) 0 0
\(465\) 154931. + 89449.6i 0.716528 + 0.413688i
\(466\) 0 0
\(467\) −193149. + 111514.i −0.885641 + 0.511325i −0.872514 0.488589i \(-0.837512\pi\)
−0.0131267 + 0.999914i \(0.504178\pi\)
\(468\) 0 0
\(469\) −377608. 60315.2i −1.71671 0.274209i
\(470\) 0 0
\(471\) −19255.8 33351.9i −0.0867998 0.150342i
\(472\) 0 0
\(473\) −24315.3 + 42115.3i −0.108682 + 0.188242i
\(474\) 0 0
\(475\) 182950.i 0.810860i
\(476\) 0 0
\(477\) −141389. −0.621409
\(478\) 0 0
\(479\) 30605.3 + 17670.0i 0.133391 + 0.0770130i 0.565210 0.824947i \(-0.308795\pi\)
−0.431820 + 0.901960i \(0.642128\pi\)
\(480\) 0 0
\(481\) −17543.1 + 10128.5i −0.0758256 + 0.0437779i
\(482\) 0 0
\(483\) −25969.0 + 9929.49i −0.111317 + 0.0425630i
\(484\) 0 0
\(485\) −36372.6 62999.1i −0.154629 0.267825i
\(486\) 0 0
\(487\) 15664.8 27132.2i 0.0660491 0.114400i −0.831110 0.556108i \(-0.812294\pi\)
0.897159 + 0.441708i \(0.145627\pi\)
\(488\) 0 0
\(489\) 188880.i 0.789893i
\(490\) 0 0
\(491\) −24200.2 −0.100382 −0.0501911 0.998740i \(-0.515983\pi\)
−0.0501911 + 0.998740i \(0.515983\pi\)
\(492\) 0 0
\(493\) −134558. 77687.1i −0.553625 0.319636i
\(494\) 0 0
\(495\) 58310.4 33665.5i 0.237977 0.137396i
\(496\) 0 0
\(497\) −74038.3 193635.i −0.299739 0.783920i
\(498\) 0 0
\(499\) 225811. + 391117.i 0.906869 + 1.57074i 0.818388 + 0.574666i \(0.194868\pi\)
0.0884813 + 0.996078i \(0.471799\pi\)
\(500\) 0 0
\(501\) 108034. 187120.i 0.430413 0.745496i
\(502\) 0 0
\(503\) 339101.i 1.34027i 0.742239 + 0.670135i \(0.233764\pi\)
−0.742239 + 0.670135i \(0.766236\pi\)
\(504\) 0 0
\(505\) 137199. 0.537981
\(506\) 0 0
\(507\) 124793. + 72049.3i 0.485483 + 0.280294i
\(508\) 0 0
\(509\) 287788. 166155.i 1.11080 0.641323i 0.171766 0.985138i \(-0.445053\pi\)
0.939037 + 0.343815i \(0.111719\pi\)
\(510\) 0 0
\(511\) 75132.5 470373.i 0.287731 1.80136i
\(512\) 0 0
\(513\) 39107.2 + 67735.6i 0.148601 + 0.257384i
\(514\) 0 0
\(515\) −136082. + 235700.i −0.513080 + 0.888681i
\(516\) 0 0
\(517\) 272590.i 1.01983i
\(518\) 0 0
\(519\) −157213. −0.583653
\(520\) 0 0
\(521\) −6031.52 3482.30i −0.0222204 0.0128289i 0.488849 0.872369i \(-0.337417\pi\)
−0.511069 + 0.859540i \(0.670750\pi\)
\(522\) 0 0
\(523\) −29677.5 + 17134.3i −0.108499 + 0.0626417i −0.553267 0.833004i \(-0.686619\pi\)
0.444769 + 0.895645i \(0.353286\pi\)
\(524\) 0 0
\(525\) −64865.1 52667.8i −0.235338 0.191085i
\(526\) 0 0
\(527\) 103964. + 180072.i 0.374338 + 0.648372i
\(528\) 0 0
\(529\) 133959. 232023.i 0.478695 0.829125i
\(530\) 0 0
\(531\) 166551.i 0.590688i
\(532\) 0 0
\(533\) 2360.09 0.00830756
\(534\) 0 0
\(535\) 501083. + 289300.i 1.75066 + 1.01074i
\(536\) 0 0
\(537\) 115473. 66668.5i 0.400435 0.231192i
\(538\) 0 0
\(539\) 39823.8 + 189804.i 0.137077 + 0.653322i
\(540\) 0 0
\(541\) −17123.6 29659.0i −0.0585061 0.101336i 0.835289 0.549811i \(-0.185300\pi\)
−0.893795 + 0.448476i \(0.851967\pi\)
\(542\) 0 0
\(543\) 91915.2 159202.i 0.311736 0.539943i
\(544\) 0 0
\(545\) 489417.i 1.64773i
\(546\) 0 0
\(547\) 199345. 0.666242 0.333121 0.942884i \(-0.391898\pi\)
0.333121 + 0.942884i \(0.391898\pi\)
\(548\) 0 0
\(549\) −97102.6 56062.2i −0.322171 0.186005i
\(550\) 0 0
\(551\) −402326. + 232283.i −1.32518 + 0.765092i
\(552\) 0 0
\(553\) 69496.4 85591.1i 0.227254 0.279884i
\(554\) 0 0
\(555\) 56425.8 + 97732.4i 0.183186 + 0.317287i
\(556\) 0 0
\(557\) 238517. 413123.i 0.768792 1.33159i −0.169426 0.985543i \(-0.554191\pi\)
0.938218 0.346044i \(-0.112475\pi\)
\(558\) 0 0
\(559\) 17337.0i 0.0554819i
\(560\) 0 0
\(561\) 78256.8 0.248655
\(562\) 0 0
\(563\) −172367. 99516.1i −0.543798 0.313962i 0.202819 0.979216i \(-0.434990\pi\)
−0.746617 + 0.665255i \(0.768323\pi\)
\(564\) 0 0
\(565\) 217717. 125699.i 0.682017 0.393763i
\(566\) 0 0
\(567\) 35273.9 + 5634.28i 0.109720 + 0.0175256i
\(568\) 0 0
\(569\) −107710. 186559.i −0.332683 0.576224i 0.650354 0.759631i \(-0.274621\pi\)
−0.983037 + 0.183407i \(0.941287\pi\)
\(570\) 0 0
\(571\) 40895.7 70833.4i 0.125431 0.217253i −0.796470 0.604678i \(-0.793302\pi\)
0.921901 + 0.387425i \(0.126635\pi\)
\(572\) 0 0
\(573\) 26204.2i 0.0798107i
\(574\) 0 0
\(575\) −35834.3 −0.108384
\(576\) 0 0
\(577\) −120612. 69635.5i −0.362276 0.209160i 0.307803 0.951450i \(-0.400406\pi\)
−0.670079 + 0.742290i \(0.733740\pi\)
\(578\) 0 0
\(579\) 4096.83 2365.31i 0.0122206 0.00705554i
\(580\) 0 0
\(581\) −318125. + 121638.i −0.942423 + 0.360345i
\(582\) 0 0
\(583\) 211489. + 366310.i 0.622230 + 1.07773i
\(584\) 0 0
\(585\) −12001.9 + 20787.9i −0.0350703 + 0.0607435i
\(586\) 0 0
\(587\) 442737.i 1.28490i −0.766327 0.642451i \(-0.777918\pi\)
0.766327 0.642451i \(-0.222082\pi\)
\(588\) 0 0
\(589\) 621703. 1.79206
\(590\) 0 0
\(591\) 233291. + 134691.i 0.667918 + 0.385623i
\(592\) 0 0
\(593\) −433993. + 250566.i −1.23417 + 0.712546i −0.967896 0.251353i \(-0.919125\pi\)
−0.266270 + 0.963898i \(0.585791\pi\)
\(594\) 0 0
\(595\) −100738. 263465.i −0.284552 0.744199i
\(596\) 0 0
\(597\) −44278.9 76693.2i −0.124236 0.215183i
\(598\) 0 0
\(599\) 78875.6 136616.i 0.219831 0.380758i −0.734925 0.678148i \(-0.762783\pi\)
0.954756 + 0.297390i \(0.0961161\pi\)
\(600\) 0 0
\(601\) 129315.i 0.358013i −0.983848 0.179006i \(-0.942712\pi\)
0.983848 0.179006i \(-0.0572883\pi\)
\(602\) 0 0
\(603\) 210708. 0.579489
\(604\) 0 0
\(605\) 217017. + 125295.i 0.592901 + 0.342312i
\(606\) 0 0
\(607\) −167505. + 96709.3i −0.454623 + 0.262477i −0.709781 0.704423i \(-0.751206\pi\)
0.255158 + 0.966899i \(0.417873\pi\)
\(608\) 0 0
\(609\) −33465.6 + 209514.i −0.0902328 + 0.564910i
\(610\) 0 0
\(611\) −48589.8 84160.0i −0.130155 0.225436i
\(612\) 0 0
\(613\) 26167.3 45323.2i 0.0696368 0.120614i −0.829105 0.559093i \(-0.811149\pi\)
0.898741 + 0.438479i \(0.144483\pi\)
\(614\) 0 0
\(615\) 13148.0i 0.0347625i
\(616\) 0 0
\(617\) 151761. 0.398648 0.199324 0.979934i \(-0.436125\pi\)
0.199324 + 0.979934i \(0.436125\pi\)
\(618\) 0 0
\(619\) −545231. 314789.i −1.42298 0.821559i −0.426430 0.904521i \(-0.640229\pi\)
−0.996553 + 0.0829613i \(0.973562\pi\)
\(620\) 0 0
\(621\) 13267.3 7659.89i 0.0344033 0.0198627i
\(622\) 0 0
\(623\) 323976. + 263055.i 0.834712 + 0.677752i
\(624\) 0 0
\(625\) 244018. + 422651.i 0.624686 + 1.08199i
\(626\) 0 0
\(627\) 116993. 202638.i 0.297595 0.515449i
\(628\) 0 0
\(629\) 131164.i 0.331523i
\(630\) 0 0
\(631\) 204849. 0.514489 0.257244 0.966346i \(-0.417185\pi\)
0.257244 + 0.966346i \(0.417185\pi\)
\(632\) 0 0
\(633\) 162216. + 93655.3i 0.404842 + 0.233736i
\(634\) 0 0
\(635\) −755976. + 436463.i −1.87482 + 1.08243i
\(636\) 0 0
\(637\) −46128.3 51501.8i −0.113681 0.126924i
\(638\) 0 0
\(639\) 57115.3 + 98926.6i 0.139878 + 0.242277i
\(640\) 0 0
\(641\) 231581. 401110.i 0.563621 0.976219i −0.433556 0.901127i \(-0.642741\pi\)
0.997177 0.0750928i \(-0.0239253\pi\)
\(642\) 0 0
\(643\) 59250.0i 0.143307i 0.997430 + 0.0716534i \(0.0228275\pi\)
−0.997430 + 0.0716534i \(0.977172\pi\)
\(644\) 0 0
\(645\) −96584.5 −0.232160
\(646\) 0 0
\(647\) −234043. 135125.i −0.559096 0.322794i 0.193686 0.981063i \(-0.437956\pi\)
−0.752783 + 0.658269i \(0.771289\pi\)
\(648\) 0 0
\(649\) −431501. + 249127.i −1.02445 + 0.591468i
\(650\) 0 0
\(651\) 178976. 220425.i 0.422311 0.520114i
\(652\) 0 0
\(653\) 171942. + 297813.i 0.403233 + 0.698420i 0.994114 0.108338i \(-0.0345530\pi\)
−0.590881 + 0.806759i \(0.701220\pi\)
\(654\) 0 0
\(655\) −94623.6 + 163893.i −0.220555 + 0.382013i
\(656\) 0 0
\(657\) 262471.i 0.608065i
\(658\) 0 0
\(659\) −726498. −1.67288 −0.836438 0.548061i \(-0.815366\pi\)
−0.836438 + 0.548061i \(0.815366\pi\)
\(660\) 0 0
\(661\) −432110. 249479.i −0.988989 0.570993i −0.0840168 0.996464i \(-0.526775\pi\)
−0.904972 + 0.425471i \(0.860108\pi\)
\(662\) 0 0
\(663\) −24161.2 + 13949.5i −0.0549656 + 0.0317344i
\(664\) 0 0
\(665\) −832818. 133026.i −1.88324 0.300810i
\(666\) 0 0
\(667\) 45497.1 + 78803.2i 0.102266 + 0.177130i
\(668\) 0 0
\(669\) 22513.2 38994.0i 0.0503020 0.0871256i
\(670\) 0 0
\(671\) 335432.i 0.745005i
\(672\) 0 0
\(673\) −74418.2 −0.164304 −0.0821522 0.996620i \(-0.526179\pi\)
−0.0821522 + 0.996620i \(0.526179\pi\)
\(674\) 0 0
\(675\) 39872.1 + 23020.2i 0.0875108 + 0.0505244i
\(676\) 0 0
\(677\) −545262. + 314807.i −1.18967 + 0.686858i −0.958232 0.285991i \(-0.907677\pi\)
−0.231441 + 0.972849i \(0.574344\pi\)
\(678\) 0 0
\(679\) −107841. + 41234.2i −0.233909 + 0.0894372i
\(680\) 0 0
\(681\) 55821.9 + 96686.3i 0.120368 + 0.208483i
\(682\) 0 0
\(683\) −119621. + 207189.i −0.256428 + 0.444146i −0.965282 0.261209i \(-0.915879\pi\)
0.708854 + 0.705355i \(0.249212\pi\)
\(684\) 0 0
\(685\) 44582.3i 0.0950126i
\(686\) 0 0
\(687\) 199263. 0.422196
\(688\) 0 0
\(689\) −130591. 75396.9i −0.275091 0.158824i
\(690\) 0 0
\(691\) −248878. + 143690.i −0.521232 + 0.300934i −0.737439 0.675414i \(-0.763965\pi\)
0.216206 + 0.976348i \(0.430632\pi\)
\(692\) 0 0
\(693\) −38165.4 99815.4i −0.0794700 0.207841i
\(694\) 0 0
\(695\) 361393. + 625951.i 0.748187 + 1.29590i
\(696\) 0 0
\(697\) 7640.78 13234.2i 0.0157280 0.0272416i
\(698\) 0 0
\(699\) 397936.i 0.814439i
\(700\) 0 0
\(701\) 576577. 1.17333 0.586667 0.809828i \(-0.300440\pi\)
0.586667 + 0.809828i \(0.300440\pi\)
\(702\) 0 0
\(703\) 339636. + 196089.i 0.687231 + 0.396773i
\(704\) 0 0
\(705\) −468855. + 270693.i −0.943323 + 0.544628i
\(706\) 0 0
\(707\) 34346.0 215026.i 0.0687127 0.430182i
\(708\) 0 0
\(709\) −135055. 233923.i −0.268670 0.465350i 0.699849 0.714291i \(-0.253251\pi\)
−0.968519 + 0.248941i \(0.919917\pi\)
\(710\) 0 0
\(711\) −30375.6 + 52612.2i −0.0600878 + 0.104075i
\(712\) 0 0
\(713\) 121772.i 0.239536i
\(714\) 0 0
\(715\) 71810.0 0.140466
\(716\) 0 0
\(717\) −125799. 72629.9i −0.244702 0.141279i
\(718\) 0 0
\(719\) 623402. 359922.i 1.20590 0.696226i 0.244038 0.969766i \(-0.421528\pi\)
0.961861 + 0.273540i \(0.0881946\pi\)
\(720\) 0 0
\(721\) 335338. + 272280.i 0.645077 + 0.523776i
\(722\) 0 0
\(723\) −55759.7 96578.7i −0.106670 0.184759i
\(724\) 0 0
\(725\) −136732. + 236826.i −0.260132 + 0.450561i
\(726\) 0 0
\(727\) 537629.i 1.01722i −0.860998 0.508608i \(-0.830160\pi\)
0.860998 0.508608i \(-0.169840\pi\)
\(728\) 0 0
\(729\) −19683.0 −0.0370370
\(730\) 0 0
\(731\) −97217.6 56128.6i −0.181932 0.105039i
\(732\) 0 0
\(733\) 166185. 95946.8i 0.309302 0.178576i −0.337312 0.941393i \(-0.609518\pi\)
0.646614 + 0.762817i \(0.276184\pi\)
\(734\) 0 0
\(735\) −286916. + 256980.i −0.531105 + 0.475692i
\(736\) 0 0
\(737\) −315177. 545902.i −0.580255 1.00503i
\(738\) 0 0
\(739\) 240143. 415941.i 0.439726 0.761627i −0.557942 0.829880i \(-0.688409\pi\)
0.997668 + 0.0682524i \(0.0217423\pi\)
\(740\) 0 0
\(741\) 83417.2i 0.151921i
\(742\) 0 0
\(743\) 73908.4 0.133880 0.0669401 0.997757i \(-0.478676\pi\)
0.0669401 + 0.997757i \(0.478676\pi\)
\(744\) 0 0
\(745\) 420548. + 242803.i 0.757709 + 0.437464i
\(746\) 0 0
\(747\) 162527. 93835.2i 0.291263 0.168161i
\(748\) 0 0
\(749\) 578849. 712904.i 1.03181 1.27077i
\(750\) 0 0
\(751\) 359828. + 623241.i 0.637992 + 1.10503i 0.985873 + 0.167496i \(0.0535681\pi\)
−0.347881 + 0.937539i \(0.613099\pi\)
\(752\) 0 0
\(753\) 195783. 339106.i 0.345291 0.598061i
\(754\) 0 0
\(755\) 3387.32i 0.00594240i
\(756\) 0 0
\(757\) −313914. −0.547795 −0.273898 0.961759i \(-0.588313\pi\)
−0.273898 + 0.961759i \(0.588313\pi\)
\(758\) 0 0
\(759\) −39690.5 22915.3i −0.0688975 0.0397780i
\(760\) 0 0
\(761\) 618023. 356816.i 1.06718 0.616134i 0.139767 0.990184i \(-0.455365\pi\)
0.927408 + 0.374051i \(0.122031\pi\)
\(762\) 0 0
\(763\) −767044. 122520.i −1.31756 0.210454i
\(764\) 0 0
\(765\) 77712.4 + 134602.i 0.132791 + 0.230000i
\(766\) 0 0
\(767\) 88815.0 153832.i 0.150972 0.261491i
\(768\) 0 0
\(769\) 814619.i 1.37753i 0.724984 + 0.688766i \(0.241847\pi\)
−0.724984 + 0.688766i \(0.758153\pi\)
\(770\) 0 0
\(771\) −485576. −0.816861
\(772\) 0 0
\(773\) 377176. + 217763.i 0.631226 + 0.364439i 0.781227 0.624247i \(-0.214594\pi\)
−0.150001 + 0.988686i \(0.547928\pi\)
\(774\) 0 0
\(775\) 316932. 182981.i 0.527670 0.304650i
\(776\) 0 0
\(777\) 167298. 63967.9i 0.277107 0.105955i
\(778\) 0 0
\(779\) −22845.8 39570.0i −0.0376470 0.0652066i
\(780\) 0 0
\(781\) 170866. 295949.i 0.280126 0.485193i
\(782\) 0 0
\(783\) 116910.i 0.190690i
\(784\) 0 0
\(785\) −228819. −0.371324
\(786\) 0 0
\(787\) 424554. + 245116.i 0.685462 + 0.395752i 0.801910 0.597445i \(-0.203817\pi\)
−0.116448 + 0.993197i \(0.537151\pi\)
\(788\) 0 0
\(789\) −344706. + 199016.i −0.553725 + 0.319693i
\(790\) 0 0
\(791\) −142500. 372686.i −0.227752 0.595649i
\(792\) 0 0
\(793\) −59791.5 103562.i −0.0950809 0.164685i
\(794\) 0 0
\(795\) −420036. + 727524.i −0.664588 + 1.15110i
\(796\) 0 0
\(797\) 1.03685e6i 1.63230i 0.577837 + 0.816152i \(0.303897\pi\)
−0.577837 + 0.816152i \(0.696103\pi\)
\(798\) 0 0
\(799\) −629237. −0.985646
\(800\) 0 0
\(801\) −199146. 114977.i −0.310388 0.179203i
\(802\) 0 0
\(803\) 680010. 392604.i 1.05459 0.608869i
\(804\) 0 0
\(805\) −26055.6 + 163123.i −0.0402078 + 0.251724i
\(806\) 0 0
\(807\) −336460. 582766.i −0.516638 0.894843i
\(808\) 0 0
\(809\) 463952. 803588.i 0.708885 1.22782i −0.256386 0.966574i \(-0.582532\pi\)
0.965271 0.261250i \(-0.0841348\pi\)
\(810\) 0 0
\(811\) 868999.i 1.32123i −0.750726 0.660614i \(-0.770296\pi\)
0.750726 0.660614i \(-0.229704\pi\)
\(812\) 0 0
\(813\) 518699. 0.784755
\(814\) 0 0
\(815\) 971894. + 561123.i 1.46320 + 0.844779i
\(816\) 0 0
\(817\) −290678. + 167823.i −0.435480 + 0.251425i
\(818\) 0 0
\(819\) 29575.6 + 24014.2i 0.0440926 + 0.0358014i
\(820\) 0 0
\(821\) 635551. + 1.10081e6i 0.942896 + 1.63314i 0.759910 + 0.650028i \(0.225243\pi\)
0.182986 + 0.983116i \(0.441424\pi\)
\(822\) 0 0
\(823\) 178833. 309748.i 0.264027 0.457308i −0.703281 0.710912i \(-0.748282\pi\)
0.967308 + 0.253603i \(0.0816158\pi\)
\(824\) 0 0
\(825\) 137734.i 0.202364i
\(826\) 0 0
\(827\) 409303. 0.598458 0.299229 0.954181i \(-0.403271\pi\)
0.299229 + 0.954181i \(0.403271\pi\)
\(828\) 0 0
\(829\) −153277. 88494.3i −0.223032 0.128767i 0.384322 0.923199i \(-0.374435\pi\)
−0.607353 + 0.794432i \(0.707769\pi\)
\(830\) 0 0
\(831\) 465087. 268518.i 0.673491 0.388840i
\(832\) 0 0
\(833\) −438137. + 91928.0i −0.631422 + 0.132482i
\(834\) 0 0
\(835\) −641893. 1.11179e6i −0.920640 1.59459i
\(836\) 0 0
\(837\) −78227.2 + 135494.i −0.111662 + 0.193405i
\(838\) 0 0
\(839\) 336396.i 0.477889i −0.971033 0.238945i \(-0.923199\pi\)
0.971033 0.238945i \(-0.0768014\pi\)
\(840\) 0 0
\(841\) −12875.7 −0.0182045
\(842\) 0 0
\(843\) −328574. 189703.i −0.462358 0.266943i
\(844\) 0 0
\(845\) 741468. 428087.i 1.03843 0.599541i
\(846\) 0 0
\(847\) 250697. 308756.i 0.349448 0.430376i
\(848\) 0 0
\(849\) 301410. + 522058.i 0.418160 + 0.724275i
\(850\) 0 0
\(851\) 38407.8 66524.2i 0.0530347 0.0918587i
\(852\) 0 0
\(853\) 117802.i 0.161903i 0.996718 + 0.0809513i \(0.0257958\pi\)
−0.996718 + 0.0809513i \(0.974204\pi\)
\(854\) 0 0
\(855\) 464717. 0.635706
\(856\) 0 0
\(857\) 383927. + 221660.i 0.522742 + 0.301805i 0.738056 0.674740i \(-0.235744\pi\)
−0.215314 + 0.976545i \(0.569077\pi\)
\(858\) 0 0
\(859\) −346427. + 200010.i −0.469489 + 0.271060i −0.716026 0.698074i \(-0.754041\pi\)
0.246537 + 0.969133i \(0.420707\pi\)
\(860\) 0 0
\(861\) −20606.4 3291.45i −0.0277969 0.00443998i
\(862\) 0 0
\(863\) −85231.5 147625.i −0.114440 0.198216i 0.803116 0.595823i \(-0.203174\pi\)
−0.917556 + 0.397607i \(0.869841\pi\)
\(864\) 0 0
\(865\) −467048. + 808952.i −0.624209 + 1.08116i
\(866\) 0 0
\(867\) 253342.i 0.337031i
\(868\) 0 0
\(869\) 181744. 0.240669
\(870\) 0 0
\(871\) 194617. + 112362.i 0.256533 + 0.148110i
\(872\) 0 0
\(873\) 55095.2 31809.3i 0.0722912 0.0417374i
\(874\) 0 0
\(875\) 419435. 160375.i 0.547834 0.209469i
\(876\) 0 0
\(877\) −722377. 1.25119e6i −0.939215 1.62677i −0.766940 0.641719i \(-0.778221\pi\)
−0.172275 0.985049i \(-0.555112\pi\)
\(878\) 0 0
\(879\) −346207. + 599649.i −0.448083 + 0.776103i
\(880\) 0 0
\(881\) 562100.i 0.724206i 0.932138 + 0.362103i \(0.117941\pi\)
−0.932138 + 0.362103i \(0.882059\pi\)
\(882\) 0 0
\(883\) 374231. 0.479975 0.239987 0.970776i \(-0.422857\pi\)
0.239987 + 0.970776i \(0.422857\pi\)
\(884\) 0 0
\(885\) −856998. 494788.i −1.09419 0.631732i
\(886\) 0 0
\(887\) 716350. 413585.i 0.910495 0.525675i 0.0299049 0.999553i \(-0.490480\pi\)
0.880591 + 0.473878i \(0.157146\pi\)
\(888\) 0 0
\(889\) 494802. + 1.29407e6i 0.626077 + 1.63740i
\(890\) 0 0
\(891\) 29441.9 + 50994.8i 0.0370860 + 0.0642348i
\(892\) 0 0
\(893\) −940703. + 1.62935e6i −1.17964 + 2.04320i
\(894\) 0 0
\(895\) 792233.i 0.989024i
\(896\) 0 0
\(897\) 16338.9 0.0203066
\(898\) 0 0
\(899\) −804784. 464642.i −0.995772 0.574909i
\(900\) 0 0
\(901\) −845578. + 488195.i −1.04161 + 0.601372i
\(902\) 0 0
\(903\) −24178.8 + 151373.i −0.0296523 + 0.185641i
\(904\) 0 0
\(905\) −546122. 945911.i −0.666795 1.15492i
\(906\) 0 0
\(907\) −315810. + 547000.i −0.383895 + 0.664925i −0.991615 0.129226i \(-0.958751\pi\)
0.607721 + 0.794151i \(0.292084\pi\)
\(908\) 0 0
\(909\) 119986.i 0.145212i
\(910\) 0 0
\(911\) −1.36370e6 −1.64317 −0.821583 0.570089i \(-0.806909\pi\)
−0.821583 + 0.570089i \(0.806909\pi\)
\(912\) 0 0
\(913\) −486217. 280718.i −0.583296 0.336766i
\(914\) 0 0
\(915\) −576943. + 333098.i −0.689114 + 0.397860i
\(916\) 0 0
\(917\) 233175. + 189329.i 0.277296 + 0.225153i
\(918\) 0 0
\(919\) 287855. + 498579.i 0.340834 + 0.590341i 0.984588 0.174891i \(-0.0559574\pi\)
−0.643754 + 0.765232i \(0.722624\pi\)
\(920\) 0 0
\(921\) −93070.5 + 161203.i −0.109722 + 0.190044i
\(922\) 0 0
\(923\) 121829.i 0.143004i
\(924\) 0 0
\(925\) 230853. 0.269806
\(926\) 0 0
\(927\) −206129. 119009.i −0.239873 0.138490i
\(928\) 0 0
\(929\) 455506. 262987.i 0.527792 0.304721i −0.212325 0.977199i \(-0.568103\pi\)
0.740117 + 0.672478i \(0.234770\pi\)
\(930\) 0 0
\(931\) −416972. + 1.27194e6i −0.481069 + 1.46747i
\(932\) 0 0
\(933\) −360023. 623578.i −0.413587 0.716354i
\(934\) 0 0
\(935\) 232485. 402675.i 0.265932 0.460608i
\(936\) 0 0
\(937\) 16374.0i 0.0186499i 0.999957 + 0.00932495i \(0.00296827\pi\)
−0.999957 + 0.00932495i \(0.997032\pi\)
\(938\) 0 0
\(939\) 117874. 0.133686
\(940\) 0 0
\(941\) 504236. + 291121.i 0.569448 + 0.328771i 0.756929 0.653497i \(-0.226699\pi\)
−0.187481 + 0.982268i \(0.560032\pi\)
\(942\) 0 0
\(943\) −7750.55 + 4474.78i −0.00871584 + 0.00503209i
\(944\) 0 0
\(945\) 133783. 164766.i 0.149809 0.184503i
\(946\) 0 0
\(947\) −91148.9 157874.i −0.101637 0.176040i 0.810722 0.585431i \(-0.199075\pi\)
−0.912359 + 0.409391i \(0.865741\pi\)
\(948\) 0 0
\(949\) −139965. + 242427.i −0.155413 + 0.269184i
\(950\) 0 0
\(951\) 126398.i 0.139759i
\(952\) 0 0
\(953\) −1.16269e6 −1.28020 −0.640099 0.768293i \(-0.721107\pi\)
−0.640099 + 0.768293i \(0.721107\pi\)
\(954\) 0 0
\(955\) 134835. + 77847.1i 0.147842 + 0.0853563i
\(956\) 0 0
\(957\) −302891. + 174874.i −0.330722 + 0.190942i
\(958\) 0 0
\(959\) −69872.0 11160.6i −0.0759742 0.0121353i
\(960\) 0 0
\(961\) 160045. + 277206.i 0.173299 + 0.300162i
\(962\) 0 0
\(963\) −253005. + 438217.i −0.272820 + 0.472538i
\(964\) 0 0
\(965\) 28107.4i 0.0301832i
\(966\) 0 0
\(967\) 81805.3 0.0874840 0.0437420 0.999043i \(-0.486072\pi\)
0.0437420 + 0.999043i \(0.486072\pi\)
\(968\) 0 0
\(969\) 467763. + 270063.i 0.498171 + 0.287619i
\(970\) 0 0
\(971\) −31947.3 + 18444.8i −0.0338841 + 0.0195630i −0.516846 0.856078i \(-0.672894\pi\)
0.482962 + 0.875641i \(0.339561\pi\)
\(972\) 0 0
\(973\) 1.07150e6 409698.i 1.13179 0.432751i
\(974\) 0 0
\(975\) 24551.5 + 42524.4i 0.0258267 + 0.0447331i
\(976\) 0 0
\(977\) −498061. + 862667.i −0.521787 + 0.903762i 0.477892 + 0.878419i \(0.341401\pi\)
−0.999679 + 0.0253433i \(0.991932\pi\)
\(978\) 0 0
\(979\) 687929.i 0.717759i
\(980\) 0 0
\(981\) 428015. 0.444755
\(982\) 0 0
\(983\) −1.06858e6 616944.i −1.10586 0.638467i −0.168104 0.985769i \(-0.553764\pi\)
−0.937753 + 0.347302i \(0.887098\pi\)
\(984\) 0 0
\(985\) 1.38612e6 800276.i 1.42866 0.824835i
\(986\) 0 0
\(987\) 306875. + 802583.i 0.315012 + 0.823864i
\(988\) 0 0
\(989\) 32871.4 + 56934.9i 0.0336067 + 0.0582085i
\(990\) 0 0
\(991\) −537650. + 931237.i −0.547460 + 0.948228i 0.450988 + 0.892530i \(0.351072\pi\)
−0.998448 + 0.0556982i \(0.982262\pi\)
\(992\) 0 0
\(993\) 900817.i 0.913562i
\(994\) 0 0
\(995\) −526173. −0.531475
\(996\) 0 0
\(997\) −70027.3 40430.3i −0.0704493 0.0406739i 0.464362 0.885646i \(-0.346284\pi\)
−0.534811 + 0.844972i \(0.679617\pi\)
\(998\) 0 0
\(999\) −85470.9 + 49346.7i −0.0856421 + 0.0494455i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.5.m.a.73.2 yes 4
3.2 odd 2 252.5.z.b.73.1 4
4.3 odd 2 336.5.bh.c.241.2 4
7.2 even 3 588.5.m.a.313.1 4
7.3 odd 6 588.5.d.a.97.3 4
7.4 even 3 588.5.d.a.97.2 4
7.5 odd 6 inner 84.5.m.a.61.2 4
7.6 odd 2 588.5.m.a.325.1 4
21.5 even 6 252.5.z.b.145.1 4
28.19 even 6 336.5.bh.c.145.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.5.m.a.61.2 4 7.5 odd 6 inner
84.5.m.a.73.2 yes 4 1.1 even 1 trivial
252.5.z.b.73.1 4 3.2 odd 2
252.5.z.b.145.1 4 21.5 even 6
336.5.bh.c.145.2 4 28.19 even 6
336.5.bh.c.241.2 4 4.3 odd 2
588.5.d.a.97.2 4 7.4 even 3
588.5.d.a.97.3 4 7.3 odd 6
588.5.m.a.313.1 4 7.2 even 3
588.5.m.a.325.1 4 7.6 odd 2